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Identification of potentially 
common loci between childhood 
obesity and coronary artery disease 
using pleiotropic approaches
Lianke Wang1,2, Qiang Zhang2, Fei Xu1, Anna Brickell3, Qianyu Zhou1, Bin Yang1 & 
Changqing Sun1,2*

Childhood obesity remains one of the most important issues in global health, which is implicated in 
many chronic diseases. Converging evidence suggests that a higher body mass index during childhood 
(CBMI) is significantly associated with increased coronary artery disease (CAD) susceptibility in 
adulthood, which may partly arise from the shared genetic determination. Despite genome-wide 
association studies (GWASs) have successfully identified some loci associated with CBMI and CAD 
individually, the genetic overlap and common biological mechanism between them remains largely 
unexplored. Here, relying on the results from the two large-scale GWASs (n = 35,668 for CBMI and 
n = 547,261 for CAD), linkage disequilibrium score regression (LDSC) was used to estimate the genetic 
correlation of CBMI and CAD in the first step. Then, we applied different pleiotropy-informed methods 
including conditional false discovery rate ( cFDR ) and genetic analysis incorporating pleiotropy and 
annotation (GPA) to detect potentially common loci for childhood obesity and CAD. By integrating 
the genetic information from the existing GWASs summary statistics, we found a significant positive 
genetic correlation ( rg = 0.127, p = 2E−4) and strong pleiotropic enrichment between CBMI and CAD 
(LRT = 79.352, p = 5.2E−19). Importantly, 28 loci were simultaneously discovered to be associated 
with CBMI, and 13 of them were identified as potentially pleiotropic loci by cFDR and GPA. Those 
corresponding pleiotropic genes were enriched in trait-associated gene ontology (GO) terms “amino 
sugar catabolic process”, “regulation of fat cell differentiation” and “synaptic transmission”. Overall, 
the findings of the pleiotropic loci will help to further elucidate the common molecular mechanisms 
underlying the association of childhood obesity and CAD, and provide a theoretical direction for early 
disease prevention and potential therapeutic targets.

Childhood obesity has emerged as an important public health problem and threatens future health and longevity, 
including an increased risk of many chronic disorders and premature  death1–3. In recent decades, the worldwide 
prevalence of childhood obesity is on the increase  remarkably2, and more than 22% of children are overweight 
or obese in developed  countries3. The data from the World Health Organization (WHO) shows that there are 
over 340 million overweight and 124 million obese children and adolescents in  20164. BMI is an established and 
most commonly used index to quantitatively measure obesity and health. Numerous studies have demonstrated 
that a higher body mass index during childhood (CBMI) is associated with an increased risk of coronary artery 
disease (CAD) in later adult  life5–7. Several lines of evidence suggested that this association may partially arise 
from the common genetic foundation between the two  phenotypes8,9. However, the biological mechanisms 
underlying this relationship are still unclear.

Genome-wide association studies (GWASs) have been widely used to identify single nucleotide polymor-
phisms (SNPs) contributing to the variation of complex traits or diseases, including CBMI and CAD. Herit-
ability studies indicated a strong genetic contribution to both CBMI (h2: 67–93%)10 and CAD (h2: 40–60%)11. 
To date, GWASs have identified 161 loci for CAD and 25 loci for CBMI, accounting for 15.1% and 3.6% of the 
phenotypic variance of CAD and CBMI,  respectively8,12. This indicated the heritability explained by the variants 
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previously reported was limited (especially for CBMI) and most of the heritability was probably not missing 
but undetected. Additionally, hundreds of SNPs associated with adult BMI or obesity-related traits had been 
identified, by contrast, less was well known about the genetic background of  CBMI13. Meanwhile, evidence from 
previous researches suggested that common genetic variant existed in CBMI and  CAD9, indicating shared genetic 
determinants or risk factors between the two phenotypes.

GWAS can uncover more genetic loci to further explain the heritability of complex phenotypes by increasing 
the sample  size14,15, but it is commonly not feasible since recruiting additional participants and SNP genotyping 
is too costly. Moreover, GWASs are usually performed on a single trait or disease, rather than analyzing them 
concurrently. Therefore, pleiotropic methods without extensive additional subject recruitment requirements are 
effective to discover novel genetic variants associated with multiple diseases or traits. Pleiotropy is the phenom-
enon of a single locus influencing more than two distinct diseases or  traits16. Now, with the active pleiotropic 
method development in this field, it is possible to comprehensively elucidate the genetic overlap and biological 
underpinnings between different traits or  diseases17.

Considering the close relationship, high heritability, and potential pleiotropy between CBMI and CAD, we 
assume the two phenotypes are ideal for further analyses to improve the detection of associated loci and explore 
the common etiology. Additionally, the pleiotropy between adult BMI and CAD has been studied by our team 
 before18. Owing to the genetic correlation of CBMI and adult BMI and the significance of early disease preven-
tion, the shared genetic signals between CBMI and CAD are worthy of further study with larger sample size. 
In the present study, with summary statistics from the two large-scale existing GWAS datasets, we first utilized 
the linkage disequilibrium score regression (LDSC) method to estimate the overall genetic correlation between 
CBMI and CAD. Next, we applied the conditional false discovery rate ( cFDR ) and the genetic analysis incor-
porating pleiotropy and annotation (GPA) approaches to explore whether CBMI shares susceptibility loci with 
 CAD19,20 and discover some novel etiologic relationship between them. The current study will be a foundation 
of further researches about the two phenotypes and helpful for screening the shared genetic factor. Addition-
ally, the potentially shared genetic influences and biological mechanisms can provide novel helpful strategies 
for preventing and treating CAD early.

Results
Genetic correlation. The LDSC results showed that the genome-wide SNP-based heritability was estimated 
to be 24.21% (se = 2.21%) for CBMI and 5.83% (se = 0.33%) for CAD. Additionally, the LDSC intercept was 
0.9971 (se = 0.007) for CBMI and 0.9951 (se = 0.011) for CAD, demonstrating that the results of our analysis 
were reliable and not affected by the confounding factors from population stratification or relatedness. Next, 
using cross-trait LDSC with 1,053,840 common SNPs from filtered summary statistics, we found that there 
existed a significant positive genetic correlation between CBMI and CAD ( rg = 0.127, p = 2E−4), indicating the 
genetic overlap between the two phenotypes. Therefore, further analyses were implemented to explore the spe-
cific genetic mechanisms shared by CBMI and CAD.

Pleiotropic enrichment. A stratified Q-Q plot for CBMI conditioned on different strengths of the associa-
tion of CAD was shown in Fig. 1A. Strong pleiotropic enrichment between CBMI and CAD was revealed in the 

Figure 1.  Stratified Q–Q plot (A) and Fold-enrichment plot (B). Stratified Q–Q plot: Nominal versus empirical 
−log10(p) values in CBMI as a function of significance of association with CAD at different levels. Fold-
enrichment plot: Enrichment versus nominal −log10(p) values for CBMI as a function of significance of the 
association with CAD.
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conditional Q-Q plot, as reflected by a large degree of leftward deflection from the null line under the succes-
sively decreasing thresholds. Earlier departures from the null line with higher levels of association with CAD 
demonstrate a greater proportion of true associations for a given nominal p-value. The fold-enrichment plot 
also displayed the genetic enrichment for CBMI conditioned on varying significance levels of CAD by observing 
the extent of upward shift from the reference line (Fig. 1B). Meanwhile, according to the LRT result (Table 1), 
we found that there was significantly pleiotropic enrichment between CBMI and CAD (the LRT p-value was 
5.2E−19), which entirely supported the evidence provided from the above two different plots.

CBMI genetic loci identified with two methods. We identified 31 and 29 significant SNPs associated 
with CBMI according to the thresholds of cFDR < 0.05 and fdr.GPA < 0.2, respectively. As illustrated in the 
conditional Manhattan plot for CBMI (Fig. S1), a total of 28 significant SNPs was identified to be associated 
with CBMI conditioned on CAD, which was annotated to 41 genes and located on 14 different chromosomes 
(Table S1). Among the 28 SNPs, 9 SNPs had p-values smaller than the genome-wide significance level (5E−8) 
and were considered to be associated with  CBMI21, and 2 SNPs rs7127507 and rs7531118 were in the same LD 
block with the previously identified CBMI-associated SNPs rs17309874 ( r2 = 0.6306) and SNP rs3101336 ( r2 
= 0.6805), respectively. These genetic variants were regarded as a replication of the previous CBMI-associated 
GWASs. The rest of 17 independent SNPs with p-values larger than the genome-wide significance threshold 
were considered novel SNPs to be associated with CBMI. For the 41 genes annotated by these SNPs, 29 genes 
were newly discovered in comparison with the original CBMI GWAS and previous CBMI-related studies. Other 
information on these 28 SNPs was presented in Table S1. Among the 41 genes detected with CBMI, most of them 
were enriched in CBMI-related GO terms such as “positive regulation of cellular process”, “limb morphogenesis” 
and “positive regulation of cell proliferation”. More detailed information on enrichment analysis was shown in 
Table 3. As for PPI results (Fig. S2), 28 genes including 21 novel ones were annotated in this protein network. The 
proteins encoded by these genes indirectly interacted with many other proteins encoded by CBMI-associated 
genes, proteins including FTO, SEC16B, GNPDA2, and TFAP2B had very close contact, which was proven to 
have a confirmed correlation with CBMI in original GWAS.

Pleiotropic loci identified with two methods. Using the two distinct methods with the thresholds 
of ccFDR < 0.05 and fdr11.GPA < 0.2, we identified 13 and 14 potentially pleiotropic SNPs, respectively. Taken 
together, 13 significant SNPs were detected to be associated with CBMI and CAD, these SNPs were annotated 
to 17 genes and located on 7 different chromosomes (Table 2 and Fig. 2). Most of the pleiotropic SNPs were 

Table 1.  Pleiotropy assessed between CBMI and CAD by GPA method. The values in the brackets are 
standard errors of the estimates. The last two columns provide the LRT statistics and p-values of hypothesis 
testing. The π00 represents the proportion of the SNPs not associated with CBMI or CAD; π10 and π01 
represent the proportion of the SNP associated with CBMI and CAD, respectively; π11 represents the 
proportion of the SNP associated with CBMI and CAD.

π00 π10 π01 π11 LRT p-value

CBMI-CAD 0.857 (0.006) 0.048 (0.006) 0.090 (0.003) 0.005 (0.002) 79.352 5.2E−19

Table 2.  The pleiotropic loci identified by cFDR and GPA method ( ccFDR < 0.05 and fdr11.GPA < 0.2). The 
SNPs are listed with their chromosomal, allele, role, annotated genes, original p-value for each phenotype, 
cFDR value for each phenotype, ccFDR and fdr.11.GPA values. A means CAD and B means CBMI. Chr: 
chromosom, ccFDR: conjunctional conditional false discovery rate, fdr.11GPA: false discovery rate of GPA 
when the SNP was associated with both phenotypes, GPA: genetic analysis incorporating pleiotropy and 
annotation.

Chr SNP Allel Role Gene P.valueA P.valueB cFDR.AcB cFDR.BcA ccFDR fdr11.GPA

chr16 rs9940128 G/A Intronic FTO 1.67E−05 9.25E−14 1.67E−05 2.45E−11 1.67E−05 0.001527

chr2 rs1866146 G/A UTR3 EFR3B 0.000594 2.04E−06 0.003264 0.000802 0.003264 0.031703

chr11 rs7127507 T/C ncRNA_intronic BDNF-AS 0.000754 1.29E−05 0.005024 0.003705 0.005024 0.053765

chr2 rs11125884 A/G ncRNA_intronic DNAJC27-AS1 0.01177 2.73E−13 0.01177 4.88E−10 0.01177 0.109489

chr1 rs7536226 C/T Intergenic TSEN15, C1orf21 0.000247 5.31E−05 0.004194 0.015092 0.015092 0.064655

chr2 rs7420531 G/A UTR3 AAK1 0.000533 8.77E−05 0.007644 0.021845 0.021845 0.088304

chr16 rs16969473 A/G Intronic GPR139 0.002157 8.22E−05 0.018119 0.022945 0.022945 0.126129

chr19 rs13382133 C/T Intronic FCHO1 7.67E−12 0.000558 1.1E−09 0.024548 0.024548 0.12562

chr13 rs12429545 G/A Intergenic LINC01065, LINC00558 0.02676 3.66E−11 0.02676 7.68E−08 0.02676 0.175974

chr4 rs1996023 T/G Intergenic GNPDA2, GABRG1 0.007574 2.73E−07 0.03787 0.00037 0.03787 0.094976

chr1 rs7531118 T/C Intergenic NEGR1, LINC01360 0.01305 1.29E−05 0.03915 0.007047 0.03915 0.182283

chr16 rs194546 G/A ncRNA_intronic LOC101927814 0.006605 8.62E−06 0.03963 0.007183 0.03963 0.123251

chr2 rs17736503 G/T Intronic NCOA1 0.007106 6.91E−05 0.04382 0.030049 0.04382 0.188942



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19513  | https://doi.org/10.1038/s41598-022-24009-8

www.nature.com/scientificreports/

Figure 2.  Conjunction Manhattan plot of −log10(ccFDR) values for CBMI and CAD. The red line marks the 
−log10(ccFDR) value of 1.3 corresponds to ccFDR of 0.05. The figure shows the genomic locations of shared 
variants and the overlapped genes between CBMI and CAD identified by cFDR and GPA method.

Table 3.  Gene functional annotation and enrichment result.

Go term Pathway description P-value Combined score Genes

CBMI GO:0048522 Positive regulation of cellular 
process 6.17E−04 41.68 PKHD1, TFAP2B, AKAP6, 

CACUL1, TBX3, DYNAP

GO:0035108 Limb morphogenesis 8.40E−04 329.02 TFAP2B, TBX3

GO:0008284 Positive regulation of cell prolifera-
tion 0.001672 36.78 PKHD1, TFAP2B, CACUL1, TBX3, 

DYNAP

GO:0072001 Renal system development 0.006516 83.23 PKHD1, TFAP2B

GO:1903779 Regulation of cardiac conduction 0.008333 69.71 FPGT-TNNI3K, TNNI3K

GO:0030136 Clathrin-coated vesicle 0.001126 99.35 FCHO1, AAK1, RAB27B

GO:0035612 AP-2 adaptor complex binding 8.55E−05 1305.44 FCHO1, AAK1

GO:0001104 RNA polymerase II transcription 
cofactor activity 6.79E−04 127.09 NCOA1, TFAP2B, MED13L

GO:0008528 G-protein coupled peptide receptor 
activity 0.007628 74.33 PRLHR, GPR139

CBMI and CAD GO:0046348 Amino sugar catabolic process 0.00509 1035.40 GNPDA2

GO:0090335 Regulation of brown fat cell dif-
ferentiation 0.006781 734.36 FTO

GO:1901072 Glucosamine-containing com-
pound catabolic process 0.008469 561.33 GNPDA2

GO:0006054 N-acetylneuraminate metabolic 
process 0.008469 561.33 GNPDA2

GO:0051932 Synaptic transmission, GABAergic 0.009313 500.15 GABRG1

GO:0030135 Coated vesicle 0.001633 212.68 FCHO1, AAK1

GO:0035612 AP-2 adaptor complex binding 1.42E−05 3750.98 FCHO1, AAK1

GO:0017162 Aryl hydrocarbon receptor binding 0.006781 734.36 NCOA1

GO:0008503 Benzodiazepine receptor activity 0.008469 561.33 GABRG1



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19513  | https://doi.org/10.1038/s41598-022-24009-8

www.nature.com/scientificreports/

situated in the intronic (54%) and intergenic (31%) regions while two were in the untranslated regions (15%). 
All of the 13 pleiotropic SNPs were not previously identified to be associated with both CBMI and CAD, only 3 
SNP (rs9940128, rs11125884, and rs12429545) and 1 SNP rs13382133 passed genome-wide significance level in 
the original CBMI and CAD  GWASs12,21, respectively. There were 8 SNPs (rs1866146, rs1996023, rs17736503, 
rs9940128, rs11125884, rs7127507, rs12429545 and rs7531118) previously reported to be associated with adult 
BMI-related  traits22,23, and one SNPs rs9940128 was previously reported to be related with diabetes and high-
density lipoprotein-cholesterol (HDL-C)24,25. All of the 17 genes these SNPs annotated to were novel because 
none of them were previously confirmed to be associated with both CBMI and CAD. More information on these 
SNPs and genes was presented in Table 2. A large number of the genes were enriched in CBMI and CAD-related 
terms such as “amino sugar catabolic process”, “regulation of brown fat cell differentiation” and “AP-2 adaptor 
complex binding”. More information on enrichment analysis was shown in Table 3. All the pleiotropic genes 
were imported into the STRING database, and only 9 genes were annotated in the PPI network. Those proteins 
encoded by the 9 genes were enriched into three disparate clusters (Fig. S3). For example, four proteins like 
FTO, NEGR1, GABRG1, and GPR139 had the interplay in the GNPDA2 cluster and the protein FCHO1 directly 
interacted with the other protein AAK1.

Discussion
In this study, by integrating two GWASs summary statistics of CBMI and CAD into cFDR and GPA framework, 
we identified 28 SNPs associated with CBMI, and 13 pleiotropic SNPs between CBMI and CAD. Among those 
annotated genes, 17 novel genes were found to be pleiotropic. In the present study, given the background and 
the focus of the study, we highlighted the SNPs identified with CBMI and the common SNPs associated with 
the two phenotypes.

The findings of some genetic signals in present study were consistent with the evidence from previous studies 
and the pleiotropic enrichment indicated a genetic relationship between CBMI and CAD. Moreover, most loci 
were not identified in previous genetic researches, indicating the effectivity of the two pleiotropic approaches 
on the detection of overlapped genetic variants. Meanwhile, the statistical power was largely improved, it was 
reported that there were about 15–20 times of power increased to detect more variants through a comparison 
of conditional vs. unconditional FDR  approach19, and the statistical power of the GPA method was comparable 
to that of cFDR  method20. More importantly, through contrastive analysis, we quantitatively investigated the 
pleiotropic enrichment evaluation between CBMI and CAD based on the LRT, and robust results were obtained. 
The findings of polygenic pleiotropy between CBMI and CAD enabled us to further illustrate the overlapped 
biological mechanisms underlying the different traits or diseases.

The shared genetic determination between CBMI and CAD emphasized the important role of CBMI in 
CAD development and supported the hypothesis that a common genetic basis existed between them. The two 
pleiotropy-informed methods jointly identified 13 shared SNPs annotated to 17 genes, these SNPs and cor-
responding genes were novel for the reason that no previous researches confirmed them to be related to both 
CBMI and CAD. These new findings could provide us a better understanding of the overlapped etiology between 
CBMI and CAD. Here, we will discuss some pleiotropic genetic signals for their potential biological function to 
further elucidate the phenotypic relevance.

The SNP rs9940128 (16q12.2) is the most statistically significant pleiotropic variant identified in our study, 
which is located in the intron region of the FTO gene, and was documented to be associated with CBMI in 
original  GWAS21. Meanwhile, this variant also influencing adult BMI has been repeatedly confirmed in the 
earlier  GWASs23,26. The FTO is a well-known gene involved in weight gain and obesity. Research based on the 
FTO mouse model further demonstrated that perturbing the FTO enzymatic activity could dysregulate genes 
related to energy metabolism, resulting in the imbalance of adipose tissue homeostasis in  mice27. It provided 
clear evidence that FTO played important role in regulating food intake or energy metabolism. Furthermore, 
evidence from recent studies has emphasized the importance of FTO gene variation, revealing that they were 
associated with neuropsychiatric  diseases28 besides metabolic disorders and human adiposity. Additionally, the 
FTO gene also played a potential role in cardiovascular diseases (CVD). A meta-analysis comprising 10 studies 
reported a significant association between the FTO gene and CVD risk, and this association was independent of 
BMI and other conventional CVD risk  factors29. Subsequently, one study including a total of 970 samples that 
came from Pakistan demonstrated the variant in FTO gene was associated with CAD through affecting plasma 
glucose  metabolism30. In addition, common variants in this gene were also associated with diabetes-related risk 
metabolic traits, such as raised fasting glucose, insulin and triglycerides, and lower HDL-C31. As described above, 
FTO gene was associated with CBMI and CAD may through these biological processes and molecular pathways, 
but further studies involving the exact functional characterization of this genetic signal are required to elucidate 
the precise mechanism behind their relationship.

The pleiotropic SNP rs1996023 (4p12) is located in the intergenic region between the GNPDA2 gene and 
the GABRG1 gene. The protein encoded by the GNPDA2 gene belongs to an allosteric enzyme that catalyzes 
the deamination of glucosamine 6-phosphate and participates in the hexosamine signaling  pathway32,33. SNPs 
in or close to the GNPDA2 gene had been documented to be associated with adult BMI or childhood  obesity21. 
One animal study also found that the GNPDA2 gene played an important role in regulating body fat, weight, 
and energy  metabolism33. Additionally, another study investigating the possible mechanism of the GNPDA2 
in adipogenesis discovered that overexpression of GNPDA2 enhanced the accumulation of lipid droplets and 
knockout of the gene resulted in the reduction of accumulation of lipid droplets, reporting that GNPDA2 may be 
a key gene in lipid and glucose  metabolism32. Furthermore, through assessing the impact of the obesity-related 
loci on the known obesity complications found that the GNPDA2 gene was potentially associated with  diabetes34. 
It is widely known that the abnormal metabolism of lipid and glucose is a causal risk factor for cardiovascular 
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diseases. A previous study also reported that the GNPDA2 gene was highly expressed in the hypothalamus and 
brain, and played a vital role in the central nervous system processes of weight  regulation34. The GABRG1 gene 
is an integral membrane protein that encodes a protein belonging to the ligand-gated ionic channel family and 
participates in the inhibition of neural  transmission35. GABRG1 gene was reported to be implicated in neuro-
logical development conditions, including autism spectrum  disorder36. The pathogenesis may involve the early 
development of the brain, affecting synaptic plasticity, neural transmission, and functional connectivity. There 
was evidence that children with neurodevelopmental disorders were at higher risk of developing  depression37. 
Meanwhile, growing evidence shows depression is a risk factor for the development of  CAD38. The GNPDA2 and 
GABRG1 genes increase the risk of susceptibility for CBMI and CAD may be through the same biological pro-
cesses, but further experimentations are needed to determine the exact mechanism of the action of these genes.

The implementation of cFDR and GPA approaches on two large GWAS datasets let us successfully detect a 
large number of novel phenotype-associated genetic signals. Especially, an alternative pleiotropic method based 
on an independent algorithm was used simultaneously to ensure the reliability of the results. However, there 
are still a few limitations. First, the information about the precise effect size of the loci on the phenotype could 
not be provided, so it is impossible to determine which phenotype the locus has the greater influence on, but it 
can be inferred from the results of the original GWAS study. Second, the dataset of CAD is a meta-analysis of 
overwhelming European ancestry and a small fraction of other ancestries, we could not ensure uniformity of 
the ancestry due to the lack of data at the individual level, this may have an impact on the results. Nevertheless, 
the large sample size can contribute to the successful discovery of potential novel genetic variants. Third, inde-
pendent replication is needed in this research. However, our CAD dataset is the largest to date which includes 
the dataset from the CARDIoGRAMplusC4D consortium and UKB. Moreover, we used the GWAS dataset of 
CAD from CARDIoGRAMplusC4D consortium for  replication39, we observed a similar pleiotropic enrichment 
pattern and replicated 19 SNPs associate with CBMI and 3 pleiotropic SNPs associated with CBMI and CAD. 
These results illustrate that there is strong pleiotropic enrichment between CBMI and CAD and some common 
SNPs can be replicated across studies although with small sample size. Forth, both pleiotropic methods cannot 
identify the causal variants for the phenotypes of interest, but the question can be partially addressed in the 
future through the integration with other types of  data40. Fifth, most of our findings are statistically significant 
and require further biological functional experiments and clinical replication studies to support our findings.

In summary, our results highlight the feasibility and improved power of the cFDR and GPA methods in 
detecting novel genetic pleiotropic loci between CBMI and CAD. The novel findings may facilitate the discovery 
of the shared genetic mechanisms underlying CBMI and CAD, and provide us novel insights into early disease 
prevention and treatment strategies.

Materials and methods
GWAS datasets. Our analyses were conducted on summary statistics from two independent GWASs for 
CBMI and  CAD12,21. The CBMI GWAS dataset was derived from a GWAS meta-analysis of European descent 
involving 35,668 individuals performed by the EGG Consortium (http:// www. egg- conso rtium. org/ child hood- 
bmi. html). The CAD GWAS dataset was derived from a meta-analysis of 547,261 individuals (122,733 cases and 
424,528 controls) of mainly European descent, which combined a GWAS dataset from the CARDIoGRAM-
plusC4D consortium with another GWAS dataset from the UK Biobank (UKB). The aggregate dataset of CAD 
was available through the CardiOmics website (https:// www. cardi omics. net/ downl oad- data). The two datasets 
consist of summary statistics for each SNP, and their alleles, p-value, effect size, and direction of effect. More 
information such as study design, inclusion criteria of subjects, and quality control during the analysis is pro-
vided in the original study. There are no reduplicating subjects between the two datasets, avoiding the result of 
increased Type I error and biased effect  estimates41.

We used summary-level statistics from the two GWA studies. All participants in the original study received 
informed consent, and the ethical approval had been obtained from their respective institutional review boards. 
The details can be found in the two  GWASs12,21. This study was approved by the Ethical Committee of the Life 
Sciences of Zhengzhou University.

Data processing. The two GWAS datasets were used here containing 2,499,691 SNPs for CBMI and 
7,947,837 SNPs for CAD. Before conducting the following analysis, we extracted the SNPs and their correspond-
ing variables (eg, alleles, effect sizes, p-values, sample sizes) from the two datasets for each phenotype. The 
HapMap3 CEU genotypes were used as the reference panel to label allele frequencies and calculate LD values 
between pairs of SNPs. For the LDSC analysis, the summary statistics were dealt with default SNP quality control 
(QC) filters (INFO > 0.9 and MAF > 0.01). After QC, a total of 1,054,231 and 1,181,375 SNPs were reserved for 
CBMI and CAD, respectively. Using cross-disease LDSC, 1,053,840 common SNPs were remained after merg-
ing. Before cFDR and GPA analysis, we first combined the common SNPs in the two datasets, then the SNPs 
were processed using the linkage disequilibrium (LD)-based pruning method by PLINK1.9. If the pairs of SNPs 
with LD values ( r2 ) larger than 0.2, one of the SNPs with smaller minor allele frequency (MAF) was  discarded19. 
Lastly, the remaining 128,749 common SNPs were prepared for the pleiotropic analysis. Genomic control (GC) 
corrected genomic inflation resulting from the potential population structure in the individual studies and the 
GWAS meta-analysis42. Therefore, there was no need for us to reuse the GC correction in this analysis.

Statistical analyses. The Linux operating system and R 4.0.5 were used for data processing and statistical 
analysis. The LDSC, cFDR , and GPA analyses were performed by “LDSC”, “ GWAScFDR ” and “GPA” packages, 
respectively. The quantile–quantile (Q-Q) plot, fold-enrichment plot, and Manhattan plot were mainly gener-
ated by the “ggplot2” package.

http://www.egg-consortium.org/childhood-bmi.html
http://www.egg-consortium.org/childhood-bmi.html
https://www.cardiomics.net/download-data
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Estimation of genetic correlation. With the summary statistics from the two GWAS datasets, we first 
estimated the SNP heritability for each phenotype and evaluated the genetic correlation between CBMI and 
CAD using LDSC analysis. LDSC is a method of quantifying the contribution of polygenic heritability and 
confounding bias by examining the regression relationship between GWAS test statistics and LD to determine 
whether the inflation of test statistics is caused by polygenic effects or confounding  bias43,44. The intercept of 
LDSC regression analysis can be used to determine whether there are confounding factors in the results. If the 
intercept is near 1, it means there is no confounding factor. For analysis of a single phenotype, LDSC can identify 
confounding factors and estimate heritability. For multiple phenotypes, the genetic correlation between pheno-
types can be calculated according to the corresponding chi-square  statistics44.

Pleiotropic enrichment assessment. To assess the pleiotropic enrichment between the two phenotypes 
(CBMI and CAD), a stratified Q-Q plot was conducted by successively conditioning the principal phenotype 
on SNPs across varying levels of significance threshold for the given phenotype. The enrichment of the pleio-
tropic effect can be decided by the degree of deflection from the null line which is conditioned on the second 
phenotype. Meanwhile, we constructed a fold-enrichment plot to further confirm the pleiotropic enrichment 
between CBMI and CAD. The enrichment can be reflected by the larger degree of the upward shift from the null 
line when the p-values become smaller. Furthermore, in addition to the visual display of the pleiotropic enrich-
ment above, we also used the likelihood ratio test (LRT) to quantitatively estimate the statistical significance of 
pleiotropic  enrichment20.

Calculation of cFDR , ccFDR and GPA. Both cFDR and GPA are well-established pleiotropic methods for 
incorporating GWAS data at the summary statistic level, which have been widely applied to many diseases or 
 traits45–48. We briefly summarized both approaches in the following section. The cFDR is based on the Bayesian 
formula, identified as a posterior probability of an SNP being null for the principal phenotype given that the 
p-values for the two phenotypes (principal and conditional) are as small as or smaller than the observed ones. In 
the following formula, pi and pj are the observed p-values of a SNP for the principal and conditional phenotypes, 
respectively. H(i)

0  means a null hypothesis that the SNP was not associated with the principal phenotype.

The cFDR threshold was set to 0.05, which meant the SNP was considered to be associated with the principal 
phenotype if the value is less than 0.0519. To identify an SNP to be pleiotropic, conjunction cFDR ( ccFDR ) is 
defined based on cFDR and is calculated as the maximum value of the cFDRs for the two  phenotypes19. Finally, 
the conditional and conjunction Manhattan plots were applied to present the location of the significant SNPs 
associated with CBMI, as well as pleiotropic SNP associated with CBMI and CAD.

The GPA method is another available statistical tool applied to detect the pleiotropic genetic effects between 
CBMI and CAD in the expectation of providing robust statistical evidence. This approach can use the GWAS 
summary results without annotation data, which has better comparability with the cFDR analysis results in our 
study. We took the intersection of the p-values of corresponding phenotypes as input, then a GPA model was 
fitted based on the provided p-value matrix data. The four-group model for two GWAS data sets was presented 
to implement the GPA analysis.

The latent variables Zj represent the association between the j-th SNP and the two phenotypes, Zj00 = 1 means 
the SNP is associated with neither of them, Zj10 = 1 and Zj01 = 1 means the SNP is only associated with one of 
the two phenotypes, and Zj11 = 1 means the SNP is associated with both. The U[0, 1] and Beta[αk , 1] means the 
p-values from the null group (Uniform distribution) and non-null group (Beta distribution, where 0 < αk  < 1, 
k = 1,2), respectively. The Expectation–Maximization (EM) algorithm was used to estimate the statistical infer-
ence of the model parameters and determine the SNP  ranking20. Meanwhile, using the LRT-based hypothesis 
testing for pleiotropy, we calculated the value of fdr.GPA (false discovery rate of GPA) to decide which variant 
to be associated with CBMI and the value of fdr11.GPA to determine the common variants between CBMI and 
CAD. We used the same the GPA significance threshold of 0.2 according to the criterion set in the original paper, 
which means this SNP is associated with the corresponding phenotype if the value is less than 0.220.

Definition of potentially novel SNP. The SNP was defined as potentially novel one should not have 
been reported in the previous GWASs and was not in linkage disequilibrium (LD) ( r2 ≥ 0.6) with the previously 
GWASs confirmed SNPs. We mainly searched GWAS Catalog (https:// www. ebi. ac. uk/ gwas/) and PhenoScanner 
(http:// www. pheno scann er. medsc hl. cam. ac. uk/) to determine the SNP and LD value ( r2 ). If the value of r2 was 
greater than 0.6, it means the two SNPs were in high LD and the SNP identified was considered to be reported 
or replicated.

Functional analysis of the identified genes. To explore the functional role of the identified genes, we 
performed a comprehensive gene set enrichment analysis using Enrichr (http:// amp. pharm. mssm. edu/ Enric 

(1)cFDR
(

pi|pj
)

= Pr(H
(i)
0 |Pi ≤ pi , Pj ≤ pj)

(2)

π00 = Pr
(

Zj00 = 1
)

:

(

Pj1|Zj00 = 1
)

∼ U[0, 1],
(

Pj2|Zj00 = 1
)

∼ U[0, 1],

π10 = Pr
(

Zj10 = 1
)

:

(

Pj1|Zj10 = 1
)

∼ Beta[α1, 1],
(

Pj2|Zj10 = 1
)

∼ U[0, 1],

π01 = Pr
(

Zj01 = 1
)

:

(

Pj1|Zj01 = 1
)

∼ U[0, 1],
(

Pj2|Zj01 = 1
)

∼ Beta[α2, 1],

π11 = Pr
(

Zj11 = 1
)

:

(

Pj1|Zj11 = 1
)

∼ Beta[α1, 1],
(

Pj2|Zj11 = 1
)

∼ Beta[α2, 1]
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hr/)49. The significant genes were annotated and clustered in three main categories (biological processes, cellular 
components, and molecular functions) to clarify polygenic associations and determine whether the implicated 
genes were involved in a biological process. To further reveal and visualize the functional partnership and inter-
action of identified genes, protein–protein interaction (PPI) network was established by utilizing the STRING 
database (http:// string- db. org/), which could construct the corresponding protein association networks by com-
prising known and predicted  associations50. The above analyses enabled us to get a systematical evaluation of the 
underlying biology and relevance between the genes enriched in clusters, especially enhanced our understand-
ing of the biological underpinnings of potential associations between different phenotypes.

Data availability
The data that support the findings of the current study are openly available in the Early Growth Genetics Con-
sortium at http:// www. egg- conso rtium. org/ child hood- bmi. html and CardiOmics.net at https:// www. cardi omics. 
net/ downl oad- data.
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