
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19678  | https://doi.org/10.1038/s41598-022-23877-4

www.nature.com/scientificreports

Causal attribution fractions, 
and the attribution of smoking 
and BMI to the landscape 
of disease incidence in UK Biobank
Anthony J. Webster

Unlike conventional epidemiological studies that use observational data to estimate “associations” 
between risk factors and disease, the science of causal inference has identified situations where 
causal estimates can be made from observational data, using results such as the “backdoor criteria”. 
Here these results are combined with established epidemiological methods, to calculate simple 
population attribution fractions that estimate the causal influence of risk factors on disease incidence, 
and can be estimated using conventional proportional hazards methods. A counterfactual argument 
gives an attribution fraction for individuals. Causally meaningful attribution fractions cannot be 
constructed for all risk factors or confounders, but they can for the important established risk factors 
of smoking and body mass index (BMI). Using the new results, the causal attribution of smoking and 
BMI to the incidence of 226 diseases in the UK Biobank are estimated, and summarised in terms of 
disease chapters from the International Classification of Diseases (ICD-10). The diseases most strongly 
attributed to smoking and BMI are identified, finding 11 with attribution fractions greater than 0.5, 
and a small number with protective associations. The results provide new tools to quantify the causal 
influence of risk factors such as smoking and BMI on disease, and survey the causal influence of 
smoking and BMI on the landscape of disease incidence in the UK Biobank population.

This article has two aims: (1) to derive simple formulae for estimating causal influences of risks such as smoking 
using observational data and conventional proportional hazard estimates. (2) To estimate the causal influence 
of smoking and BMI on patterns of disease incidence. Conventional epidemiological methods are unable to use 
observational data to make causal claims, and graphical arguments from causal inference  theory1 suggest that 
it may not always be possible to make causal estimates of all quantities using observational data. However, it is 
shown here that for important risk factors such as smoking and BMI, there are reasonable assumptions about 
causal processes (Fig. 1), that allow results from causal  inference1 to be used to calculate causal estimates from 
observational data. Furthermore, it is shown how these can be evaluated using conventional epidemiological 
methods, making the results accessible to epidemiologists who are unfamiliar with results from causal inference. 
The new formulae are easy to understand and evaluate, and are used here to estimate how smoking and BMI 
modify the patterns of disease incidence in the UK Biobank dataset. To the author’s knowledge, this is the first 
attempt to use methods from causal inference to estimate the causal influence of established risk factors on the 
overall incidence of diseases in a population.

The original aim of this work was to quantify how risk factors modify the overall patterns of disease that are 
observed in UK  Biobank11, and to use this information to improve the classification of diseases. Unfortunately, 
conventional epidemiological methods are unable to use observational data to make causal claims, and instead 
describe results in terms of “associations”. Associations between potential risk factors and diseases are usually 
quantified with attributable fractions and relative  risks2,3, that are estimated using proportional hazard  models3,4. 
However, there are several ways of defining and estimating attributable  fractions3,5,6, and relative risks do not 
generally have a causal  interpretation3.

The science of causal  inference1,7–9 has recently identified circumstances where causal estimates are pos-
sible using observational data. These include results such as the “backdoor criteria” and methods involving 
the “do”  calculus1,7, that are combined here (in “Methods”), with estimates of relative risks from conventional 
epidemiological  studies4, to allow causal estimates using observational data. For a short introduction to causal 
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inference see Pearl et al.7, that summarises several of the key results from the comprehensive text by Judea 
 Pearl1. Supplementary Material contains additional results to those in “Methods”, that consider unmeasured 
confounders using the “frontdoor” criteria from causal  inference1,7, and use proportional hazard estimates to 
relate the results to those from mediation  analyses9. In “Methods” a population attribution fraction is derived, 
that estimates the proportional change in disease incidence caused by a risk factor, and shows how it can be 
estimated using conventional proportional hazard studies. The attribution fraction can be used when estimates 
are of causal associations, in the sense outlined in “Methods” and illustrated in Fig. 1. It is closely related to the 
average causal effect (ACE)1,7, and can (in principle), agree with conventional attribution fractions when these 
are combined with estimates of causal  associations2,5. In the “Discussion”, an attribution fraction for an individual 
is formulated using a counterfactual argument for the “effect of treatment on the treated”1,7, that gives a simple 
and well-known expression in terms of an individual’s relative risk. Unless stated otherwise, the rest of this article 
will use “attribution fraction”, to refer to the population attribution fraction.

The following “Methods” section derives the attribution fractions that are used, and describes the survival 
analyses that are used to estimate them. Only established risk factors and confounders were considered, with a 
causal diagram assumed as in Fig. 1. It seemed reasonable to assume (Fig. 1), that confounders such as socio-
economic status influence both disease risk and the presence of risk factors such as smoking status or BMI, but 
the main influence of risk factors such as smoking or BMI are directly on health. The Results section summarises 
the overall results in terms of attribution fractions and International Classification of Disease (ICD-10) chapters, 
and identifies diseases with the largest (and smallest), attribution fractions. The process of selecting diseases for 
study is detailed  elsewhere10, along with further information on the UK Biobank data that was  used10,11. Using 
the newly derived attribution fractions, a conventional epidemiological study was used to estimate the proportion 
of disease that should be attributed to smoking or BMI, for 226 diseases in UK Biobank. The results emphasised 
the heterogeneous influence of risk factors, that ranged from protective associations for several diseases, to 11 
diseases whose attributable fractions exceeded 0.5. Diseases were characterised by their attribution fractions, 
that allowed them to be ranked and classified in terms of their risk modifiability in terms of smoking and BMI. 
Although it is possible that estimates can be improved by individualised studies of each disease, this study 
accounts for well-known established factors, while allowing a broad survey of the overall influence of smoking 
and BMI on disease. The “Discussion” mentions some important related results, discusses the consequences of 
the results, and summarises the limitations of the study.

Methods
Modelling interventions with the “backdoor criteria”. Figure  1 shows the causal relationships 
between potential risk factors X and confounding factors Z, that are assumed here. The confounding factors 
Z are assumed to include education and socio-economic status, and the risk factors X included smoking, BMI, 
height, and alcohol consumption, and for women only, HRT use and parity. The presence or absence of disease is 
indicated by Y = 1 or Y = 0 . For this causal model (Fig. 1), it is possible to estimate the consequences of setting 
BMI, alcohol, and smoking to a specific value X = x , corresponding to do(X = x) using the “do” notation of 
 Pearl1,7. The situation is described by the well-known “adjustment”  formula1,7, that states,

where for continuous variables the sums are treated as integrals, upper case X, Y, Z correspond to specific values 
of random variables, and lower case x, y, z can take any allowed value. The formula accounts for the confounding 
influence of Z on both X and disease risk, and differs from the equivalent result from conventional probability 
 theory12, that would have P(Z = z|X = x) instead of P(Z = z) . With Y = 1 denoting the presence of disease, 
then,

where F(t, x, z) is the distribution function for disease onset within time t, and the covariates are (a vector) of 
risk factors x and (a vector) of confounding factors z. For a probability density f = dF/dt and hazard function 
h = f /S , then the cumulative hazard function is H(t) =

∫ t
0 h(t) , and a proportional hazards model will assume 

that h(t, x, z) = h0(t)e
ηx+ηz , where h0 is the baseline hazard function with linear predictors ηx , ηz for the risk 

(1)P(Y = y|do(X = x)) =
∑

z

P(Y = y|X = x,Z = z)P(Z = z)

(2)P(Y = 1,T < t|X = x,Z = z) = F(t, x, z)

Figure 1.  Consider the influence of one or more exposures X, on diseases Y, with confounding variables Z that 
satisfy the “backdoor criteria”1,7 (a). For example, X might include BMI, alcohol, and smoking, with confounders 
Z of socio-economic status and education (b).
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factors and confounders  respectively4 (the linear predictor function is sometimes referred to as the “linear com-
poent”, “risk score”, or “prognostic index”) . With these assumptions,

where in going from the 2nd to 3rd line we assume sufficiently rare diseases that exp(−H(t, x, z)) ≃ 1−H(t, x, z) , 
as is the case for the first diagnosis of most diseases in UK  Biobank11,13 (more generally F(t, x, z) ≤ H(t, x, z) ), 
and in going from the 3rd to the 4th lines we assume that the proportional hazards  assumption4 is valid for the 
disease being studied. The approximations are explored further in “Discussion” and Supplementary Material. 
Now using Eq. (1),

with AZ ≡
∑

z e
ηz P(Z = z) , and sums replaced by integrals for continuous variables. This allows the incidence 

rates to be calculated for a (possibly hypothetical) situation where we have intervened in some way to set X = x , 
in terms of a baseline hazard function that is estimated in the usual way using observational data, in which Z 
can be correlated with both X and disease risk. Note that P(Z = z) and P(X = x) are implicitly the population 
values at the study’s start. At the baseline values of x = x0 and z = z0 , by definition ηx(x0) = 0 and ηz(z0) = 0 , 
so Eq. (4) gives P(Y = 1,T < t|X = x0,Z = z0) = H0(t).

Attributable fractions. Attributable fractions are intended to describe the proportion of disease incidence 
that is caused by an exposure, or can be avoided by an intervention. They can be defined in several related 
but distinct  ways3,6. Here the attributable fraction for the situation described by Fig. 1 is considered. To con-
sider the causal influence of a subset X, of risk factors X and W, the risk factors are considered to be com-
posed of both X and W. If P(Y = 1,T < t) is the probability of observing a disease at age T, less than t, then 
the average causal effect of risk factors on disease risk in a population compared with baseline risk factors is, 
P(Y = 1,T < t)− P(Y = 1,T < t|do(X = x0)) , and the excess fraction is,

In this definition Af  is in principle a function of age t, but in the examples here the dependence on age is usu-
ally small, and an age-independent definition will be suggested later. The numerator of (5) is the average causal 
effect (ACE)1 of the risk factors X on the population’s disease risk, compared with the baseline values X = x0 . It 
is divided by the probability of risk in the population, giving an excess risk fraction, that is referred to here as an 
attributable fraction. To evaluate this, firstly note that,

where integrals should be replaced by sums for non-continuous variables. P(Y = 1,T < t|do(X = x0)) can 
be evaluated similarly, and for situations described by Fig. 1, the backdoor adjustment formula is used in the 
second line below,

With the only difference from Eq. (6) being the replacement of x with x0 . Therefore, using Eqs. (6) and (7), the 
excess fraction is,

Equation (8) for Af  becomes independent of age t as t → 0 . This offers an age-independent definition of Af  
that is an unobservable theoretical limit, but can be evaluated using estimated survival curves such as Weibull 
 distributions13 or the approximations outlined below. In practice, for the epidemiological study here using a 
proportional hazards model, for most diseases in most individuals, the estimated incidence rates were sufficiently 
low that Af ≃ Af (t = 0) for most of a typical UK human lifespan.

The integrals in (8) can be estimated by noting that E[f (X)] = E[(1/n)
∑n

i=1 f (Xi)] and that the variance 
Var[(1/n)

∑n
i=1 f (Xi)] = (1/n)Var(f (X)) → 0 as n → ∞ . This allows the integrals to be approximated by a 

sum over the observed data, which is reasonable if the number of data points is sufficiently large in each level 
of categorical data considered. For example, in the study of UK Biobank described later with nearly 500,000 

(3)

F(t, x, z) = 1− S(t, x, z)
= 1− exp(−H(t, x, z))
≃ H(t, x, z)

= eηx+ηzH0(t) with H0(t) =
∫ t
0 h0(s)ds

(4)

P(Y = 1,T < t|do(X = x))
=

∑

z P(Y = y,T < t|X = X,Z = z)P(Z = z)
≃

∑

z e
ηx+ηzH0(t)P(Z = z)

= eηxH0(t)AZ

(5)Af =
P(Y = 1,T < t)− P(Y = 1,T < t|do(X = x0))

P(Y = 1,T < t)

(6)
P(Y = 1,T < t) =

∫

dxdwdz P(Y = 1,T < t,X = x,W = w,Z = z)
=

∫

dxdwdz P(Y = 1,T < t|X = x,W = w,Z = z)P(X = x,W = w,Z = z)
=

∫

dxdwdz F(t, x,w, z)P(X = x,W = w,Z = z)

(7)
P(Y = 1,T < t|do(X = x0)) =

∫

dwdz P(Y = 1,T < t,W = w,Z = z|do(X = x0))
=

∫

dwdz P(Y = 1,T < t|X = x0,W = w,Z = z)P(W = w,Z = z)
=

∫

dxdwdz F(t, x0,w, z)P(X = x,W = w,Z = z)

(8)Af =

∫

dxdwdz F(t, x,w, z)P(X = x,W = w,Z = z)−
∫

dwdz F(t, x0,w, z)P(W = w,Z = z)
∫

dxdwdz F(t, x,w, z)P(X = x,W = w,Z = z)
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participants, the smallest category was for current smokers, but this included over 50,000 smokers. With this 
approximation,

that can be evaluated using numerical fits for the incidence of disease, such as those using a Weibull  distribution13, 
but will be a function of age t. Equation (9) can be simplified further by assuming that the data can be described 
by a proportional hazards model, and  approximating13 F(t) ≃ H(t) = H0(t)e

ηx+ηw+ηz , where ηx , ηw , ηz are linear 
predictors respectively involving x, w, and z. This gives,

which is independent of age t, and easily evaluated using conventional proportional hazards modelling. Equa-
tion (10) might alternately be written as,

with,

which shows that the relative risk is weighted by the influence of confounders and other risk factors, but is oth-
erwise similar to conventional attributable fractions that have A = 1− e−ηxi . When there are no confounders z 
or other risk factors w, then the terms in Eq. (12) become 1, and wi = 1/n , so that 

∑n
i=1 wie

ηxi is just the average 
of eηxi across the population. Equation (11) shows that if the relative risk e−ηxi is positively correlated with the 
relative risks from confounding and other potential risk factors eηwi+ηzi , then 

∑n
i=1 wie

ηxi >
∑n

i=1 e
ηxi , and the 

attribution fraction will have been increased by accounting for the confounding and other potential risk factors.
For comparison, the World Health Organisation (WHO) uses an attributable fraction that is defined  as2,

where P′(X = x) is an alternative probability distribution for X. If we take P′(X = x) to be a delta function centred 
on X = x0 , with ex0 = 1 , so that we are comparing the population with one where X = x0 , then,

which is the same as would be obtained by assuming that eηx and eηw+ηz are uncorrelated in Eq. (10). The Supple-
mentary Material (A.1), shows that the AW provides a lower (upper) bound on Af  if eηx is positively (negatively) 
correlated with eηw+ηz . In general Eqs. (8) and (13) will differ, and neither should have a causal interpretation 
unless the causal model satisfies suitable conditions such as those in Fig. 1 that ensure that causal associations 
are being estimated.

To compare the attributable risk between setting X = x1 and X = x2 , the equivalent expression to Eq. (10) is,

which is just the conventional result for attributable fraction in terms of the relative risk.
The attribution fractions Eqs. (9) and (10), rely on key assumptions that are briefly summarised here and are 

explored further in the subsection “Limitations of the study”, in the “Discussion”. Essential to the derivation is 
that: 

1. Causal model: The correct causal model must be as in Fig. 1. If not, then the estimates may not have a mean-
ingful interpretation.

To use proportional hazard estimates with Eq. (10), it is also necessary to assume, 

2. The approximation F(t) ≃ H(t) : This approximation is always good for sufficiently low ages. The UK Biobank 
data suggests that the approximation can fail for some disease risks in individuals with strong risk factors, 
at ages typically around 80 years or older. When the approximation fails, then attribution fractions should 
either consider disease risk for a specific age and use Eqs. (5) or (9), or be interpreted as an attribution frac-
tion for a sufficiently low age.

Two further implicit assumptions are, 

(9)Af ≃ 1−

∑n
i=1 F(t, x0,wi , zi)

∑n
i=1 F(t, xi ,wi , zi)

(10)Af ≃ 1−

∑n
i=1 e

ηwi+ηzi
∑n

i=1 e
ηxi+ηwi+ηzi

(11)Af = 1−
1

∑n
i=1 wie

ηxi

(12)wi =
eηwi+ηzi

∑n
i=1 e

ηwi+ηzi

(13)AW =

∫

dx eηx P(X = x)−
∫

dx eηx P′(X = x)
∫

dx eηx P(X = x)

(14)AW = 1−
1

∫

dx eηx P(X = x)

(15)

P(Y = 1,T < t|do(X = x2))− P(Y = 1,T < t|do(X = x1))

P(Y = 1,T < t|do(X = x2))
= 1−

eηx1
∑n

i=1 e
ηwi+ηzi

eηx2
∑n

i=1 e
ηwi+ηzi

= 1− eηx1−ηx2
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3. Correct epidemiological modelling: The conventional e.g. proportional hazards modelling, must be consist-
ent with the assumptions of the model and account for all the relevant risk-modifying factors.

4. “Risk factors” increase disease risk: “Risk factors” associated with a reduced disease risk will lead to negative 
attribution fractions. Small negative values can be interpreted in terms of disease avoided, but large negative 
values are meaningless.

The next section will show that assumption 4 can be relaxed when negative attribution fractions are small in 
magnitude. In those cases, a negative attribution fraction has a clear interpretation in terms of cases prevented 
by the exposure (or increased by the intervention). However, because P(Y = 1,T < t) can be arbitrarily small, 
negative attribution fractions could in principle be arbitrarily large in magnitude and become meaningless. 
Therefore when using Eqs. (5), (9) or (10), the “exposure” should be taken as the change in behaviour that is 
expected to increase risk, such as smoking, or not taking a blood pressure lowering medication for example. In 
contrast, the maximum value of attribution fraction given by Eqs. (5), (9) and (10) is 1, that would require an 
intervention such as stopping smoking to reduce P(Y = 1,T < t|do(X = x0))/P(Y = 1,T < t) to zero. This 
would be unlikely in practice, although an example included later is risk of obesity, that is (of course) reduced 
to zero if you have low enough BMI.

The analysis here will apply more generally than to studies involving disease, or health. Similar results will 
apply whenever F(t, x, z) can be factored as H0(t)g(x)q(z) , for some functions g(x) and q(z), as was possible here 
because we consider a proportional hazards model and situations where the incidence is sufficiently rare that we 
can approximate F(t, x, z) ≃ H(t, x, z).

Number of attributed cases. The proportion of disease cases that are attributed to a risk factor is only 
important if the disease is sufficiently common. The change in the number of cases of disease can be estimated 
using the estimated attributable fraction and the number of observed cases of disease. If N is the population size 
under consideration, and we define P ≡ P(Y = 1,T < t) , and P0 ≡ P(Y = 1,T < t|do(X = x0)) , then,

If we approximate NP as the observed number of cases in the population being studied Nobs , then we can estimate 
the number of extra (or fewer) cases from the attributable fraction Af  , with,

This gives a simple estimate for the number of cases that are attributable to a risk factor. However, this is the 
number of attributable cases of hospital admissions, for diseases included by the study’s selection criterion—first 
admissions in an ICD-10 chapter in this paper. This latter estimate could substantially differ from our percep-
tion of the number of hospital admissions caused by a specific disease, that could be dominated by sequences 
of hospital visits, or result from a different original underlying cause. For that reason, attributable fractions are 
generally a better measure of the causal influence of risk factors on the risk of disease.

If the attributable fraction given by Eq. (10) were negative, then instead of considering (P − P0)/P , an alter-
native would be to consider (P0 − P)/P0 . However, provided Af  is reasonably small, then the two estimates 
have approximately the same magnitude, with a change in sign to indicate the direction of effect. Expanding 
(P0 − P)/P0 in terms of Af = (P − P0)/P , gives,

Showing that both expressions are approximately equal in magnitude if Af  is small.

Survival analysis. To minimise the potential for confounding by prior disease, only the first incidence of 
disease in each ICD-10 chapter was considered for each individual. Diagnoses that were the primary cause of 
hospital admission were considered. These will have passed a threshold of severity to trigger hospital admission, 
and are recorded with an ICD-10 code in hospital episode statistics (HES). Individuals who reported diabetes at 
entry to the study were excluded, to ensure that any new cases of diabetes would almost entirely involve type II 
diabetes. For each disease, the participant’s data were excluded if onset occurred before they entered the study, 
or if they had a prior hospital diagnosis of cancer other than non-melanoma skin cancer. The incidence rates of 
the diseases considered are “rare” in the approximate sense used to estimate attribution  fractions13. A survival 
analysis using age as the time variable was left-truncated at a participant’s entry to the study, right-censored 
if there was: death, cancer other than non-melanoma skin cancer, or the study period ended. All diagnoses 
recorded between entering the study and 31st January 2020 were included, as recorded in UK Biobank HES 
data on 8th December 2021. Data beyond 31st January 2020 were likely to be influenced by the COVID-19 
pandemic and were omitted. Analyses were multiply adjusted using a proportional hazards model, with men 
and women studied separately, and a causal model assumed as in Fig. 1. Adjustment considered the established 
risk factors of: smoking status (never, previous, or current), alcohol consumption (rarely—less than 3 times per 
month, sometimes—less than 3 times a week but more than 3 per month, regularly—3 or more times each week), 
education (degree level, post-16 but below degree, to age 16 or unspecified), socio-economic status (tertiles), 
height (sex-specific tertiles), body mass index (BMI) (sex-specific tertiles), and for women we also adjusted for: 
hormone replacement therapy (HRT) use ever (yes, no), and one or more children (yes, no). Baseline was taken 

(16)Af =
N(P − P0)

NP

(17)NAf
≡ N(P − P0) = Af NP ≃ Af Nobs

(18)
P0 − P

P0
= −

(

P − P0

P

)

1

1−
(

P−P0
P

) ≃ −

(

P − P0

P

)

(

1+ Af

)
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as: never smoker, rarely drink, brisk walking pace, degree-level education, minimum deprivation tertile, mini-
mum height tertile in men (or women), middle BMI tertile in men (or women), and women with no children 
or HRT use. Only diseases with at least 140 cases were considered. This ensured there were at least 10 cases per 
parameter to adjust from baseline, even if a parametric e.g. Weibull model with an extra two parameters to fit 
the baseline hazard function were  considered13. Sensitivity analyses excluded participants with a broader range 
of prior diseases, leading to fewer total cases and fewer diseases included in the study. There were less than 1% 
missing values, allowing a complete case analysis. Numerical work and plots used  R14, and packages used here 
included:  survival15 and  grr16.

Attribution fractions for the UK Biobank population were considered for three situations: observed popu-
lation verus never-smoked, observed population versus middle BMI tertile, and observed population versus 
never-smoked and middle BMI tertile. The latter case is comparing the correlated exposures of BMI and smok-
ing status in the observed population, to a situation where BMI and smoking are set to their baseline values of 
never-smoked and middle BMI tertile. Because the baseline BMI tertile is the middle tertile, current smokers 
could be correlated with either the top or bottom BMI tertile. Frequency of alcohol consumption was adjusted 
for but not studied, because it is a less precise measure than smoking status or BMI, and it is known to have 
inconsistent associations with disease risk in different  studies17.

Results
UK Biobank  data11 was used to estimate the attribution of smoking and BMI to the incidence of over 400 hospital 
diagnosed diseases in men and women. Diseases were characterised by their attribution fractions, allowing them 
to be ranked and classified in terms of the modifiability of population risk, by a change of smoking status or 
BMI. Information on the selection of diseases for study is detailed  elsewhere10, as are details of the UK Biobank 
 cohort10,11. Although the survival analyses could be improved by individual study of each disease, the study here 
accounts for the strongest established risk and confounding factors, while allowing a broad survey of the overall 
influence of smoking and BMI on disease in the UK Biobank cohort.

Plots and tables include diseases with statistically significant associations with current smoking versus never 
smoked, or maximum versus middle BMI tertile, after an FDR multiple-testing adjustment. Where results involve 
both smoking and BMI then diseases were included if they are included in either of the smoking-only, or BMI-
only results. This left 129 diseases associated with BMI, 153 diseases associated with smoking, and 226 diseases 
that were associated with either smoking or BMI. To explore the sensitivity of the estimates to the strength of con-
founding factors, estimates made using Eqs. (10) and (13) were compared (Supplementary Fig. 2). As expected, 
the influences of confounding are more noticeable for smaller attributable fractions, but even in those cases, the 
estimates rarely differ by more than about 20%. With a handful of exceptions, such as Parkinson’s disease (G20), 
estimates with Eq. (10) were larger than with (13), as would be expected if the influence of smoking and BMI 
were positively correlated with the influence of the confounding factors in the model.

Figure 2 shows the median attributable fractions for the combined influence of smoking and BMI on the inci-
dence of disease in each ICD-10 chapter, with the width of the bar plots proportional to the number of diseases 
in the estimate. Diseases of the respiratory system (X) have the largest median attribution fraction, of about 0.3, 

XVIII Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified (N=27)

XIX Injury, poisoning and certain other consequences of external causes (N=10)

XI Diseases of the digestive system (N=32)

XIII Diseases of the musculoskeletal system and connective tissue (N=26)

VII Diseases of the eye and adnexa (N=9)

XIV Diseases of the genitourinary system (N=17)

I Certain infectious and parasitic diseases (N=7)

IX Diseases of the circulatory system (N=23)

II Neoplasms (N=27)

XII Diseases of the skin and subcutaneous tissue (N=14)

VI Diseases of the nervous system (N=10)
IV Endocrine, nutritional and metabolic diseases (N=5)

X Diseases of the respiratory system (N=14)

0.
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Figure 2.  Median attributable fractions for each ICD-10 chapter with at least 5 diseases where Af > 0.2 . Bar 
widths are proportional to the number of diseases in each chapter.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19678  | https://doi.org/10.1038/s41598-022-23877-4

www.nature.com/scientificreports/

closely followed by endocrine, nutritional, and metabolic diseases, that are both almost double the next largest 
values. Diseases of the skin and subcutaneous tissues (XII) and of the nervous system (VI), both have median 
attribution fractions near 0.15. Neoplasms and circulatory diseases account for 22% of all the diseases, and have 
the next largest median attributable fractions. There are seven chapters with median attribution fractions greater 
than 0.1, and these include 100 diseases, 50 of which are neoplasms and diseases of the circulatory system.

The 26% of diseases that had Af ≥ 0.2 are listed in Table 1. There are 11 diseases with Af ≥ 0.5 and 21 with 
Af ≥ 0.35 . Given the limitations of the analysis and the potential for regression dilution bias, it is possible that 
more than 11 diseases could have Af ≥ 0.5 . For diseases with more than half the cases attributed to smoking 
and BMI, it seems reasonable to regard the influence of smoking and BMI on the population as “pathogenic”, 
in a similar way that strong genetic risk factors are often described as pathogenic. One third of the 226 diseases 
had an attributable fraction with |Af | > 0.17 , and two thirds had |Af | > 0.06 . Although the mean attribution 
fraction for the combined influence of smoking and BMI was ≃ 15 %, the estimated attributable number of extra 
cases was only ≃ 8 %, reflecting the fact that the most common diseases (with the most cases), tended to have 
smaller attributable fractions.

Diseases were ranked in terms of their attribution fractions for smoking and BMI (Fig. 3). Figure 3 identifies 
an important point, that even established risk factors such as smoking and BMI can have protective associations 
with some diseases. The 20 diseases that smoking and BMI have the strongest protective associations with are 
listed in Table 2. There were 12 diseases whose protective association had an attributable fraction with magnitude 
greater than 0.1, and 3 with magnitude greater than 0.2. Melanoma in situ (D03), had the strongest protective 
association of − 0.29, where the sign is taken to indicate the direction of effect as discussed in “Number of 
attributed cases”.

Sensitivity analysis. Participants with hospital reports of prior cancers other than non-melanoma skin 
cancers were excluded from the main study, but self-reported cancers or other prior diseases were not. It is 
possible for example, that a heart attack might be followed by weight loss, and including participants with prior 
heart attacks could weaken a potential association between BMI and heart disease. In contrast, smoking might 
increase the risk of some diseases for which a substantial proportion occur before entry into the UK Biobank 
study. In that case, including participants with the prior disease might strengthen the associations. The question 
of how best to study sequences of disease is an example where causal understanding is not enough, and new 
statistical methods or data are likely to be required. It might be an intractable question, due to the vast possible 
combinations of sequences of 100s of diseases, and it is further complicated by the complex time-dependent 
exposures and accumulation of genetic mutations that any individual experiences. Therefore a senstivity analysis 
compared the paper’s main results with a second analysis that excluded participants who had reported any can-
cer other than non-melanoma skin cancer, or any serious cardiovascular disease of heart disease, stroke, arterial 
or pulmonary embolisms, or subarachnoid haemorrhage.

Differences between the main study and the sensitivity analysis were small. There were six diseases whose 
attribution fractions increased from Af < 0.2 , to Af ≥ 0.2 , these are listed in Table 3. The difference between 
attribution fractions in the two studies had a mean and median of − 0.006 and − 0.005 respectively, and a standard 
deviation of 0.029. The differences in magnitude were typically equivalent to about 10%. The attribution fractions 
of six diseases changed by more than 0.05. These included increased attributable fractions for: I50—heart failure 
in women (0.40–0.48), R29.6—tendency to fall in men (0.32–0.41), and decreases in: C16—stomach cancer in 
men (0.27–0.21), J10—influenza in women (0.33–0.27), J22—lower respiratory infections in men (0.24–0.17), 
and N17—acute renal failure (0.24–0.17).

Discussion
Effect of treatment on the treated (ETT). An alternative attribution fraction, that is of more interest to 
clinicians or an individual, is the chance of having avoided a disease if you had not been exposed, but were sub-
jected to the same confounding factors that you would have otherwise experienced. This situation is equivalent 
to estimating the “effect of treatment on the treated” (ETT)1,7, but the “treatment” is an exposure to smoking or 
BMI. For the situation considered here of Fig. 1, this counterfactual question can be formulated and expressed in 
terms of observational quantities in a similar way to before. The argument below considers the simpler situation 
of smokers versus never smoked, or max BMI tertile versus a lower BMI tertile, denoting exposed by X = x1 and 
unexposed by X = x0 . Using counterfactual notation where Yx1 indicates the disease status of (e.g.) smokers, and 
Yx0 the disease status of non-smokers, then the ETT is defined  as1,7,

that can be thought of as estimating the difference between disease risk in smokers and non-smokers, when 
subjected to the same correlated confounding influences as smokers would experience. Following a previous 
 derivation7, and incorporating the same proportional hazards assumptions as before, this can be written as,

where the second term on the second line is usually justified with the backdoor adjustment formula Eq. (1), 
but corresponds to estimating the probability of disease when X = x0 but all other exposures are as they would 
have been if X = x1 , and the third line uses the approximation of sufficiently rare diseases that the cumulative 

(19)ETT = E
[

Yx1 − Yx0 |X = x1
]

(20)

ETT = P(Yx1 = 1|X = x1)− P(Yx0 = 1|X = x1)
=

∫

P(Y = 1|W = w,Z = z,X = x1)P(W = w,Z = z|X = x1)dwdz
−

∫

P(Y = 1|W = w,Z = z,X = x0)P(W = w,Z = z|X = x1)dwdz
= H0(t)e

ηx1
∫

eηw+ηz P(W = w,Z = z|X = x1)dwdz −H0(t)e
ηx0

∫

eηw+ηz P(W = w,Z = z|X = x1)dwdz
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Disease Sex N NAf
Rank Af Rank Af

E66 Obesity F 311 306 24 0.98 1

J44.1 Chronic obstructive pulmonary disease with acute exacerbation, unspecified F 209 193 53 0.92 2

J44.0 Chronic obstructive pulmonary disease with acute lower respiratory infection F 416 376 17 0.90 3

J44.0 Chronic obstructive pulmonary disease with acute lower respiratory infection M 417 374 18 0.90 4

J44.1 Chronic obstructive pulmonary disease with acute exacerbation, unspecified M 261 230 41 0.88 5

C34 Malignant neoplasm of bronchus and lung M 1018 833 4 0.82 6

I70 Atherosclerosis M 156 114 86 0.73 7

C34 Malignant neoplasm of bronchus and lung F 996 710 6 0.71 8

E11 Non-insulin-dependent diabetes mellitus M 206 114 86 0.55 9

I71 Aortic aneurysm and dissection M 402 222 44 0.55 10

R04.2 Haemoptysis M 314 162 60 0.52 11

C15 Malignant neoplasm of oesophagus M 473 220 46 0.47 12

R91 Abnormal findings on diagnostic imaging of lung M 358 162 60 0.45 13

C67 Malignant neoplasm of bladder M 1063 438 9 0.41 14

R91 Abnormal findings on diagnostic imaging of lung F 372 151 65 0.41 15

I50 Heart failure F 280 111 88 0.40 16

K42 Umbilical hernia F 297 111 88 0.37 17

G47.3 Sleep apnoea F 381 139 69 0.36 18

J84 Other interstitial pulmonary diseases F 177 63 117 0.35 19

I50 Heart failure M 359 125 75 0.35 20

R04.2 Haemoptysis F 239 83 103 0.35 21

J10 Influenza due to identified influenza virus F 211 69 114 0.33 22

M13 Other arthritis M 215 70 112 0.32 23

R29.6 Tendency to fall, not elsewhere classified M 182 58 123 0.32 24

A41 Other septicaemia F 957 303 25 0.32 25

J18 Pneumonia, organism unspecified M 3011 944 2 0.31 26

C22 Malignant neoplasm of liver and intrahepatic bile ducts M 171 54 126 0.31 27

L72.0Epidermal cyst M 456 139 69 0.30 28

J18 Pneumonia, organism unspecified F 2777 845 3 0.30 29

G47.3 Sleep apnoea M 776 236 39 0.30 30

N17 Acute renal failure F 333 99 94 0.30 31

G44.2 Tension-type headache F 152 44 135 0.29 32

K43 Ventral hernia F 377 108 90 0.29 33

G62 Other polyneuropathies M 175 50 130 0.29 34

C16 Malignant neoplasm of stomach M 260 70 112 0.27 35

B37 Candidiasis M 173 47 132 0.27 36

R06.0 Dyspnoea M 650 176 58 0.27 37

I26 Pulmonary embolism F 836 225 43 0.27 38

R63.4 Abnormal weight loss F 485 125 75 0.26 39

J84 Other interstitial pulmonary diseases M 234 60 119 0.26 40

J22 Unspecified acute lower respiratory infection F 1506 386 15 0.26 41

E87.1 Hypo-osmolality and hyponatraemia M 234 59 120 0.25 42

I25.9 Chronic ischaemic heart disease, unspecified M 254 63 117 0.25 43

M48 Other spondylopathies F 573 139 69 0.24 44

K62.1 Rectal polyp M 1143 275 32 0.24 45

N17 Acute renal failure M 562 135 71 0.24 46

H02.4 Ptosis of eyelid M 253 59 120 0.23 47

C90 Multiple myeloma and malignant plasma cell neoplasms F 247 58 123 0.23 48

M47 Spondylosis M 338 79 105 0.23 49

L60 Nail disorders F 236 55 125 0.23 50

R13 Dysphagia M 959 218 47 0.23 51

J90 Pleural effusion, not elsewhere classified M 524 119 82 0.23 52

J22 Unspecified acute lower respiratory infection M 1349 300 27 0.22 53

L03 Cellulitis M 2036 450 8 0.22 54

M81 Osteoporosis without pathological fracture F 946 204 50 0.22 55

K92.0 Haematemesis M 156 33 152 0.21 56

Continued
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distribution function can be approximated by the cumulative hazard. Continuing to take the baseline value 
eηx0 = 1 , and dividing by the first term to get an attribution fraction, then gives,

which solely involves the relative risk R = eηx1 for e.g. smoking status, and is the simplest attribution fraction 
that occurs in the literature.

Because survival analyses are designed to estimate the influence of risk on an individual, with hindsight, 
perhaps Eq. (21) should not have been a surprise? Within the proportional hazards model, smoking will modify 
your risk of disease, independently of whether any other factors also do. From a population perspective, disease 
risk is determined by the overall combination of exposures, that will usually be correlated. This is why the attri-
bution fraction for the population needs a more careful estimation that accounts for correlations between the 
exposures and confounding variables.

Attribution fractions for causal estimates. Attribution formulae similar to those used here have 
existed in published literature since at least  19985. One aim of this paper is to emphasise that for a given causal 
model such as that in Fig. 1, the attribution fractions can only be used with a restricted range of potential risk 
modifiers, whose associations have a causal interpretation. If the causal model is incorrect, then the adjust-
ment for confounding, and resulting estimates, are also likely to be incorrect. Alternately, if the measurement 
is too imprecise e.g. socio-economic status is likely to capture the influence of several factors that may include 
exposure to pollution, poor quality diet, poor living and working conditions, etc, then it may not be possible to 
estimate a meaningful causal association—for example, someone with an equivalent socio-economic status in 
a different country would experience different exposures and have different causal factors that influence their 
health. Another observation is that it may not be possible to obtain estimates of causal associations from a single 

(21)AETT =
eηx1 − 1

eηx1

Disease Sex N NAf
Rank Af Rank Af

L03 Cellulitis F 1602 333 21 0.21 57

K25 Gastric ulcer M 338 70 112 0.21 58

I64 Stroke, not specified as haemorrhage or infarction M 173 35 148 0.20 59

Table 1.  Attributable fractions Af  for both smoking and BMI are estimated with Eq. (10), ranked, and listed if 
Af ≥ 0.2. Colours: Af ≥ 0.5 (bold), 0.5 > Af ≥ 0.35 , 0.35 > Af ≥ 0.2 (italics). Sex: diseases in males (M) or 
females (F), N: total cases, NAf

 : attributed cases.
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Figure 3.  For diseases with a statistically significant association with smoking or BMI after an FDR multiple-
testing adjustment, attributable fractions Af  were calculated with Eq. (10). Lines indicate Af = 0.5 (red), 
Af = 0.35 (orange), Af = 0.2 (yellow). Af < 0 indicates a protective association.
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analysis, but it might be possible to use the causal diagram to design an analysis that can estimate the parameters 
you are interested in. For example, changes in systolic blood pressure (SBP) can be caused by smoking or BMI, 
and therefore SBP should not be adjusted for if we are interested in the influence of smoking and BMI on dis-
ease risk. In contrast, if our interest was in SBP, then we would need to adjust for BMI and smoking if they can 
modify disease risk in any way other than through changes in SBP. These remarks have important consequences 
for meta-analyses of observational data, because different adjustments for covariates can equate to very different 
causal models, and could contribute a non-random source of heterogeneity.

Attribution of disease to smoking and BMI. The attribution fractions for smoking and BMI, are very 
heterogeneous, and can involve a reduction in risk (Table 2). This highlights a difficulty in optimising lifestyle 
and drug treatments—changes in lifestyle or medication are likely to have a very heterogeneous influence on 
disease risk, with some risks lowered but others potentially increased. Another observation was that some of 
the associations were extremely strong, for example with Af > 0.5 . Strong germline genetic risk factors are 
often described as pathogenic when they substantially increase your risk of disease, and it seems reasonable 
to describe the influence of risk factors on a population as pathogenic when Af  is large, such as Af > 0.5 . For 
diseases estimated to have Af > 0.5 , eliminating the risk factors would be estimated to prevent the majority of 
those diseases in an equivalent population.

Attribution fractions can identify diseases for which lifestyle changes are likely to have the greatest impact. 
From a population perspective, eliminating smoking and controlling BMI in an equivalent population would be 
expected to avoid: the majority of diseases with Af > 0.5 (red in Table 1), between one third and one half of dis-
eases with 0.35 > Af > 0.5 (orange in Table 1), between one fifth and one third of diseases with 0.2 > Af > 0.35 
(yellow in Table 1). This slightly ad-hoc categorisation provides an indication of how the patterns of disease would 

Table 2.  Diseases with the strongest protective associations, ranked by the proportion of disease attributed 
to a combination of smoking and BMI ( Af  ), with Af < −0.2 in bold. Sex indicates diseases in males (M) or 
females (F), N are total cases, NAf

 are the number of cases attributed to smoking and BMI, Af  is the attributable 
fraction.

Disease Sex N NAf
Rank Af Rank Af

D03 Melanoma in situ M 272 −79 14 −0.290 1

K31.7 Polyp of stomach and duodenum F 870 −212 9 −0.240 2

N41 Inflammatory diseases of prostate M 572 −114 10 −0.200 3

N81 Female genital prolapse F 4199 −819 1 −0.190 4

R79 Other abnormal findings of blood chemistry M 1905 −333 5 −0.170 5

S02 Fracture of skull and facial bones M 355 −57 18 −0.160 6

C43 Malignant melanoma of skin M 723 −96 11 −0.130 7

S76.1 Injury of quadriceps muscle and tendon M 215 −24 25 −0.110 8

M20.1 Hallux valgus (acquired) F 2875 −307 6 −0.110 9

C61 Malignant neoplasm of prostate M 5800 −521 2 −0.090 10

B34 Viral infection of unspecified site M 319 −28 23 −0.089 11

N40 Hyperplasia of prostate M 3928 −344 4 −0.088 12

M16 Coxarthrosis [arthrosis of hip] M 3167 −272 7 −0.086 13

J90 Pleural effusion, not elsewhere classified F 327 −28 23 −0.084 14

K40 Inguinal hernia F 493 −39 20 −0.079 15

R19.8 Other specified symptoms and signs involving the digestive system and abdo-
men F 302 −22 27 −0.072 16

C44 Other malignant neoplasms of skin M 6095 −391 3 −0.064 17

K31.7 Polyp of stomach and duodenum M 300 −17 31 −0.057 18

Table 3.  The sensitivity analyses found six additional diseases with Af ≥ 0.2 , for the combination of both 
smoking and BMI, that would have appeared in Table 1. Sex: diseases in males (M) or females (F), N: total 
cases, NAf

 : attributed cases.

Disease Sex N NAf
Rank Af Rank Af

S00.8 Superficial injury of other parts of head F 171 39 135 0.23 44

S92 Fracture of foot, except ankle M 168 38 138 0.22 46

E21 Hyperparathyroidism and other disorders of parathyroid gland F 296 66 106 0.22 48

I21 Acute myocardial infarction F 1125 243 28 0.22 50

M79.6 Pain in limb F 920 198 41 0.22 51

M17 Gonarthrosis [arthrosis of knee] F 3623 735 3 0.20 57
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be expected to change if smoking were eliminated and BMI were controlled in a population that was otherwise 
similar to that in UK Biobank.

Attributable fractions for a population will be larger if more of the population are exposed to a harmful risk 
factor. Supplementary Material considers an example with a binary exposure X that is uncorrelated with W and 
confounders Z, and shows that provided p(R − 1) ≪ 1 , where R is the relative risk and p is the proportion of the 
population that are exposed, then Af ≃ p(R − 1) . In that case, if the exposed proportion p were halved, then so 
would the attributable fraction. This highlights an important characteristic of Eqs. (8) and (13)—they measure 
the proportion of disease in a population that is attributed to an exposure. However, a clinician might be more 
interested in the proportion of disease in smokers is attributable to smoking, and an individual might be more 
interested in whether smoking substantially changes their risk of serious disease or death. Questions that refer to 
individuals can be tackled with counterfactual arguments and Eq. (21). An alternative approach is to consider the 
“probability of necessity”1,7, that is intended to assess whether it is more probable than not, that the disease would 
not have occurred if you had not been exposed to e.g. smoking. Such approaches allow specific individual cases 
to be assessed, but do not provide an overall characterisation of an exposure’s influence on population health.

When considering attribution fractions for smoking and BMI together, the study included diseases with 
statistically significant associations with either smoking or BMI. In this situation, especially when the number 
of cases are few, estimates for one of the two parameters can in principle be large and imprecise. This could 
produce misleading estimates for the joint attribution fraction of both smoking and BMI. An example is the 
strong protective association of smoking with Parkinson’s disease (Table 4 in Supplementary Material), that was 
substantially weakened by the association with BMI (Table 2), even though the association with BMI was not 
statistically significant. This appears to be an isolated example, and the potential problem is less likely with more 
cases, but it highlights the importance of also considering the attribution fractions for each exposure separately.

Limitations of the study. A limitation of this and related epidemiological studies, is that they consider 
the onset of new disease, unconfounded by prior disease. This is distinct from the more complex problem of 
determining the overall causal influence of smoking or BMI on the total incidence of diseases, that might involve 
sequences of disease incidence and repeated disease events. It also differs from the problem of determining 
how much disease is attributable to a combination of all exposures that are known to modify disease  risk18. The 
advantages of this study over conventional epidemiological studies, is that it combines results from causal infer-
ence with observational data to allow the estimation of causal influences, and surveys a range of the most com-
mon diseases in UK Biobank. An unintended benefit of studying onset of new disease, unconfounded by prior 
disease, is that it tends to involve younger ages of incidence than average. For younger ages t with smaller H(t), 
the approximation F(t) ≃ H(t) will be better.

The causal diagram in Fig. 1 assumed that confounders such as socio-economic status influence both disease 
risk and the status of risk factors such as smoking status or BMI, but the main influence of risk factors such as 
smoking or BMI are directly on health. Although the causal diagram is plausible for the established risk factors 
and confounding factors considered here (see “Methods” for details), it would be prudent to check the causal and 
statistical assumptions in more detail before forming biological conclusions or modifying public health policy 
regarding a specific disease. To do this for all the diseases surveyed here would require a much more compre-
hensive study involving a wide range of clinicians with different specialities. That was beyond the scope of this 
study, whose primary aims are to develop a methodology and then use it to survey the likely influence of smoking 
and BMI on the overall pattern of disease incidence. Reassuringly however, the Supplementary Material’s Fig. 2 
shows that the estimates were comparatively weakly modified by the choice of causal model. This suggests that 
if the model were incorrect for some of the diseases studied in this (UK Biobank) cohort, it is unlikely that the 
general patterns of attribution for different classes of diseases will substantially change. In fact, when the causal 
model is uncertain, it might still be possible to estimate attribution fractions if it can be shown that they are 
insensitive to the choice of causal model.

The proportional hazards modelling was intended to adjust for the strongest established risk factors and 
confounding factors, but it could also be improved by a more careful study for each disease. For example, this 
might require inclusion of time-dependent covariates, interactions, and e.g. “pack years smoking” in place of 
smoking status. The study here is also limited to UK Biobank data, that is an imperfect representation of the 
UK population.

The attribution fraction defined in Eq. (5) is dependent on age t, within which it assesses how much a risk 
factor has modified the population’s risk of disease. In practice this can often be approximated by Eq. (10), but 
an alternative is to use the more theoretical definition of attribution fraction for a sufficiently low age t → 0 that 
Eq. (5) exactly equals Eq. (10). This latter definition provides a measure of attribution that is independent of age, 
and independent of the specific epidemiological study (e.g. a study might consider only the first disease observed 
by an individual, and unconfounded by prior disease). It has the added practical benefit that it can be estimated 
using well-understood proportional hazard models, and in practice for most of the average human lifespan the 
differences between Eqs. (5) and (10) are expected to be small for most diseases in most people. Examples in the 
Supplementary Material suggest that for relative risks greater than 1, even for examples with the most extreme 
deviations, the approximation of Eq. (10) is often reasonable until 80 or 90 years, with the attribution fraction 
slowly decreasing with age. For all of these reasons, the age-independent Eq. (10) that was used here may often 
be the most appropriate definition.
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Conclusions
The aim was to characterise and classify the causal influence of established risk factors on common diseases, using 
observational data from UK Biobank. Assuming a simple causal model (Fig. 1), the theory of causal inference 
allowed the estimation of causal associations from observational data. This is possible for some, but not all of the 
risk factors that are usually included in epidemiological studies, but includes smoking and BMI. The “backdoor 
criteria” from causal inference was used to derive a population attribution fraction, that can be approximated 
with a proportional hazards model. The proportional hazards approximation Eq. (10) can be interpreted as the 
attribution fraction for disease occurring by age t, in the theoretical limit of t → 0 (a sufficiently low age for the 
approximation to be accurate). This defines an attribution fraction that is easy to evaluate with well-understood 
epidemiological methods, and is independent of age. In practice, for most of a typical UK human lifespan, the 
age-dependent differences between Eqs. (5) and (10) are expected to be small for most diseases in most people. 
Conventional epidemiological methods were used to estimate associations between established risk factors 
and common diseases in UK Biobank data. These (proportional hazard) estimates were used to evaluate causal 
attribution fractions for smoking and BMI on the incidence of 226 diseases, identifying the diseases and ICD-
10 chapter disease classifications whose risks were the most modifiable. The results suggest which diseases and 
classes of diseases in the UK Biobank cohort are likely to be most strongly influenced by smoking and BMI, 
and provides a template for more comprehensive future studies. Although the studies here involved established 
risk and confounding factors, biologically-informed clinical input is needed to check the causal and statistical 
assumptions before forming any biological conclusions, or modifying public health policy about a specific disease.

Data availability
UK Biobank data can be accessed by application through http:// www. ukbio bank. ac. uk, and summary data pro-
duced during this study is available at: https:// osf. io/ dsgxw/. UK Biobank has approval by the Research Ethics 
Committee (REC) under approval number 16/NW/0274. UK Biobank obtained participant’s consent for the 
data to be used for health-related research, and all methods were performed in accordance with the relevant 
guidelines and regulations.

Code availability
R code used to produce figures from summary data is available from: https:// osf. io/ dsgxw/. The full code for use 
with non-summary data will be returned with other results to UK Biobank (see http:// www. ukbio bank. ac. uk).
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