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Regression analysis for predicting 
the elasticity of liquid crystal 
elastomers
Hideo Doi1,5, Kazuaki Z. Takahashi1,5*, Haruka Yasuoka2,3,5, Jun‑ichi Fukuda4 & 
Takeshi Aoyagi1

It is highly desirable but difficult to understand how microscopic molecular details influence the 
macroscopic material properties, especially for soft materials with complex molecular architectures. 
In this study we focus on liquid crystal elastomers (LCEs) and aim at identifying the design variables 
of their molecular architectures that govern their macroscopic deformations. We apply the regression 
analysis using machine learning (ML) to a database containing the results of coarse grained molecular 
dynamics simulations of LCEs with various molecular architectures. The predictive performance of a 
surrogate model generated by the regression analysis is also tested. The database contains design 
variables for LCE molecular architectures, system and simulation conditions, and stress–strain 
curves for each LCE molecular system. Regression analysis is applied using the stress–strain curves 
as objective variables and the other factors as explanatory variables. The results reveal several 
descriptors governing the stress–strain curves. To test the predictive performance of the surrogate 
model, stress–strain curves are predicted for LCE molecular architectures that were not used in the 
ML scheme. The predicted curves capture the characteristics of the results obtained from molecular 
dynamics simulations. Therefore, the ML scheme has great potential to accelerate LCE material 
exploration by detecting the key design variables in the molecular architecture and predicting the LCE 
deformations.

Liquid crystal elastomers (LCEs) are a relatively new class of materials that display soft elasticity, that is, mac-
roscopic reversible deformation has little  resistance1–6. Soft elasticity can be achieved using a variety of external 
stimuli, such as stretching, thermal  fields7, magnetic or electric  fields8–10, and light  exposure11–16. Furthermore, 
soft and light LCEs exhibit relatively fast and accurate reactions to these external stimuli. Therefore, LCEs are 
candidate materials for soft  actuators17–21, and their mechanical properties have been extensively  studied22–25. The 
mechanism of soft elasticity is closely related to the dynamics of mesogenic units embedded in polymer chains, 
and experiments have shown that a unidirectionally oriented polymer network with relatively low crosslink 
density is important for the realization of soft  elasticity6,26,27. To clarify the coupling dynamics of mesogens and 
polymeric chains, theoretical studies have focused on the microscopic behavior of mesogens through molecular 
 simulations28–36. These studies indicate the great potential of molecular simulations to uncover the mechanism of 
soft elasticity. Our previous study on the effect of LCE molecular architectures on microscopic dynamics under 
uniaxial elongation demonstrated that side-chain-type LCEs, in which mesogens are embedded in the side chain, 
have a different mesogen rotation mechanism from main-chain-type LCEs, in which mesogens are embedded in 
the main  chain34. Furthermore, we found a systematic and robust trade-off between the stress and strain ranges 
in soft  elasticity35, indicating that the optimal set of output power and amount of deformation for LCE can be 
selected by tuning the crosslink density. These are clear examples of how detailed information on the molecular 
architecture can be used to elucidate more realistic behavior in LCE molecular systems. However, vast variety 
of the molecular architecture often make it difficult to understand the relationship between the microscopic 
characteristics and macroscopic properties of materials. This is especially true in the case of functional polymeric 
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materials such as LCEs. That is, the large number of variables that characterize the molecular architecture pre-
vents the determination of which variables are important for the desired macroscopic properties. This difficulty 
arises in both experiments and simulations. In fact, despite the many possibilities for the molecular architecture 
of LCEs, experiments have employed only a few molecular structures that conform to some established synthetic 
 methods26,27,37. In other words, the complexity of the material itself inhibits material development.

The microscopic characteristics of matter are expected to be closely related to its macroscopic physical 
 properties38–45. However, finding a universal relationship remains a challenging task, with the exception of some 
successful examples limited to specific categories of phenomena or  materials38–40. Microscopic characteristics are 
always complex, covering the chemistry, geometry, and dynamics of atoms and molecules. By contrast, macro-
scopic properties are not always sensitive to microscopic  characteristics46–48. Moreover, the sensitivity of mac-
roscopic properties to microscopic characteristics is material-dependent. Thus, it is often more efficient to focus 
exclusively on the details of the relationship between microscopic characteristics and macroscopic properties for 
a specific material, despite the potential significance of establishing universality across materials. For complex 
materials such as functional polymers, the details of the relationship remain difficult to investigate even when the 
class of the target material is fixed. This is because these materials have a number of microscopic parameters that 
constitute the design variables of the molecular  architectures49–51. Complex information with many microscopic 
parameters makes it difficult to detect the major factors that characterize the macroscopic physical properties. 
Quantitative structure–property relationship (QSPR) analysis is a promising approach for overcoming this type 
of complexity. QSPRs have great potential to reveal the correlations between an objective variable (i.e., physical 
property) and the large number of combinations of descriptors (i.e., microscopic parameters), which are almost 
incomprehensible to  humans41–45,52–55. Recently, the above characteristic of QSPRs has been enhanced by machine 
learning (ML) techniques and applied to materials  science56–59. Many studies have suggested the use of specific 
physical properties for objective  variables56–61, and several results have been reported for polymer  elasticity62–64.

In this study, an ML-based QSPR approach is employed to identify the microscopic characteristics that govern 
the macroscopic deformation of LCEs. To identify the influential design variables, regression analysis using ML is 
performed on a database containing the results of coarse-grained molecular dynamics simulations of LCEs with 
various molecular architectures. The predictive performance of surrogate model is also tested using regression 
analysis. The LCE database contains design variables for LCE molecular architectures, system and simulation 
conditions, and stress–strain curves calculated for each LCE molecular system. In this study, data sets on 140 
different LCE molecules are selected from the database. In addition, 12 molecules are randomly selected and 
excluded to test the predictive performance of surrogate model, with the remaining 128 molecules used in the 
regression analysis. Regression analysis is performed with the stress–strain curve as the objective variable and the 
other factors as explanatory variables. To test the predictive performance of the surrogate model, the stress–strain 
curves are predicted using ML results for the 12 LCE molecules that were excluded prior to regression.

Results
Regression analysis. The mechanical properties of LCEs are expected to be related to the details of the 
molecular architectures, such as the difference between the main- and side-chain types, the type and density 
of the crosslinking agent, and the shape and density of the mesogens. Thus, in this study, a coarse-grained LCE 
model that can express the details of the molecular architectures is employed. A typical molecular architecture 
consists of soft-core Gay–Berne (SCGB) ellipsoidal  particles65, Lennard–Jones (LJ) spherical particles, and har-
monic bonds among particles (for details, see Ref.34). This model makes it possible to build numerous molecular 
architectures for LCEs by setting the 20 design variables shown in Fig. 1 and Table 1. A total of 220 main- and 
side-chain LCE molecules are modeled, corresponding to those considered in previous  studies34,35. Note that the 
parameters for non-bonded interactions among SCGB and LJ particles, except the point charge q, are fixed to the 
same values as in Refs. 34 and 35, so they are not shown in Fig. 1 and Table 1.

Molecular dynamics (MD) uniaxial elongation simulations yielded six stress-strain curves per LCE molecule 
(see Methods for details). Here, we present descriptors of the molecular system and elongation simulation condi-
tions for regression analysis, along with specific set values. The number of chains Nch for each system was fixed 
to the specific value shown in Table 2. The number of mesogenic units NMU was mru × nMU × Nch . The number 
of solvent SCGB particles Nsolv was set to NMU or multiples thereof. The number of mesogenic units in crosslink-
ers NMU,cl was mcl × nMU,cl × Nch . The total number of SCGB particles NSCGB was NMU + NMU,cl + Nsolv . The 
number of LJ particles in chains NLJ,ch was mru × (nLJ,mc + nLJ,sc)× Nch . The number of LJ particles in crosslink-
ers NLJ,cl was mcl × nLJ,cl × Nch . The total number of LJ particles NLJ was NLJ,ch + NLJ,cl . The total number of 
crosslinkers Ncl was mcl × Nch . The chain rate rch was determined by Nch/(NSCGB + NLJ) . The crosslinker rate 
rcl was determined by Ncl/(NSCGB + NLJ) . The initial mesogenic orientation (IMO) direction with respect to the 
elongation direction was set as a logical value corresponding to three situations: vertical, parallel, and isotropic. 
All the LCE systems had a well-defined isotropic–nematic phase transition temperature TNI . The system tem-
perature during elongation Telong was set as described in Method. Table 2 presents the parameters for the system 
and simulation conditions described above. Note that some of the system and simulation conditions described in 
Method are fixed to specific values and are therefore not considered as descriptors; these are not listed in Table 2.

A simple supervised ML scheme was used for the regression task, because the close relation between input 
microscopic descriptors and objective macroscopic properties is assumed to be obvious and there is no need to 
use complex ML methods that often contain implicit parameters. Figure 2 shows the ML procedure employed in 
this study. First, the parameters of the microscopic molecular systems were used as descriptors for the regression 
task of ML; that is, the molecular architecture information and the system and simulation conditions were merged 
into a descriptor array D. The 33 descriptors used in this study are listed in Table 3. Lmov was added as a descrip-
tor to express the spacing for the mobility of mesogenic units. This is set to Lmc + Lsc in Table 1. The descriptor 
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rtemp expresses the relative temperature during elongation from the nematic–isotropic transition temperature. 
Other descriptors listed in Tables 1 and 2 are restated in Table 3 for convenience. Next, the stress–strain curve 
data obtained from coarse-grained MD simulations of LCE molecular systems were selected as the objective 
variables. Specifically, the combinations of stress and strain values that form discrete points on the curve were 
stored in the objective variable vector o . Each curve consists of 20 discrete points. The above descriptors and 
objective variables were stored in a database in the format shown in Fig. S1 of the Supplementary Materials. The 
database contains descriptors and objective variables for a total of 220 LCE molecules. Considering the bias of 
the stored LCE molecular architectures, 80 LCE molecules were excluded and the remaining 140 LCE molecules 
were selected for this study. From these 140 molecules, another 12 molecules were randomly excluded. Thus, 
regression analysis was applied to the data of 128 LCE molecules. The size of the descriptor array is 128 (LCE mol-
ecules) × 33 (descriptors) = 4,224, while the number of data for the stress–strain curves is 128 (LCE molecules) 
× 6 (curves) × 20 (points) = 15,360. Finally, the operator vector w satisfying the relation Dw = o was estimated 
via ML. The term w was estimated using the random forest  method66 implemented on Scikit-learn (version 
0.20.3)67. The random forest method was employed for the following four main reasons. (i) The method does 
not require data normalization and is relatively simple, with the only hyperparameters being the number of trees 

Figure 1.  Schematic illustration of the design variables for LCE molecular architectures. Mesogenic units in 
chains are marked as blue ellipsoids, Lennard–Jones (LJ) particles in main chains are marked as orange circles, 
LJ particles in side chains are marked as yellow circles, mesogenic units in crosslinkers are marked as green 
ellipsoids, and LJ particles in crosslinkers are marked as green circles.
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ntree and the depth of tree dtree . (ii) The stress-strain curves of LCE, the objective variables, are complex discrete 
data, but can be handled stably by using the random forest. (iii) The random forest can quantify the importance 
of descriptors including design variables for LCE molecules. (iv) The benchmarks presented in a previous study 
using molecular information as descriptors showed that the method using decision trees performed  better68. Note 
that the hyperparameters of the random forest, ntree and dtree , were determined to be 100 and 10, respectively, 
after sufficient exploration by grid search with ntree up to 1000 and dtree up to 50. All other parameters were set 

Table 1.  Design variables for LCE molecules. Variables that depend on some of the design variables are also 
displayed. The value “null” indicates that the variable does not exist in the molecular architecture.

Variable Type Description Value(s)

MA Logical Main- or side-chain type True (= main), False (= side)

mru Integer Number of repeat units in the chain 30

nMU Integer Number of mesogenic units per repeat unit 1

nLJ,mc Integer Number of LJ units in the main chain of repeat unit Null, 1, 2, 3

nLJ,sc Integer Number of LJ units in the side chain of repeat unit Null, 1, 2, 3

q Real Point charge on the mesogenic unit Null, 0.3

σe Real Length of the long axis of mesogenic unit 3.0, 3.2

σs Real Length of the short axis of mesogenic unit 1.0

lMM Real Length of the covalent bond between mesogenic units Null, 0.15, 1, 1.2, 1.4, 1.6, 1.8, 2.0, 3.0

lLL Real Length of the covalent bond between LJ particles Null, 1.0

lLM Real Length of the covalent bond between LJ particle and mesogenic unit Null, 0.5

k0 Real Spring constant of the covalent bond 100.0, 500.0

CL Logical Presence or absence of the crosslinker point with the side chain True (= present), False (= absent)

mcl Integer Number of crosslinkers in the chain 2, 3, 4, 6, 8

nMU,cl Integer Number of mesogenic units in the crosslinker Null, 1

nLJ,cl Integer Number of LJ units in the crosslinker Null, 1, 2, 3, 4, 5, 6

kθ Real Angle spring constant of the LJ crosslinker Null, 10.0, 1000.0

lMM,cl Real Length of the covalent bond between mesogenic units in the main chain and mesogenic units in the 
crosslinker Null, 0.0, 0.15, 0.5, 1.0

lLL,cl Real Length of the covalent bond between LJ particles in the main chain and crosslinker Null, 1.0

lLM,cl Real Length of the covalent bond between LJ particle in the main chain and mesogenic unit in the crosslinker Null, 0.15, 0.5

Dependent variable Type Description

rasp Real σe/σs

Lmc + Lsc Real (nLJ,mc − 1)lLL + (nMU + 1)lLM + nMU lMM (for MA = True),
(nLJ,mc + nLJ,sc)lLL + nMU(lLM + lMM) (for MA = False)

Table 2.  Variables for the system and simulation conditions of the LCE molecular systems.

System conditions Variable Type Description Value(s)

Nch Integer Number of chains 105, 111, 118, 125, 133, 175, 225, 250

NMU Integer Number of mesogenic units mrunMUNch

Nsolv Integer Number of solvent SCGB particles kNMU (k = 1, 2, . . .)

NMU,cl Integer Number of mesogenic units in crosslinkers mclnMU,clNch

NSCGB Integer Total number of SCGB particles NMU + NMU,cl + Nsolv

NLJ,ch Integer Number of LJ units in chains mru(nLJ,mc + nLJ,sc)Nch

NLJ,cl Integer Number of LJ particles in crosslinkers mclnLJ,clNch

NLJ Integer Total number of LJ particles NLJ,ch + NLJ,cl

Ncl Integer Total number of crosslinkers mclNch

rch Real Chain rate Nch/(NSCGB + NLJ)

rcl Real Crosslinker rate Ncl/(NSCGB + NLJ)

TNI Real Isotropic–nematic phase transition temperature

Simulation conditions

Variable Type Description Value(s)

IMO Logical Initial mesogenic orientation direction with 
respect to the elongation direction Null (= isotropic), True (= vertical), False (= 

parallel)
Telong Real System temperature during elongation
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to the default values of Scikit-learn. Also, the random forest method has some other useful characteristics as 
the ML algorithm: (i) the learning routine is simple, and thus achieves high-performance computing, (ii) the 
method avoids overlearning, and (iii) little or no data cleansing is needed. Note that overlearning refers to the 
scenario in which the learning results only fit the data used during learning and do not fit new data. The vector 
w was checked using k-fold cross-validation for overlearning implemented on Scikit-learn, where k (set to 10 in 
this study) denotes the number of times cross-validation was performed.

Figure 3 shows the regression curves of stress corresponding to various strain values on the LCE stress–strain 
curves. The R-squared value is 0.821, which indicates a strong correlation between the database values and ML 
results. The mean absolute error (MAE) was 0.065. Table 4 presents a subset of the descriptors in descending 
order of importance score derived from the random forest decision tree. The most significant component is IMO, 
which contributes 26 % of the importance score. This indicates that the relation between the initial mesogen 
orientation and elongation direction is a key parameter in the elasticity of LCEs. Experiments have achieved a 
rich variety of LCE actuation by precisely adjusting the initial orientation direction of mesogens relative to the 
deformation  direction5,15,23,69–72. The conceptual quantities rcl and rch , which reflect the crosslink density and 
polymer chain density, respectively, are important parameters in LCE molecular systems. While a previous study 
reported that the crosslink density systematically controls the trade-off relationship between the stress and strain 
range during soft elasticity, it has also been revealed that modulating the polymer chain density may increase 
both the stress and strain range during soft elasticity, moving beyond the trade-off  relationship35. The results 
show that rcl and rch account for 21 % and 17 % of the importance score, respectively. The simulation condition 
Telong constitutes 8 % of the importance score. The design variables nLJ,cl , Lmov , MA, and lMM make up 6 %, 5 %, 
4 %, and 4 % of the importance score, respectively. TNI is a physical property of the LCE system, and contributes 
6 % of the importance score. The nine descriptors stated above constitute 97 % of the importance score. Note 
that the other descriptors contribute less than 1 % each to the importance score. Because nLJ,cl , Lmov , MA, and 
lMM are molecular architecture descriptors, rcl , rch , and TNI are system condition descriptors, and IMO and Telong 
are simulation condition descriptors, we can determine that the molecular structure, system conditions, and 
simulation conditions make contributions of approximately 19 %, 44 %, and 34 %, respectively, to the elasticity of 
LCEs. The regression analysis shows that the design variables of the LCE molecules contribute to about one-fifth 
of the elasticity of LCE systems. Among the design variables for the LCE molecular architecture, it is worth noting 
that Lmov , MA, and lMM are inseparable from the mesogenic rotation mechanism. Our previous study revealed 
differences in the mechanism of soft elasticity between main-chain and side-chain LCEs, which are explained 
by differences in the mesogenic rotation  mechanism34. The regression analysis seems to capture this feature.

Overall, the regression analysis succeeded in capturing the following three factors that are important in the 
soft elasticity mechanism: (i) the relationship between initial orientation direction and deformation direction, 

Figure 2.  ML flow in this study.
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Table 3.  Descriptors used in the ML process. Some variables fixed to specific values are not used because they 
do not affect the ML results.

Descriptor Type Description Value(s)

MA Logical Main- or side-chain type True (= main), False (= side)

nLJ,mc Integer Number of LJ units in the main-chain of repeat unit Null, 1, 2, 3

nLJ,sc Integer Number of LJ units in the side-chain of repeat unit Null, 1, 2, 3

q Real Point charge on the mesogenic unit Null, 0.3

lMM Real Length of the covalent bond between mesogenic units Null, 0.15, 1, 1.2, 1.4, 1.6, 1.8, 2.0, 3.0

lLL Real Length of the covalent bond between LJ particles Null, 1.0

lLM Real Length of the covalent bond between LJ particle and mesogenic unit Null, 0.5

k0 Real Spring constant of the covalent bond 100.0, 500.0

CL Logical Presence or absence of the crosslinker point with the side chain True (= present), False (= absent)

mcl Integer Number of crosslinkers in the chain 2, 3, 4, 6, 8

nMU,cl Integer Number of mesogenic units in the crosslinker Null, 1

nLJ,cl Integer Number of LJ units in the crosslinker Null, 1, 2, 3, 4, 5, 6

kθ Real Angle spring constant of the LJ crosslinker Null, 10.0, 1000.0

lMM,cl Real Length of the covalent bond between mesogenic units in the main-chain and mesogenic units in 
the crosslinker Null, 0.0, 0.15, 0.5, 1.0

lLL,cl Real Length of the covalent bond between LJ particles in the main-chain and crosslinker Null, 1.0

lLM,cl Real Length of the covalent bond between LJ particle in the main-chain and mesogenic unit in the 
crosslinker Null, 0.15, 0.5

rasp Real Aspect ratio of the SCGB particle σe/σs

Lmov Real Spacing for the mobility of mesogenic units Lmc + Lsc

Nch Integer Number of chains 105, 111, 118, 125, 133, 175, 225, 250

NMU Integer Number of mesogenic units mrunMUNch

Nsolv Integer Number of solvent SCGB particles kNMU (k = 1, 2, . . .)

NMU,cl Integer Number of mesogenic units in crosslinkers mclnMU,clNch

NSCGB Integer Total number of SCGB particles NMU + NMU,cl + Nsolv

NLJ,ch Integer Number of LJ units in chains mru(nLJ,mc + nLJ,sc)Nch

NLJ,cl Integer Number of LJ particles in crosslinkers mclnLJ,clNch

NLJ Integer Total number of LJ particles NLJ,ch + NLJ,cl

Ncl Integer Total number of crosslinkers mclNch

rch Real Chain rate Nch/(NSCGB + NLJ)

rcl Real Crosslinker rate Ncl/(NSCGB + NLJ)

TNI Real Isotropic–nematic phase transition temperature

IMO Logical Initial mesogenic orientation direction  with respect to the elongation direction Null (= isotropic), True (= vertical), False (= parallel)

Telong Real System temperature during elongation

rtemp Real Temperature rate Telong/TNI

Figure 3.  Regression curves of stress corresponding to various strain values on the LCE stress–strain curves.
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(ii) the influence of the crosslink density and polymer chain density, and (iii) the difference between main-chain 
and side-chain mesogenic rotation mechanisms.

Prediction of elasticity of LCEs. The surrogate model constructed by the regression analysis should be 
able to predict the elasticity of LCE molecular systems that were not used in the regression analysis. Therefore, 
we applied the surrogate model to 12 LCE molecular systems that were not used in the regression analysis to test 
its ability to predict stress–strain curves. The predictions were formulated in two simple steps. First, descriptors 
for the 12 LCE molecules were extracted from the database to generate a new D. The descriptors for the 12 LCE 
molecules are shown in the Supplementary Data. Second, the stress–strain curves of the 12 LCE molecules were 
predicted by computing Dw . Recall that w is the surrogate model obtained by applying the ML scheme to the 
data of 128 LCE molecules. Figure 4 compares the ML predictions and MD results for the stress–strain curves. 
Panels (a)–(l) are the results for LCE molecular systems with different molecular architectures from each other. 
The stress–strain curves were predicted by the ML scheme for elongations both parallel and perpendicular to 
the initial mesogen orientation. In panels (a)–(d), the anisotropy of the LCE deformation caused by the onset 
of soft elasticity is obvious; in panels (e)–(h), the anisotropy is weak because the onset of soft elasticity is not 
obvious; in panels (i)–(l), there is no anisotropy because of the absence of soft elasticity. When the anisotropy of 
the LCE deformation is clear, the ML predictions follow the MD results well, i.e., panels (a)–(c). In panel (d), the 
direction of elongation in which soft elasticity develops has been predicted. In the absence of LCE deformation 
anisotropy, the ML predictions in panels (i)–(k) follow the MD results closely. In panel (l), as the strain increases, 
a discrepancy appears between the MD results and ML predictions for the elongation perpendicular to the initial 
mesogen orientation. Clarifying the cause of this discrepancy is not easy because the top descriptors (Table 4) 
influence the stress-strain curves in a complicated and combined manner, and factors other than the top descrip-
tors could also have some effect. Future development of surrogate model that captures stress anisotropy more 
accurately may provide clues for improving the prediction capability. For weakly anisotropic LCE deformations, 
panel (e) shows that the ML predictions track the MD results well. In panels (f)–(h), the surrogate model does 
not predict the slight anisotropy observed in the MD results, but does predict the relationship between large and 
small stresses in different elongation directions.

Figure 5 plots the regression predictions against the MD calculated values for the stresses corresponding to 
various strain values in the stress-strain curves for the 12 LCEs (Fig. 4). The R-squared value was 0.756 and the 
MAE was 0.023, indicating that the accuracy of ML prediction for the MD results is comparable to the regres-
sion accuracy shown in Fig. 3.

Overall, the surrogate model has a strong ability to predict stress–strain curves for unknown LCE molecules. 
In particular, in the case of strong or little anisotropy of LCE deformations (panels (a)-(d) and (i)-(l)), the model 
predicts the curve quantitatively in 6/8 cases, and predicts the stress relationship between large and small stresses 
caused by differences in the elongation direction in 7/8 cases. Considering that we are mainly interested in the 
case of strong anisotropy of LCE deformations in the search for LCE materials, the surrogate model provides a 
useful tool in the selection of LCE molecules.

Discussion
In this study, we attempted to identify the microscopic characteristics governing the macroscopic deformation of 
LCEs using a QSPR approach refined by supervised ML. From a database containing the results of coarse-grained 
MD simulations of LCEs with various molecular structures, the design variables of the molecular architecture, 
the molecular system conditions, and the simulation conditions for 140 different LCE molecules were extracted 
as explanatory variables, while the stress–strain curves resulting from the simulations were extracted as objective 
variables. First, regression analysis was performed using the explanatory and objective variables for 128 randomly 
selected LCE molecules to identify the design variables of the molecular architecture that govern the macroscopic 
deformation of the LCEs. The key descriptors revealed by the regression analysis suggest that the surrogate model 
obtained is capable of representing three important elements in the soft elasticity mechanism: the relationship 
between initial orientation direction and deformation  direction5,15,23,69–72, the influence of the crosslink density 
and polymer chain  density35, and the difference between the main-chain and side-chain mesogenic rotation 
 mechanisms34. Next, to verify the predictive performance of the surrogate model obtained by regression analysis, 

Table 4.  Importance score of descriptors for stress–strain curves derived from the decision tree (descending 
order).

Descriptor Importance score (%)

IMO 26

rcl 21

rch 17

Telong 8

nLJ,cl 6

TNI 6

Lmov 5

MA 4

lMM 4
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the stress–strain curves were predicted using ML results for 12 LCE molecules that were excluded from the 
regression. The surrogate model was shown to have a good ability to predict stress–strain curves for unknown 
LCE molecules. In particular, for cases with strong or little anisotropy in their LCE deformations, the curves were 
quantitatively predicted in 6/8 cases and the relationship between large and small stresses caused by differences 
in the elongation direction was predicted in 7/8 cases. Future research will attempt to incorporate more sophis-
ticated ML methods for the case of weak anisotropy of the LCE deformations. However, the surrogate model 

Figure 4.  Comparison of the ML predictions and MD results for the stress–strain curves.
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established in this study already has the potential to select LCE molecules for designing materials that exhibit 
strong anisotropy of LCE deformations. Of course, the parameters that determine the physical properties of LCEs 
range from the primary structure of mesogens and polymer chains to higher-order structures such as mesogen 
orientation, cross-linking networks, and mixing distributions. Therefore, the macroscopic properties of LCEs 
may not be fully explained by molecular architecture alone. This point is expected to be filled by simulations, 
experiments, and informatics on a more macroscopic scale, or by fusion studies of these.

Methods
Uniaxial elongation simulations were performed under a single system condition and simulation condition for 
each of the 220 different molecular architectures of LCE. Three initial LCE molecular systems were prepared, 
each elongated in the two directions described below, resulting in six stress–strain curves per LCE molecule. 
The nematic-like initial structures of the LCE systems were carefully prepared. All LCE systems with differ-
ent molecular architectures were first formed as isotropic structures and then gradually cooled. The Onsager 
order parameter S was monitored during the cooling simulations, and the temperature dependence of the order 
parameter was recorded to detect TNI of the LCEs. For the initial elongation conditions, three structures were 
prepared under the temperature condition that S=0.7 (nematic) for each LCE  system34,35. As the initial struc-
tures for the simulation experiments, the nematic-like structures were carefully prepared so that the mesogen 
orientation followed one of the rectangular cells. Telong was set to be the same as that for the initial conditions. 
The MD simulations of uniaxial elongation were performed using  COGNAC73. The Verlet velocity algorithm 
with a time step of �t = 0.002 σ0(m0/ε0)

1/2 was used for time evolution under Newton’s equations of motion, 
where σ0 is the characteristic van der Waals diameter, ε0 is the characteristic interaction strength, and m0 is the 
mass of the SCGB particles. In this study, σ0 , ε0 , and m0 were set to unity, and σs was set to σ0 . Uniaxial elongation 
was performed for a constant number of particles, constant temperature, and two-dimensional constant pres-
sure ensemble. The pressure P for the two orthogonal directions perpendicular to the elongation direction was 
controlled at a constant value of 10.0 ε0/σ 3

0  . Elongation was emulated by deforming the cell with a deformation 
rate of ε̇ = 6× 10−5 (ε0/m0)

1/2/σ0 in the elongation direction. The stress–strain curves were calculated for two 
different elongation directions for each of the three different initial molecular structures, i.e., elongation parallel 
or perpendicular to the initial mesogen orientation.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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