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Meteorological change 
and hemorrhagic fever with renal 
syndrome epidemic in China, 
2004–2018
Yizhe Luo 1,2, Heng Lv 2, Huacheng Yan 3, Changqiang Zhu 2, Lele Ai 2, Wenhao Li 2, Jing Yi 4*, 
Lingling Zhang 5* & Weilong Tan 1,2*

Hemorrhagic fever with renal syndrome (HFRS), caused by hantavirus, is a serious public health 
problem in China. Despite intensive countermeasures including Patriotic Health Campaign, rodent 
control and vaccination in affected areas, HFRS is still a potential public health threat in China, 
with more than 10,000 new cases per year. Previous epidemiological evidence suggested that 
meteorological factors could influence HFRS incidence, but the studies were mainly limited to a 
specific city or region in China. This study aims to evaluate the association between monthly HFRS 
cases and meteorological change at the country level using a multivariate distributed lag nonlinear 
model (DLNM) from 2004 to 2018. The results from both univariate and multivariate models showed 
a non-linear cumulative relative risk relationship between meteorological factors (with a lag of 
0–6 months) such as mean temperature (Tmean), precipitation, relative humidity (RH), sunshine 
hour (SH), wind speed (WS) and HFRS incidence. The risk for HFRS cases increased steeply as the 
Tmean between − 23 and 14.79 °C, SH between 179.4 and 278.4 h and RH remaining above 69% 
with 50–95 mm precipitation and 1.70–2.00 m/s WS. In conclusion, meteorological factors such as 
Tmean and RH showed delayed-effects on the increased risk of HFRS in the study and the lag varies 
across climate factors. Temperature with a lag of 6 months (RR = 3.05) and precipitation with a lag of 
0 months (RR = 2.08) had the greatest impact on the incidence of HFRS.

Abbreviations
HFRS  Hemorrhagic fever with renal syndrome
DLNM  Distributed lag nonlinear model
Tmean  Mean temperature
RH  Relative humidity
SH  Sunshine hour
WS  Wind speed
PUUV  Puumala hantavirus
NCI  National Cancer Institute

HFRS is an emerging rodent-transmitted virus and global public health threat. The causative agents of HFRS 
include species of hantaviruses (HanVs), such as Seoul virus, Hantaan virus, Puumala virus and other viruses 
of the genus Orthohantavirus, mainly carried by rodents, insectivores and  bats1. Transmission of hantavirus to 
humans occurred through contact with infected rodents, often through aerosolized urine and feces, causing Han-
tavirus Pulmonary Syndrome (HPS) in the Americas and HFRS in Europe and  Asia2. With surge in globalization 
and the expansion of global trade and transports, rodent-borne hantaviruses have spread around the world. The 
epidemic HFRS in China, mainly caused by Hantaan virus and Seoul virus, accounts for 90% of global cases and 
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is characterized by fever, hemorrhage, and acute kidney  injury3,4. HFRS cases covered 31 provinces, municipali-
ties and autonomous regions, with the average annual number of 10,000 HFRS cases in the past ten  years5. After 
hantavirus was introduced into China, it selected suitable host animals here: a wide variety of rodents, shrews, 
bats, etc. Some studies explored that there are more than 8 suitable host species for Seoul virus and 10 species 
of wild mouse hosts for Hantaan virus in  China5,6. A country with enormous variations in geographical span 
and a large range of climate types is suitable for survival and reproduction of host animals, making the HFRS 
difficult or impossible to  eliminate5,7,8.

There are many potential risk factors for HFRS, which can be broadly classified as climate, socio-economic 
(e.g. gross domestic product (GDP), population density, food production), ecology (rodent population), rodent 
virus carrier rate,  etc9,10. Meteorological factors, including temperature and humidity have delayed effects on the 
occurrence of HFRS, which may directly or indirectly influence the incidence by affecting the growth dynamics, 
activity frequency of rodents, and opportunity of virus-to-human  contact11. Temperature, rainfall and relative 
humidity are three important factors that affecting HFRS  cases12,13. For example, in Belgium, an outbreak of 
rodent-borne disease caused by hantavirus-infected bank voles (Myodes glareolus) was found to be positively 
associated with an increase in local mean  temperature14. In North America, the increase in pasture yields after 
heavy rainfall in 1999 was associated with an increase in the Labrador white-footed rat (Peromyscus maniculatus) 
population, pushing the outbreak of  HPS15. In northwestern Argentina, hantavirus transmission is positively 
correlated with lagging rainfall and  temperature16. However, in the Weihe Plain in central China, the incidence of 
HFRS was negatively correlated with summer temperature, but positively correlated with summer  precipitation11. 
Therefore, climatic variables may serve as indicators for the risk of human HFRS transmission. However, little is 
known about the effects of factors such as sunshine hour and wind speed on  HFRS17. Sunshine hour and wind 
speed are thought to influence HFRS transmission by affecting factors such as crop yield, rodent reproduction 
and vector density. However, there is no direct evidence that they can be used as a risk indicator of HFRS trans-
mission. Therefore, for the absence of an effective vaccine against HFRS, retrospective analysis of HFRS cases to 
speculate on potential risk factors will help the government to take targeted control measures more effectively.

In this study, we used the distributed lag nonlinear model (DLNM) to examine the nonlinear and distributed 
lag effects of temperature, precipitation, humidity, sunshine hour, and wind speed and to explore which factor is 
the best predictor of HFRS incidences using data from 31 provinces in China. To our knowledge, this is the largest 
HFRS epidemiological study to date, relying on the data from 31 provinces of China, covering the total population 
and the period between 2004 and 2018. This study aims to analyze the quantitative relationship between HFRS 
transmission and weather variables, predict the HFRS epidemics, and provide evidence for decision-making on 
strategies of HFRS prevention and control.

Results
HFRS distribution in China, 2004–2018. From January 1, 2004 to December 31, 2018, 190 203 cases of 
HFRS were reported nationwide in China, with an average annual incidence rate of 0.950 per 100,000 people, 
with the highest incidence in 2004 (1.926 per 100,000) and the lowest in 2018 (0.86 per 100,000) (Fig. 1A), and 
the cases showed obvious seasonal fluctuations (Fig. 1B). HFRS cases existed every month and showed an obvi-
ous dual-season mode every year, with a spring peak from May to June and a winter peak from November to 
December. The highest number of cases were in May and November, with the composition ratios accounting of 
9.51% and 17.06%, respectively (Fig. 1B).

The incidence of HFRS in northern regions was higher than that in the south, especially in Heilongjiang, 
Liaoning, Jining, Shaanxi, Shandong and Hebei provinces. Relatively few cases existed in south China, which were 
mainly concentrated in Jiangxi, Zhejiang, Hunan and Fujian (Figs. S1 and S2). Spatial autocorrelation analysis 
indicated that HFRS cases were positively correlated (Moran’s I = 0.09, p < 0.1), see Fig. S3. The incidence of HFRS 
noticeably decreased, with − 24.97% APC (95% confidence interval − 33.2 to − 15.7%, P = 0.001) before 2008, 
then remained stable until 2018 (P = 0.314, 2008–2012; P = 0.315, 2012–2018) (Fig. 1A). Obviously, residents can 
become infected with HFRS throughout the year.

We observed HFRS infection in all age groups, and the patients were mainly male, with a male to female ratio 
of 3:1. The age of onset was mainly between 35 and 75 years, with the highest annual mean incidence in the 50–55 
age group (1.785 per 100,000; Fig. S4). The majority of HFRS cases were agricultural workers (121,777 cases, 
68.32%), followed by domestic workers, housekeepers, the unemployed (21,147 cases, 11.8%), and industrial 
workers (20,574 cases, 11.54%) (Fig. S5).

Meteorological factors distribution in China, 2004–2018. The average annual Tmean was 13.27 °C, 
precipitation was 70.51 mm, RH was 66.22%, SH was 175.43 h, and WS was 2.15 m/s (Table 1). We also compared 
the mean values of each meteorological factor over the four seasons. Meteorological conditions show distinct 
seasonal changes, with higher Tmean, SH, RH and precipitation in summer, and higher WS in spring (Fig. 2).

Relationship between meteorological factors and HFRS, 2004–2018. Pearson’s correlation 
analysis revealed that the incidence of HFRS was correlated with meteorological factors: WS (r = 0.11***), SH 
(r = 0.04**), Tmean (r = − 0.19***), precipitation (r = − 0.1***), and RH (r = − 0.03*) (Fig. 3).

The DLNM model showed an association between HFRS and the five meteorological conditions, with a lag 
of 0–6 months. In the univariate models (Fig. 4), five meteorological conditions were associated with HFRS 
incidence, with relative risks (RR) ranging from 0.17 to 4.68 at Tmean, 0.76–1.19 for precipitation, 0.48–1.44 for 
RH, 0.20–3.73 for SH, and 0.08–2.20 for WS. The maximum RR values, including commensurable meteorological 
and lag time, for the five meteorological conditions were 4.68 (Tmean, − 23 °C, lag 6 months), 1.13 (precipitation, 
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Figure 1.  The incidence and number of HFRS cases reported in China, 2004–2018. (A) Number of cases 
and incidence by year. Trend of the incidence rate of HFRS between 2004 and 2018 shown by the joinpoint 
regression (upper right corner). The red squares represent the observed crude incidence of HFRS and the lines 
represent the slope of the annual percentage change (APC). (B) The pink line represents the monthly incidence 
of HFRS. The bar chart shows the number of cases at peak and trough.
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0 mm, lag 3.6 months), 1.44 (RH, 89%, lag 6 months), 3.73 (SH, 325 h, lag 3.4 months), 2.20 (WS, 0.8 m/s, lag 
3.8 months), respectively.

In the multivariate models (Fig. 5), the RR values were 0.52–3.05 (Tmean), 0.87–1.22 (precipitation), 0.20–1.44 
(RH), 0.39–1.86 (SH), 0.32–2.08 (WS), respectively. The maximum RR values, including commensurable mete-
orological and lag time, for the five meteorological conditions were 3.05 (Tmean, − 23 °C, lag 6 months), 1.22 
(precipitation, 0 mm, lag 6 months), 1.44 (RH, 87%, lag 1.2 months), 1.86 (SH, 325 h, lag 3.4 months), 2.08 (WS, 
0.8 m/s, lag 0 months), respectively.

Cumulative relative risks at 0–6 months lag. We found that the cumulative relative risk of meteoro-
logical factors (with 0–6 months lag) was associated with HFRS incidence. In the univariate models (Fig. 6), the 
meteorological conditions associated positively with HFRS risk are -22.2–14.8 °C (Tmean), 55.4–68.4% (RH) & 
86.4–88.4% (RH), 18–50 mm (precipitation), 179.4–258.4 h (SH), 2.00–2.15 m/s (WS). In the multivariate mod-
els (Fig. 7), the meteorological conditions are -23–14.79 °C (Tmean), 69–89% (RH), 50–95 mm (precipitation), 
179.4–278.4 h (SH), 1.70–2.00 m/s (WS).

The lag relationship between meteorological factors and the incidence of HFRS. The results 
of DLNMs were shown in Fig. S6. In multivariate models, median values of Tmean, precipitation, RH, median 
SH and WS being used as references, the RR of HFRS incidence with lag 0–6 months were calculated with the 
2.5th, 25th, 75th and 97.5th percentile of Tmean, precipitation, RH, SH and WS, respectively. The multivariate 
plots showed that RR was significantly high (RR > 1) from lag month 0 (RR = 1.31, 95% CI 1.06–1.62) to lag 
month 2.2 (RR = 1.11, 95% CI 1.01–1.22). Under the 25th Tmean, high RRs were observed from lag month 0 
(RR = 1.13, 95% CI 1.03–1.24) to lag month 1.8 (RR = 1.09, 95% CI 1.03–1.16) under the extremely low Tmean 
(2.5th percentile). Under the 75th RH, the RRs were significantly high for a lag of 0.4 months (RR = 1.03, 95% CI 
1.00–1.07) to 2.6 months (RR = 1.05, 95% CI 1.02–1.08). Furthermore, the RRs for lag month 0.4 (RR = 1.09, 95% 
CI 1.03–1.16) to month 2.4 (RR = 1.09, 95% CI 1.04–1.14) and lag month 5.6 (RR = 1.07, 95% CI 1.01–1.13) to 
lag month 6 (RR = 1.13, 95% CI 1.05–1.22) were significantly high under the 97.5th percentile of RH. Under the 
75th SH, a lag of 1.6 months (RR = 1.03, 95% CI 1.01–1.06) to a lag of 5.2 months (RR = 1.02, 95% CI 1.01–1.04) 
RRs were high.

Figure S7 showed the lag-specific association between meteorological factors and HFRS incidence. Significant 
RRs were observed at lags of 3 and 6 months when Tmean was 15–27 °C and -23–15 °C, respectively. Precipita-
tion of 0–15 and 55–90 mm resulted in significantly higher RR values after 6 months. When RH exceeded 82% 
after 6 months, the RR was significantly high. In addition, SH and WS with a lag of 3 months had high RRs at 
180–325 h and 2.55–2.75 m/s, respectively.

Discussion
Based on the data from the National Notifiable Communicable Disease Surveillance System and the meteorologi-
cal monitoring database spanning 2004–2018 years, the incidence rates of HFRS were generally declining and 
showed spatial aggregation with most cases distributed in the three northeastern provinces and eastern coastal 
provinces. The majority of patients are from male agricultural workers. HFRS incidences showed a bimodal 
pattern every year, with the monthly incidence lower in summer and faster in spring and winter. This study 
explored the delayed effect of meteorological factors on the HFRS epidemic in China. Our results showed that 
mean temperature, precipitation, relative humidity, sunshine hour, and wind speed have different degrees of 
delayed effects on the occurrence of HFRS.

Quite a few studies have shown that economic development (such as urbanization, population migration, 
etc.) always improve the human living environment and enhance self-protection awareness, at the same time, 
it can also change the rodent community structure, population number and habitat, resulting in changes in the 
mechanism of  HFRS18. The results of this study showed that a lower level of economic development in northeast 
China co-existed with the highest incidence of HFRS, which indicated that economic development level and 
urbanization rate were indeed related to the incidence of HFRS besides meteorological  factors17. However, rodent 
densities in less developed areas are higher than those in metropolitan  areas17. These results emphasized that eco-
nomic and social development could reduce the transmission of HFRS by reducing rodent  density17. Urbanization 
and large-scale construction will directly or indirectly affect rodent living environment and foraging, resulting 
in the change of disease transmission  intensity19. Agricultural workers are the high-risk group for contracting 

Table 1.  Descriptive statistics for monthly HFRS cases and weather conditions in China, 2004–2018. SD 
standard deviation; min. Minimum; P25 25th percentile; P50 median; P75 75th percentile, max. Maximum.

Variables Mean SD Min P25 Median P75 Max

Tmean (°C) 13.27 10.93 − 23.21 5.99 14.78 22.08 31.96

precipitation (mm) 70.51 63.91 0.00 15.21 50.16 113.82 200.00

RH (%) 66.22 13.15 27.43 57.33 69.06 76.93 89.33

SH (h) 175.43 57.94 11.43 137.17 179.33 217.72 325.45

WS (m/s) 2.15 0.47 0.79 1.79 2.12 2.50 3.00

No. of HFRS cases 34 75 0 1 9 38 1401
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Figure 2.  Boxplots of five meteorological variables and the number of HFRS cases in four seasons, 2004–2018 
(n = 15*93 in each season). (A–F) Seasonal patterns of weather conditions. The Kruskal–Wallis test was used to 
compare the nonnormally distributed characteristics of five meteorological factors and HFRS incidence among 
the four seasons. Null hypothesis: the median values across the four seasons are equal. Alternative hypothesis: 
At least one of the median values of the four seasons is different from the others. Spring (March–May), summer 
(June–August), autumn (September–November) and winter (December–February).
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HFRS and the reasons may include Chinese large population of agricultural workers, their manual labor modes 
and work locations, which were adjacent to residential areas and suitable for rodent survival and  reproduction12.

Meteorological factors may directly or indirectly influence the occurrence of HFRS, mainly by affecting the 
infection rate and population dynamics of the host (reproduction and activity of rodents), the regeneration of 
mites, and the rate of rodent-human contact. Vector-borne viral diseases, including HFRS, are among the most 
climate-sensitive diseases of  all20.

DLNM was used to explore the monthly lag effects of different climate factors on HFRS, and the lag effects 
vary across climatic factors was uncovered. The different lag periods suggested that the delayed effects of each 
climate variable may be related to the spread of HFRS infection being influenced by various factors, including 
the density of host rodents, hantavirus positivity, and frequency of exposure to humans,  etc21,22. DLNM, by Sun 
et al. in Huludao City, Northeast China, conducted and identified extremely high temperature with a lag of 
15–16 weeks, extremely low temperature with a lag of 5–6 weeks, extremely high humidity with a 10–11 weeks 
lag being strongly associated with HFRS. It also identified the 5-week lag with temperature of − 8–10 °C and 
the 15-week lag with temperature exceeded 23 °C would led to the significantly high RR of  HFRS13. The highest 
temperature of the year occuring between August and September, while the HFRS cases increasing to a peak 
in November and December, thus indicated that the incidence of HFRS may lag behind temperature by about 
3 months. Our results fitted this evidence for it 23.

A previous study showed that temperature could influence rodent abundance, frequency of human-rodent 
contact and hantavirus disease risk and affect vegetation growth, reproduction and survival of  rodent13. These 
factors are related to the survival time of infectious hantavirus in the  environment24. In this study, both univariate 
and multivariate models showed that there was a significant nonlinear effect between the incidence of HFRS and 
the monthly average temperature. Overall, results exhibited a negative correlation, which was consistent with 
previous  discoveries11. The reason may be that lower temperature may affect rodent reproduction rate, litter size 
and survival rate. Furthermore, low temperature prolong the survival time of virus outside the host, even in the 
absence of direct rodent contact or rodent-to-human contact, the host virus remains  infectious25. In addition, 
significant RR were observed with a 3-month lag at 15–27 °C indicated a positive correlation between HFRS and 
temperature, illustrating that temperature affects the incidence of HFRS in multiple ways and may be affected by 
the environment, climate, seasonal changes in rodent populations, and viral spread 26.

Opposite results were discovered in both univariate and multivariate models, possibly because climate vari-
ables such as temperature and RH may have an interaction effect on precipitation, which were not shown in the 
univariate  model13. Sun et al. found an interaction effect between temperature, RH, and precipitation on HFRS 
incidence. Increasing precipitation and rising temperatures (< 14.79 °C) can collectively boost the risk of HFRS 
infection, which was similar to our results 13. However, excessive precipitation may be a risk factor for HFRS 
transmission, which can damage their nests, making them difficult to obtain food 27.

Our study showed that high relative humidity was significantly associated with the incidence of HFRS. A 
humid environment and high relative humidity were conducive to the survival or reproduction of  mites28. 
Humidity may affect the hantavirus positivity rate in rodents by promoting mites reproduction and infestation, 
ultimately increasing the risk of  HFRS28.In a study of the association of meteorological factors with HFRS in 19 
cities, the risk of scrub typhus increased by 0.9% (95% CI 0.5–1.2%) for every 1% increase in monthly relative 

Figure 3.  Pearson correlation coefficient between weather conditions and HFRS in China. *0.05 ≥ p > 0.01; 
**0.01 ≥ p > 0.001; ***≤ 0.001.
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humidity; with a lag of 16  weeks29. In another Belgian study, high humidity was described as critical for Puumala 
hantavirus (PUUV) survival, and humid conditions were thought to favor PUUV transmission among  rodents30.

Several empirical studies have confirmed that long duration of solar radiation have a positive effect on the 
incidence of infectious diseases such as mumps (Jining, Shandong Province) and scarlet fever (Beijing), and these 
findings are consistent with our  conclusions31–33. Similar to previous studies, our study also found an increased 
risk of HFRS when the monthly mean WS was  favorable34. The possible reason was that wind could resuspend 
bacteria or virus and increase the concentration and survival time of virus. On the other hand, wind might pro-
mote the transmission of hantavirus by increasing air flow. Sunshine hour and wind speed could have an impact 
on crop yield, rodent reproduction and vector density, which may affect the probability of HFRS occurrence 35,36.

In conclusion, meteorological factors have delayed effects on the HFRS incidence and their lag effects are not 
completely consistent with each other. We should pay more attention to HFRS control according to the weather 
conditions with less precipitation and 3 months after the temperature of 15–27 °C, sunshine hour of 180–325 h, 
and wind speed of 2.55–2.75 m/s and consider the lag response. This study also has several limitations. First of all, 
we could not calculate the age-standardized incidence of HFRS because of the lack of age-specific case informa-
tion. Secondly, we unable to reflect the differential association between meteorological factors and HFRS risk in 
different regions. Moreover, we were unable to calculate the acute impact of meteorological factors on HFRS from 

Figure 4.  Contour plot of the exposure–response relationship between the incidence of HFRS and five 
meteorological conditions in the univariate model. The Y-axis represents the lag period from 0 to 6 months. The 
x-axis represents the range of observations for each variable. RR stands for relative risk, red stands for RR > 1, 
white stands for RR = 1, and blue stands for RR < 1.
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monthly data. Finaly, some risk factor data were not collected, including land cover, pathogen dynamics, rodent 
density, and animal infection rates. This study investigated the relationship between meteorological conditions 
and the incidence of HFRS in China through the time lag effect. It is necessary to comprehensively consider the 
impact of pathogenic factors and socioeconomic environment on individuals in the future.

Methods
Data source and collection of case data. The monthly meteorological data of 839 stations in 31 prov-
inces were collected from the National Meteorological Information Center (http:// data. cma. cn/ wa), including 
Tmean, precipitation, RH, SH, and WS (see Fig. S8). HFRS is a class B notifiable infectious disease in  China37 and 
were diagnosed according to China’s Diagnostic Criteria for Epidemic Hemorrhagic Fever issued by the Min-
istry of Health (http:// www. nhc. gov. cn/ wjw/ s9491/ 200802/ 39043. shtml). HFRS case-level records from 2004 to 
2018 for our study were obtained from the Notifiable Infectious Disease Surveillance System (NIDSS) and sorted 
by province and month.

Statistical analysis. Incidence (per 100,000 people) was defined as the number of HFRS cases per year 
divided by population size. The Joinpoint Regression Program (version 4.5.0.1), developed by the National Can-
cer Institute (NCI), was used to calculate the annual percentage change of crude incidence rates for 2004–2018. 
A two-tailed t-test was used to assess whether the annual percentage change in incidence rates was significantly 
different from 0. The χ2 test was used to compare the proportions of patients by sex, age, and occupation. In 

Figure 5.  Contour plot of the exposure–response relationship between the incidence of HFRS and five 
meteorological conditions in the multivariate model. The Y-axis represents the lag period from 0 to 6 months. 
The x-axis represents the range of observations for each variable. RR stands for relative risk, red stands for 
RR > 1, white stands for RR = 1, and blue stands for RR < 1.

http://data.cma.cn/wa
http://www.nhc.gov.cn/wjw/s9491/200802/39043.shtml
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descriptive analyses, mean, standard deviation, minimum and maximum and quartiles  (P25,  P50,  P75) were used 
to describe the distribution of HFRS incidence and meteorological variables. The level was set at 0.05. All maps 
were created using ArcGIS 10.2 (Esri Inc, Redlands, CA, USA) (http:// deskt op. arcgis. com).

DLNM models. DLNM represented a modeling framework that could flexibly describe associations to show 
potential nonlinear and lagged effects in time series data. Here, we used the DLNM model to assess the impact 
of meteorological factors on HFRS incidence. A Pearson correlation analysis was used to analyze the relation-
ship between HFRS incidence and climatic factors. In addition, the absolute value of the pearson correlation 
coefficient ≥ 0.7 was considered a strong correlation and would not be included in the DLNM model at the same 
time. Previous study found that monthly HFRS case was count data, which was a small probability event and 
obeyed a Poisson distribution. Taking the monthly cases of HFRS as the dependent variable, we established a 
crossbasis for five different meteorological factors (Tmean, precipitation, RH, SH, and WS), and incorporated 
the monthly meteorological data into the model in the form of crossbasis, while controlling the influence of 
long-term trends, seasonality and other confounding factors. We specified the crossbasis matrix by the function 
B-splines. Based on previous research, QBIC and experience, we set the maximum time lag at 6  months38. In this 
study, the median of each variable was selected as the reference value. In order to analyze the long-term effects 
of various meteorological factors on the incidence of HFRS, the establishment of the DLNM model was carried 
out in the following two stages.

Figure 6.  Summary of cumulative exposure–response curves for HFRS incidence with a lag of 0–6 months for 
meteorological factors from 2004 to 2018 in the univariate model. The Y-axis represents the relative risk of each 
variable. The x-axis represents the range of observations for each variable. Red lines represent means estimated 
using the DLNM model, shaded areas represent 95% confidence intervals.

http://desktop.arcgis.com
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In the first stage, a univariate DLNM model of five meteorological factors was established. We considered not 
only meteorological factors in the univariate model, but also long-term time trends, quartiles of mean incidence 
in 31 provinces, and incidence in the previous month. According to the principle of the smallest AIC value of 
the model, we determined the optimal model:

“case” represented the number of monthly counts of HFRS cases; “cb1.X” represented the cross-basis for five 
meteorological factors; “X” represented one of the five meteorological factors (Tmean, precipitation, RH, SH, 
and WS); “seq” represented the long-term trend, “15” represented years 2004–2018, “7” represented the degrees 
of freedom per year were used; “season” and “region” represented the covariate; “lag.value1” represented mean 
incidence in the previous month; “new_ds” represented our dataset.

In order to comprehensively consider the impact of the five meteorological factors on the incidence of HFRS. 
In the second stage, a multivariate DLNM model of five meteorological factors was established. We considered 
not only five meteorological factors (Tmean, precipitation, RH, SH, and WS), but also long-term time trends, 
seasonal changes (A year was divided into four seasons: spring (March to May), summer (June to August), 
autumn (September to November), and winter (December to February)), and incidence rates over the past 
month. According to the principle of the smallest AIC value of the model, we determined the optimal model:

Model = glm (case ∼ cb1.X+ ns (seq, 15 ∗ 7)+ factor (season)+ factor (region)

+ lag.value1, family = quasipoisson(), new_ds).

Figure 7.  Summary of cumulative exposure–response curves for HFRS incidence with a lag of 0–6 months 
for meteorological factors from 2004 to 2018 in the multivariate model. The Y-axis represents the relative risk 
of each variable. The x-axis represents the range of observations for each variable. Red lines represent means 
estimated using the DLNM model, shaded areas represent 95% confidence intervals.
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“case” represented the number of monthly counts of HFRS cases; “cb1. prec” represented the cross-basis for pre-
cipitation; “cb1. rh” represented the cross-basis for RH; “cb1. temp” represented the cross-basis for Tmean; “cb1. 
wind” represented the cross-basis for WS; “cb1. sun” represented the cross-basis for SH; “seq” represented the 
long-term trend, “15” represented years 2004–2018, “7” represented the degrees of freedom per year were used; 
“season” and “region” represented the covariate; “lag.value1” represented mean incidence in the previous month; 
“new_ds” represented our dataset. All analyses in our study were performed using the package “dlnm” (version 
4.1.3, https:// cran.r- proje ct. org/ web/ packa ge/ dlnm/ index. html) in R software (version 4.1.3). The contour plot 
and exposure-effect curve of climate variables at different lag times were made to clarify the lag effect and its 
duration under different meteorological conditions. Taking the median of different meteorological conditions 
as a reference, the relationship between P2.5, P25, P75, P97.5 of the modified meteorological conditions and the 
incidence of HFRS was calculated respectively. The relative risk (RR) was used to assess the impact of meteoro-
logical factors with different lag times on the incidence of HFRS.

Sensitivity analysis. We rely on QBIC to select the optimal number and location of nodes reduced to deter-
mine natural splines. The final model should have the smallest sum of QBICs for all 31 provinces. We used AIC 
to select degree time variables, including a natural cubic spline of elapsed time, with seven degree of freedom 
(df = 7) per year, to control for long-term trends in meteorological variables in each province.

Data availability
In this paper, we used the meteorological data from the National Meteorological Information Center (http:// 
data. cma. cn/ wa) and HFRS cases data from the Chinese Center for Disease Control and Prevention (CDC) 
(http:// www. china cdc. cn/).
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