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Predicting health crises from early 
warning signs in patient medical 
records
Selin Gumustop1,4, Sebastian Gallo‑Bernal2,4, Fionnuala McPeake2, Daniel Briggs2, 
Michael S. Gee2,3 & Oleg S. Pianykh2,3*

The COVID-19 global pandemic has caused unprecedented worldwide changes in healthcare delivery. 
While containment and mitigation approaches have been intensified, the progressive increase in the 
number of cases has overwhelmed health systems globally, highlighting the need for anticipation 
and prediction to be the basis of an efficient response system. This study demonstrates the role of 
population health metrics as early warning signs of future health crises. We retrospectively collected 
data from the emergency department of a large academic hospital in the northeastern United States 
from 01/01/2019 to 08/07/2021. A total of 377,694 patient records and 303 features were included for 
analysis. Departing from a multivariate artificial intelligence (AI) model initially developed to predict 
the risk of high-flow oxygen therapy or mechanical ventilation requirement during the COVID-19 
pandemic, a total of 19 original variables and eight engineered features showing to be most predictive 
of the outcome were selected for further analysis. The temporal trends of the selected variables 
before and during the pandemic were characterized to determine their potential roles as early warning 
signs of future health crises. Temporal analysis of the individual variables included in the high-flow 
oxygen model showed that at a population level, the respiratory rate, temperature, low oxygen 
saturation, number of diagnoses during the first encounter, heart rate, BMI, age, sex, and neutrophil 
percentage demonstrated observable and traceable changes eight weeks before the first COVID-19 
public health emergency declaration. Additionally, the engineered rule-based features built from the 
original variables also exhibited a pre-pandemic surge that preceded the first pandemic wave in spring 
2020. Our findings suggest that the changes in routine population health metrics may serve as early 
warnings of future crises. This justifies the development of patient health surveillance systems, that 
can continuously monitor population health features, and alarm of new approaching public health 
crises before they become devastating.

COVID-19, a highly infectious disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2), has resulted in one of the most severe and extensive disease outbreaks in human history, devastating both 
the economy and health systems worldwide. Since the pandemic’s beginning, the World Health Organization 
(WHO) has reported more than 6 million deaths globally due to COVID-191.

While the first cases of COVID-19 in the United States were officially reported back in January and Febru-
ary of 20202, strict federal public health guidelines in the United States were only implemented in the middle of 
March 2020, when transmission of the virus accelerated, and deaths began to accumulate3. Several studies have 
reported the harmful social repercussions of this delayed and conflicted public health response to the pandemic 
in the United States3–6. For example, researchers at the National Center for Disaster Preparedness of Columbia 
University estimated that 130,000 to 210,000 deaths could have been avoided at the beginning of the pandemic 
with early policy interventions and a robust federal response4.

In this setting, one of the primary lessons public administrators and health researchers have learned from 
the COVID-19 crisis is the importance of a rapid and coordinated public response that adapts to the explosive 
dynamics of a pandemic, and the need for informative public health surveillance systems, to prevent future 
crises7,8. Fortunately, the prevalence of electronic health records (EHRs) allows the tracking of general population 
trends, offering a real-time data-based assessment of the health status of a community. During the pandemic, 
EHRs have been used to compute accurate individual-level risk scores for predicting death and severe disease 
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after contracting COVID-199,10. These models have helped to prioritize and allocate resources to the most vul-
nerable individuals, promoting more equitable and efficient distribution. Simultaneously, different groups have 
created large-scale prediction models to anticipate the course of the pandemic, forecast the spread of the infec-
tion, and aid in elaborating health policies that respond to future population trends11–18.

However, these models became available only after COVID-19 became a global pandemic and sufficient data 
was collected to fit the modeling equations reliably. Despite the previous experiments for developing early warn-
ing systems, such as Google Flu19,20, healthcare systems failed at the most critical task: detecting the pandemic at 
an early stage and alerting authorities to the imminent pandemic surge before it became a titanic task. The failure 
to detect the early signs of the impending crisis can be attributed mainly to the absence of tools that proactively 
track the general population’s health with easy-to-interpret results, on a long-term and large-scale basis.

Hence, this study aimed to investigate the use of readily available EHR patient records in detecting the warn-
ing signs of approaching health crises. Departing from a multivariate artificial intelligence (AI) model initially 
developed to predict the risk of high-flow oxygen therapy or mechanical ventilation requirement in COVID-19 
patients, we sought to characterize the temporal trends of several population health indicators before and during 
the pandemic and determine their potential roles as early warning signs of a future health crisis.

Methods
Data.  The Institutional Review Board of Massachusetts General Hospital approved this single-institution 
study (protocol number 2021P003232), waiving the informed consent requirement due to its retrospective 
nature. All procedures were compliant with the Health Insurance Portability and Accountability Act (HIPPA). 
Data was collected from the emergency department (ED) of Massachusetts General Hospital from January 1, 
2019, to August 7, 2020 (the end of the first major COVID-19 wave). A total of 377,694 patient records and 303 
features were included in the analysis; patient identifying data was not used, and was removed from the dataset 
by the authors, thus resulting in de-identified patient records. The features used were different quantitative and 
categorical variables extracted from our EHR, including but not limited to patient vital signs, laboratory results, 
and known comorbidities. The outcome selected for modeling was a binary variable indicating whether or not 
the patient required high-flow oxygen or mechanical ventilation within 48 h of arrival at the ED.

Features of interest and initial model.  For training our models, we intentionally considered only the 
patient encounters starting in March 2020—when COVID was officially recognized and our hospital experi-
enced a large influx of COVID patients. Many features in the original dataset had missing values (such as lab 
results, patient history, and vitals), which could not be imputed, thus limiting the choice of machine-learning 
model. Besides, the large number of original features (303) had to be reduced to avoid overfitting and to retain 
only the most important factors. Therefore, we started by modeling the outcome with XGBoost (eXtreme Gra-
dient Boosting) AI model, capable of handling missing values and large feature spaces21. The XGBoost model 
(available in Python22) was trained on the original data with missing values. Optimal XGBoost parameters 
(including the number of estimators, tree depth, and L2 regularization penalty) were determined with a standard 
grid search approach and threefold cross-validation to avoid model overfitting. The resulting model yielded an 
accuracy of 0.81, a good result given the number of missing values and noise.

Once optimized model parameters were determined, the model was run with a model-agnostic permutation 
variable-importance algorithm23, which reduced the original feature set to only the most important 19 features 
(Table 1). This reduction also enabled us to remove the records with missing values, still retaining most of the 
original data (236,869 patient records).

In parallel with the classical XGBoost approach, we also designed and implemented an exhaustive Boolean 
rule-learning model to find the best outcome predictors with only up to four feature variables, thus capturing the 
most important features and the best decision-making logic. Our rule-learning algorithm considered all 4-feature 
subsets from the original 303 features; non-Boolean features were converted into Boolean by comparing them 
to their percentile thresholds. For each subset of four features, our algorithm computed all possible 4-variable 
Boolean truth tables to find the best Boolean rule (as a truth table) to use. Taking advantage of fast vectorized 
Boolean math and a highly parallelized code run on a 36-core processor, our Boolean rule-learning algorithm 
discovered the best eight binary rules (engineered features), most predictive of the outcome (Table 2). Notably, 
all original features identified by the rule-learner in Table 2 can also be found in Table 1. Many of the Table 2 
features turned out to be very similar to the risk factors reported in other studies24–26.

Note that the prediction outcome in the dataset was significantly unbalanced: patients with a positive outcome 
(high-flow oxygen or mechanical ventilation requirement within 48 h after ED arrival) corresponded to only 5% 
of the final data set. As a result, to train XGBoost and Boolean rule models with a balanced dataset, we had to 
balance the training set by randomly selecting an equal number of patients with positive and negative outcomes. 
Therefore, both models were trained on 5% of the dataset and tested on the remaining 95%.

As a result, the application of XGBoost and Boolean rule learning models helped us confirm the optimal 
subset of 19 features, and to remove the missing values present in these features only. For the final ED patient risk 
model, we were required to use a simple, interpretable, and robust model type, so we chose logistic regression, 
which became possible after eliminating the records with missing values, as described above. Similar to XGBoost, 
the logistic regression model was used to predict the probability of supplemental oxygen within 48 h of ED arrival. 
Quantitative features, Boolean included, were standardized (centered and scaled to unit variance) before analysis.

Pre‑pandemic trends and early pandemic signs.  Our model was initially developed to predict the 
risk of COVID-19 patients requiring high-flow oxygen supplementation or mechanical ventilation based on 
data from the initial pandemic wave (March to August 2020). However, after verifying that the model tracked 
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well with the COVID-19 counts during the pandemic, we decided to perform a "post hoc" analysis, running 
the model "back in time." To account for any seasonal effect, we set the pre-pandemic date range to January 
2019. We wanted to check whether (a) the high-flow oxygen or mechanical ventilation requirement model, 
initially applied during the pandemic, would detect any alarming signal during the pre-pandemic months, and 
(b) whether the trends detected by the model could also be recognized in the original model features, free of 
specific model/pandemic context. To do so, we decided to assess the temporal trends of each feature included in 
the final model, and determine if any relevant change occurred before the first cases were officially reported and 
the pandemic emergency was declared in the United States.

Results
The logistic regression model for predicting the need for oxygen supplementation within 48 h after ED arrival 
in high-risk COVID-19 patients was trained on the March-August 2020 data, as the time when the COVID 
pandemic was officially declared in the US. The model had an AUC ("area under the curve") value of 0.72, with 
an accuracy of 74%. Given the high variability and noise of the real-life data, we considered these values to be 
satisfactory and proceeded to analyze the temporal trends of the model and its features.

Temporal trends: model.  To detect any temporal changes in the population health dynamics, the model 
results and the included features were analyzed by visualizing their trends over time. This approach is shown in 
Fig. 1, using the original model outcome as an example. In this graph, each sample point was created by averag-

Table 1.   Most important original features identified by XGBoost permutation feature importance algorithm.

Feature label Feature description

Age Age of the patient upon entry to the ED

EncounterDiagnoses Number of diagnoses assigned to the patient after the first encounter

BMI Body Mass Index

HeartRate Heart rate at admission

O2Saturation Oxygen saturation (%) measured by pulse oximetry at admission

RespiratoryRate Respiratory rate (breaths per minute) at admission

TemperatureF Patient temperature in Fahrenheit degrees (°F) at admission

ChronicLungDisease Chronic lung disease (yes/no)

ConnectiveTissueDisorder Connective tissue disorder (yes/no)

CoronaryArteryDisease Coronary artery disease (yes/no)

AverageAbsoluteNeutrophils Average absolute neutrophil count (× 1000/cc)

AveragePercentageMonocytes Average percentage of monocytes (%)

AveragePercentageNeutrophils Average percentage of neutrophils (%)

AverageWBC Average white blood cells count (× 1000/cc)

AveragePercentageLymphocytes Average percentage of lymphocytes (%)

MCHC First measured mean corpuscular hemoglobin concentration (g/dL)

FirstPercentageNeutrophils First measured percentage of neutrophils (%)

LowO2Req Low oxygen support required in ED (yes/no)

Sex Patient sex flag (1/0 for male/female)

Table 2.   The most accurate engineered features (short Boolean rules) found by the rule-learning algorithm.

Feature label Feature rule Accuracy Recall

F1 (EncounterDiagnoses >  = 2 OR AverageAbsoluteNeutrophils >  = 5) AND (LowO2Req = TRUE OR 
TemperatureF >  = 99) 0.636 0.546

F2 (LowO2Req = TRUE OR AverageWBC >  = 12) AND (LowO2Req = TRUE OR AveragePercentageM-
onocytes < 6) 0.632 0.556

F3 (LowO2Req = TRUE OR HeartRate > 100) AND (LowO2Req = TRUE OR AveragePercentageNeutro-
phils > 83) 0.631 0.528

F4 SUM(LowO2Req = TRUE, AveragePercentageNeutrophils >  = 83, CoronaryArteryDis-
ease = FALSE) >  = 2 0.630 0.589

F5 (LowO2Req = TRUE OR AverageWBC >  = 12) AND (LowO2Req = TRUE OR AveragePercentage-
Neutrophils > 83) 0.630 0.576

F6 (LowO2Req = TRUE OR AveragePercentageMonocytes < 6) AND (LowO2Req = TRUE OR Average-
PercentageLymphocytes < 11) 0.630 0.566

F7 LowO2Req = TRUE AND (EncounterDiagnoses >  = 2 OR AverageAbsoluteNeutrophils >  = 5) 0.628 0.463

F8 LowO2Req = TRUE AND AveragePercentageNeutrophils > 62 0.627 0.462
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ing the model values for the individual ED patients over a 6-h interval, taken at 3-h increments, to reflect the 
changing health dynamics of the patients arriving at the ED. To visualize these population health trends bet-
ter, we added three moving percentile curves: the 25th percentile (lower line), median (middle line), and 75th 
percentile (upper line), applied to the points in the chart over a 1-week moving window. As a result, this graph 
allowed the visualization of the distribution and variability of the original data and their temporal trends (from 
January 2019 to August 2020).

Note that despite the noise in the individual patient measurements, the population-level model tracked very 
well with the overall increase of COVID-19 patients in the ED during the peak of the pandemic’s first wave (April 
to May 2020, Fig. 2, COVID trend on top vs. model trend in the bottom). Interestingly, the model showed a 
gradual increase in the high-risk patient population even before the pandemic was officially declared in March 
2020. Additionally, we noted a significant and unusual pre-pandemic surge in the number of high-risk patients 
that began in late 2019, peaked in early 2020, and converged with the gradual increase of cases associated with 
the initial wave of the COVID-19 pandemic (see "Surge X" in Fig. 1). This Surge X pattern in the pandemic model 
trend was not present the year before the pandemic (late 2018-early 2019), suggesting that an additional vari-
able was affecting the trends during this period and a non-seasonal cause was responsible for this phenomenon.

Considering that Surge X could have been explained by any acute respiratory illness, including an outbreak of 
seasonal influenza or early COVID-19 cases, we decided to investigate the overall contribution of influenza dur-
ing the same period. Notably, we found that while the proportion of ED patients who tested positive for influenza 
increased right before the first COVID-19 pandemic peak (Fig. 2, bottom), influenza could not explain Surge X. 
As seen in Fig. 2, Surge X occurred before the influenza cases started to increase, and its slope decreased as the 
number of influenza cases started to peak.

Thus, influenza alone does not seem sufficient to explain the late-2019 Surge X pattern in the pandemic 
model trend or the gradual increase in cases that took place as the COVID-19 pandemic started. Furthermore, 
we confirmed that this pattern was not present during the 2018–2019 period, indicating that "Surge X" trend 
does not represent a predictable seasonal increase in high-risk patients. While it is not possible to retrospectively 
asseverate that Surge X represents an early surge in COVID-19 cases, it may be possible that several detectable 
changes in the population health dynamics preceded the pandemic and the exponential increase in the number 
of cases that took place during the first pandemic wave in spring 2020. Furthermore, after our analysis was 
completed, newer reports based on blood sample analysis confirmed the presence of COVID-19 cases in our 
state in late 2019, supporting our hypothesis that the trend discovered in the EHR was indicative of early signs 
of the impending pandemic27.

Figure 1.   Predicted fraction of patients requiring oxygen within 48 h of ED arrival plotted over time (from 
January 2019–August 2020). The circles represent the original data averaged over 6-h intervals (with 3-h 
increments). Lines represent the percentile curves: the 25th percentile (green line), median (black line), and 
75th percentile (red line). The percentile trend curves exhibit temporal patterns despite the large data variability 
and noise.
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Temporal trends: individual features.  To confirm that the unusual changes in the population health 
detected by the model were not produced by a specific model bias or training artifact, we verified whether the 
individual model’s features, free of any modeling context, also revealed the same changes. To do so, we plotted 
the temporal trends of these features in the same way as the overall model. From these plots, we identified five 
features (respiratory rate, temperature, low oxygen requirement, number of encounter diagnoses, and heart rate) 
that showed a solid and rapid increase in the ED population in early March 2020 (COVID-19 outbreak) and a 
decline in May 2020 (end of the first COVID-19 wave), as shown in Fig. 3. What was particularly important is 
that many of these features presented the same "Surge X" pattern, thus proving that it was independent of our 
initial model.

There were also a few deviations from this general trend. First, the EncounterDiagnoses feature showed only 
a mild surge in late 2019 but a sharp spike in March 2020. This behavior probably reflects the diagnostic and 
therapeutic challenges associated with the first COVID-19 cases in the pandemic setting (Fig. 3). Second, the 
heart rate had its own unique superimposed trend. Without considering the effects of the pandemic, as reported 
previously, the heart rate usually follows a seasonal trend, reaching a maximum in January and then declining 
steadily to a minimum in July28. This heart rate population behavior was seen in our data as well. However, we 
found an unusual surge in heart rate at the end of February 2020, most likely corresponding to the influx of 
pandemic patients. Thus, even though the heart rate shows its distinctive seasonal pattern, it was still possible 
to observe the pandemic effects on the ED population.

Other features, including BMI, age, sex, and neutrophil percentage (average and at first encounter), exhib-
ited broader positive changes and more noise. Nevertheless, these changes followed the pandemic timeline and 

Figure 2.   Top: Percentage of ED patients who had positive COVID-19 test results versus the daily ED 
population count; regular COVID-19 tests became available in March 2020. Bottom: Percentage of ED arrivals 
who received a positive influenza test versus our pandemic model trend. Darker lines show 1-week moving 
averages, and lighter background lines—the actual daily values.
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displayed the pre-pandemic "Surge X" (Fig. 4). This is particularly important because these features are usually 
constant in a specific population and do not follow seasonal trends. However, in this case, they began to change 
as the pandemic approached. This phenomenon strengthens our central hypothesis: before the pandemic was 
officially declared (March 2020), the characteristics of the ED population started to exhibit dramatic changes 
and adopted a "pandemic" profile23.

Additionally, some features (lymphocyte and monocyte percentages, MCHC, and oxygen saturation) dis-
played an inverse relation with the number of COVID-19 patients, including a pre-pandemic decrease equivalent 
to "Surge X" (Fig. 5). This inverse relationship was expected based on the usual clinical behavior of COVID-19 
patients.

Finally, several other features were analyzed, including the presence of chronic lung disease, connective tissue 
disorder, coronary artery disease, average white blood cell count, and average absolute neutrophil count. These 
features showed different surges over time, but none led to a clear and dominant trend.

Figure 3.   Respiratory rate, temperature, low O2 requirement, number of diagnoses at first encounter, and heart 
rate model features plotted through time (January 2019–August 2020). The circles represent the original data 
averaged over 6-h intervals, and the lines-moving percentile curves for 25%, 50%, and 75%.
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Temporal trends: engineered features.  The engineered features (Table 2), produced by the exhaustive 
binary rule search, showed the same sudden increase in the number of pandemic patients starting in March 
2020, peaking in April 2020, and then decreasing in May 2020 (end of the first pandemic wave), as can be seen 
in Figs. 6 and 7. Moreover, most of these features (F2, F4, F6, F7, F8) showed a "Surge X" peak in early January 
2020. In contrast, other features (F1, F3) exhibited a steady increase beginning in November 2019 and leading to 
the COVID-19 outbreak in March 2020. F5 was less sensitive than the other engineered features.

Note that these features were found independently of the original machine-learning model and therefore did 
not depend on the model selection or training. Instead, the engineered features provided us with more interpret-
able and targeted metrics of the overall patient population health behavior, which proved to be consistent with 
pandemic trends and the output from the more complex model. This demonstrates that one can use routinely 
collected EHR metrics to develop very simple rules, serving as sensitive markers of current population health, 
and capturing the "signal above the noise".

Figure 4.   BMI, age, sex, and neutrophil percentage model features plotted over time (January 2019–August 
2020). The circles represent the original data averaged over 6-h intervals, and the lines-moving percentile curves 
for 25%, 50%, and 75%.
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Discussion
Early signs of health crises.  Major changes in the population’s health cannot happen overnight—instead, 
they take significant time to develop and spread. In this single-institution retrospective study, we studied the 
temporal trends of several population health indicators before and during the COVID-19 pandemic to deter-
mine their potential role as early warning signs of a future health crisis. Departing from an AI model initially 
designed to predict the need for high-flow oxygen or mechanical ventilation in COVID-19 patients, we analyzed 
the individual variables included in the model and found that many of them began to exhibit alarming patterns 
several weeks before the pandemic was officially recognized and declared. This important result suggests that 
significant changes in population health trends may serve as early warnings of future crises, implying the need 
for developing patient health surveillance systems. To our knowledge, this is the first study to explore this issue 
and offer a practical approach for populational health surveillance that can significantly improve our response 
to future health crises.

It was particularly reassuring that during the preparation of this publication, a growing volume of new, inde-
pendent evidence supported our approach and findings. Several studies had suggested that the SARS-CoV-2 
was already circulating in China from mid-October to mid-November of 2019, a few months before the first 
cases were officially reported29–31. Similarly, new studies had shown serological evidence of the virus in samples 
of patients seeking medical care in the United States and Europe as early as December 201927,30–32, including at 
least one patient located in our hospital area. The latter case was dated January 8, 2020, thus falling on the peak 
of the "Surge X" curve, identified by our approach. This alignment between our data-driven method and the 
independent blood sample research suggests that the virus was circulating before the first cases were officially 
recognized, confirming the validity of our approach and results30.

Building an efficient population health surveillance system.  The COVID-19 global pandemic 
has caused unprecedented worldwide changes in healthcare delivery33–35. While containment and mitigation 
approaches have been intensified, the exponential and progressive increase in the number of cases has over-
whelmed health systems globally36,37, highlighting the need for anticipation and prediction to be the base of an 
efficient response system for a future pandemic scenario. Response strategies for population-wide outbreaks 

Figure 5.   Decreasing trends: lymphocyte and monocyte percentages, MCHC, and O2 saturation over time 
(January 2019–August 2020). The circles represent the original data averaged over 6-h intervals, and the lines-
moving percentile curves for 25%, 50%, and 75%.
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currently adopt a passive and "a posteriori" approach. With our approach, real-time health surveillance systems 
that monitor population health deviations offer a much more efficient and proactive alternative.

Our results demonstrate that several clinical features started to display differential and unusual trends a few 
weeks before the pandemic was declared worldwide. At a population level, the respiratory rate, temperature, 
low oxygen saturation, number of diagnoses during the first encounter, and heart rate demonstrated observable 
and traceable changes eight weeks before the outbreak and public health emergency declaration. These trends 
followed the surge of cases during the first pandemic wave. This is particularly important because, unlike the 
original model, the analyzed individual features we considered were completely free of any specific model or 
"risk factor" assumptions. Yet they started to deviate from their usual patterns weeks before medical professionals 
became aware of a potential issue.

Importantly, these early warning features came from a standard EHR system, where features are routinely 
recorded in a real-time fashion for all patients arriving at the hospital. As a result, the widespread adoption of 
EHR systems and patient databases makes population health surveillance an accessible and effective way of 
anticipating a future health crisis. Based on the analysis we have developed, we recommend the following steps 
to implement an efficient population health surveillance system (Fig. 8):

•	 Computing real-time population health features (vitals and major laboratory studies). As described in our 
study, we achieved this by averaging the individual patient features every 6 h. A longer window may be used 
to ensure sufficient samples.

•	 Visualizing current feature trends to display the moving median and low/upper bounds (25th and 75th percen-
tile) of the current feature distribution (Fig. 1). Visually displaying the temporal behavior of a feature helps 
capture non-trivial patterns in the feature evolution, similar to the surge patterns we presented. Particular 
emphasis should be placed on tracking those features that cannot change abruptly (such as BMI, age, or sex) 
—any unusual deviations in them mean that these features evolve into triggered risk factors, changing the 
distribution of the people seeking urgent care.

•	 Evaluating standard statistical controls to detect whether a particular feature deviates from its expected value 
range. Their controls may depend on a particular location, subpopulation, and expected behavior, so each 
healthcare institution should characterize its own trends and create a baseline for subsequent analysis. This 
initial characterization can be done with a standard control chart approach. To account for seasonal changes, 
comparisons should be performed between the same period in different years.

Figure 6.   Engineered feature (F1-F4): trends over time (January 2019–August 2020). The circles represent the 
original data averaged over 6-h intervals, and the lines—moving percentile curves for 25%, 50%, and 75%.
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In addition, we also suggest developing a second, advanced layer to support timely decision-making, includ-
ing (Fig. 8):

•	 Engineered features, fine-tuned into specific types of outbreaks. Similar to our engineered feature exam-
ple, these can better identify particular patient conditions for which they were developed: flu, SARS, other 
infectious diseases, and more. These short conditional expressions, which can be found with rule-learning 
algorithms based on 3–4 original features and thresholds, can be easily understood and applied by humans, 
providing efficient early diagnostic markers.

•	 Clinical decision-making models are based on the above and used as a preemptive response to emerging 
outbreaks. For instance, if any of the features begin to exhibit alarming deviation from the normal trend, 

Figure 7.   Engineered feature (F5-F8): trends over time (January 2019–August 2020). The circles represent the 
original data averaged over 6-h intervals, and the lines—moving percentile curves for 25%, 50%, and 75%.

Figure 8.   Population surveillance model: major components.
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resource allocation should be prioritized to respond to the emerging situation, and additional tests need to 
be implemented to identify and characterize the nature of the new crisis.

Using short engineered-features becomes particularly important when building AI models is not feasible 
due to limited resources and time.

Limitations and next steps.  Our study is limited by its retrospective and single-center design leading to a 
noncontrolled study population. However, the number of patients included in our study supported our goal and 
demonstrated our hypothesis, making our findings generalizable to larger populations. In addition, while there 
is no way to objectively and retrospectively demonstrate that "Surge X" was indeed caused by a pre-pandemic 
surge of COVID-19 cases, the most recent studies that demonstrated serological evidence of the infection in 
early 2020 support our findings and conclusions.

While practical limitations exist, we would like to emphasize that our primary approach is based on the 
gradual spread of pandemics—the principle widely recognized by practitioners, researchers, and pandemic 
models (such as SEIR). This principle, combined with the critical concept of early detection (adapted long ago 
in individual patient screening), extends very naturally to a broader population level, justifying our approach. 
Consequently, we believe that more research needs to be done in the area of population health screening and 
early alarms identified from the key population data, to understand their nature better and forecast their impact.

Conclusion
Our work demonstrates how the time-windowed aggregation of individual patient metrics, routinely collected in 
hospital emergency departments, can lead to robust markers of approaching health crises. This finding, confirmed 
by recent blood test research, provides a strong foundation for implementing robust population surveillance 
systems, detecting abnormal development several weeks in advance.

This surveillance, driven by the data already available in EHR, does not require prior knowledge of the emerg-
ing ailment and, therefore, could be applied to various diseases and in several contexts. Moreover, its baseline out-
lier detection should be further complemented with the development of proactive response protocols, prescribing 
which immediate steps need to be taken should certain features surpass their standard thresholds. These steps 
should also cover a wide range of actions, from further investigating the clinical nature and possible source of the 
change (including EHR data on patient locations), to assigning additional resources (beds, PPEs, medications).

Acting promptly should become the primary approach to preventing the losses brought about by population-
wide health crises.

Data availability
The data used in the current study is available from the corresponding author on reasonable request.
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