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Sunflower seeds classification 
based on sparse convolutional 
neural networks in multi‑objective 
scene
Xiaowei Jin 1, Yuhong Zhao 1*, Hao Wu 2 & Tingting Sun 1

Generally, sunflower seeds are classified by machine vision-based methods in production, which 
include using photoelectric sensors to identify light-sensitive signals through traditional algorithms 
for which the equipment cost is relatively high and using neural network image recognition methods 
to identify images through cameras for which the computational cost is high. To address these 
problems, a multi-objective sunflower seed classification method based on sparse convolutional 
neural networks is proposed. Sunflower seeds were obtained from the video recorded using the 
YOLOv5 Object detection algorithm, and a ResNet-based classification model was used to classify 
the seeds according to differences in appearance. The ResNet has the disadvantages of having 
numerous parameters and high storage requirements; therefore, this study referred to the Lottery 
Ticket Hypothesis and used the Iterative Magnitude Pruning algorithm to compress the sunflower 
seed classification model, aiming to ascertain the optimal sparse sub-network from the classification 
model. Experiments were conducted to compare the effects on model performance before and after 
pruning, pruning degree, and different pruning methods. The results showed that the performance of 
the ResNet-based sunflower seed classification model using global pruning was the least affected by 
pruning, with a 92% reduction in the number of parameters, the best accuracy is 0.56% better than 
non-pruned and 9.17% better than layer-wise pruning. These findings demonstrate that using the 
Iterative Magnitude Pruning algorithm can render the sunflower seed classification model lightweight 
with less performance loss. The reduction in computational resources through model compression 
reduces the cost of sunflower seed classification, making it more applicable to practical production, 
and this model can be used as a cost-effective alternative to key sunflower seed classification 
techniques in practical production.

Sunflower is a cash crop widely grown worldwide and its seeds are divided into oil extraction and edible types. 
China’s annual sunflower planting area in 2019 was 85.00 million hm2, ranked 6th in the world1, and the demand 
for edible sunflower seeds is increasing year by year.

The National Standards of the People’s Republic of China for Sunflower Seeds (GB/T 11764-2008) stipulate 
the quality requirements and grading standards for sunflower seeds. Sunflower seeds’ classification and grading 
are important tasks in practical production. Efficient and accurate classification of sunflower seeds can better 
support processing, packaging, as well as subsequent pricing and marketing, thus promoting the production and 
marketing of sunflower seeds as well as raising economic benefit.

Sunflower seed classification methods are divided into manual sorting and machine vision-based classification 
methods. The efficiency and accuracy of manual sorting is lower than machines, and modern industry requires 
automated systems to reduce costs and improve efficiency. In practical production, a traditional machine vision 
method is always used to classify sunflower seeds using photoelectric sensors2,3. Charged-coupled devices (CCDs) 
in photoelectric sensors use a photoelectric principle to detect substandard individuals in large piles of bulk 
material. However, photoelectric sensors are expensive and consume large amounts of electricity, which is not 
conducive to their application in practical production.
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For sunflower seed classification tasks, neural network image recognition methods based on machine vision 
mostly use machine learning or deep learning algorithms. Commonly, researchers resolve the above problems by 
machine learning algorithms4, such as Support Vector Machines (SVM) algorithms5,6 and K-nearest-neighbors 
(KNN) algorithms7,8, etc. JayaBrindha et al.9 used ant colony optimization techniques to optimize the order of 
cascaded SVM by maximizing the total probability of correct decisions for the sunflower seed classification. 
A region-oriented seed-based segmentation (ROSS) method was proposed by Bantan et al.10 to enhance the 
dataset and retain the maximum amount of information in each sunflower seed image in order to select the 
non-overlapping regions to be analyzed. Multispectral features of the region to be analyzed were extracted by a 
multispectral radiometer (MSR5), which was fused with texture features. The fused and optimized multi-feature 
dataset was deployed on four supervised classifiers for seed recognition. Çetin et al.11. classified and evaluated 
the performance of six sunflower seed varieties by six different machine learning algorithms, with RF, SVM 
and MLP having the highest best accuracy values of 80.16, 79.68 and 78.89 respectively. However, as the above 
classification methods are based on machine learning algorithms, most of them for image classification require 
multiple steps, i.e., feeding the features into a classifier for classification by feature extraction and feature selec-
tion, which is a tedious step, whereas deep learning can integrate the above steps12–14.

Kurtulmuş15 used deep learning methods to classify sunflower seeds for the first time, identifying four types 
of sunflower seeds by three popular deep learning architectures: AlexNet16, GoogleNet17 and ResNet18, whereas 
GoogleNet achieved the highest accuracy of 96% in classification. Luan et al.19 used a CNN model with eight 
convolutional layers to extract image features and added an adaptive channel attention mechanism to recalibrate 
channel-based features by considering the dependencies between channels in order to enhance image features 
that are crucial for the classification task in order to increase the accuracy of sunflower seed classification. How-
ever, most of the deep learning models used for classification suffer from a large number of parameters, high 
computational cost, and high storage requirements, which are not conducive to applying in practical production.

Researchers are constantly looking into different methods to improve the accuracy of models. To address 
instability and errors in packet classification tasks, Hartpence et al.20 solved complex communication networks 
by integrating multiple models and using voting strategies and redundant decisions. After training and tun-
ing, the model could achieve 99% accuracy in the general and UDP phases, achieved 94% accuracy in the TCP 
phase, not only reducing training time but also improving the accuracy of the model. Gu et al.21 propose a novel 
link prediction-based network representation that not only learns meaningful node representations but also 
achieves high accuracy in node centrality measurement, community detection, and link prediction tasks, and 
also demonstrates its effectiveness in real-world networks through experiments. Through supervised learning, 
Zhao et al.22 forecast past data summaries directly from the data distribution and utilize the new data to cluster 
the past summaries. The results of experiments demonstrate that this method surpasses previous incremental 
face clustering techniques, increasing incremental face clustering accuracy while decreasing processing time. 
Palmer et al.23 compared several multi-label/multi-objective methods with single-label methods in order to clas-
sify wines according to price, grade quality, and provenance in a multi-label manner. The experimental results 
show that the Bayesian classifier chain produced better overall results.

Frankle et al. proposed the Lottery Ticket Hypothesis (LTH) for finding optimal sub-networks by the Iterative 
Magnitude Pruning (IMP) algorithm24. This approach substantially reduces the number of parameters required 
in the inference process without affecting the performance of the model, reducing the storage requirements and 
computational costs, thus allowing significant cost savings and making the model more suitable for application 
in practical production. In the Lottery Ticket Hypothesis, a sparse sub-network with the following properties 
is found in the randomly initialized feedforward neural network. When trained independently, this sparse sub-
network is able to achieve an accuracy similar to the original network after at most the same number of iterations 
as the original network.

In order to reduce the number of parameters of the classification model, reduce the computational cost and 
achieve the classification of sunflower seeds using sparse networks in multi-object scenes, a sunflower seed clas-
sification method based on sparse convolutional neural networks is proposed in this paper. In the experiments, 
the YOLOv5 object detection algorithm was used to obtain sunflower seed images, and the images were used to 
construct a sunflower seed classification dataset. Then constructed convolutional neural networks (CNN), and 
classification models were trained using the sunflower seed classification dataset by CNN. According to the LTH, 
the sunflower seed classification model was pruned by the IMP algorithm to pick out a sparse sub-network that 
is close to the performance of the original model, so as to achieve the compression of the sunflower seed clas-
sification model to reduce the cost of sunflower seeds in classification processing. The effects of before and after 
pruning, pruning degree, and different pruning methods on the performance of the sunflower seed classification 
model were also investigated, so as to obtain the sparse sub-network with the least effect on the performance of 
the classification model under the condition of substantially pruned parameters.

Materials and methods
Sunflower seeds.  The variety of sunflower seeds used in the experiment is CF363, which is grown on a 
farm on the outskirts of Chifeng, Inner Mongolia, China. And we got the sunflower seed product from a seed 
processing factory in September 2020. 500 kg of sunflower seeds were randomly selected from there.

Video recorded acquisition.  To simulate the sunflower seed classification scene in practical production, 
a classification scene simulation chamber was constructed with artificial lighting conditions. An inclined ramp 
with an angle of 45° was built under the light in the simulation chamber, and a steel chute with a length of 1 m, a 
width of 30 cm, and a height of 10 cm was fixed to the ramp. A feed hopper was placed at the top of the steel chute 
at a distance of 20 cm from the chute to ensure that the sunflower seeds were fed into the chute in a uniform 
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and continuous manner. A camera was placed 20 cm above the chute as a video recorded acquisition device. The 
500 kg of sunflower seeds were mixed well, and 5 kg of them were acquired at a time and poured into the feed 
hopper at constant speed while the video recording was started. After the end of each video recording, 5 kg of 
sunflower seeds were obtained again for the next shot. A total of 100 recorded videos were captured, each lasting 
5 min. The frame width, frame height, and frame rate are 1920p, 1080p, and 240.37f/s. The simulation chamber 
is shown in Fig. 1.

Research plan.  TO achieve a cost-effective alternative to traditional sunflower seed classification methods 
in practical production, this study trained a sparse sub-network with a performance close to the original model. 
A CNN was first constructed and trained to complete the classification task on the sunflower seed classification 
dataset, and then the sunflower seed classification model was compressed by the IMP algorithm. By comparing 
the effects of before and after pruning, pruning degree, and different pruning methods on the performance of the 
model, it was demonstrated that using the global pruning method to compress the ResNet-based sunflower seed 
classification model could achieve the maximum retention of the performance of the original network while 
reducing the complexity of the network. The research plan is shown in Fig. 2 and consists of five components.
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Figure 1.   Sunflower seed classification scene simulation chamber.
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Figure 2.   The research plan for this study.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19890  | https://doi.org/10.1038/s41598-022-23869-4

www.nature.com/scientificreports/

Constructing the dataset.  Sunflower seed object images were detected from the video recorded by the YOLOv5 
object detection algorithm, and used to build the sunflower seed classification dataset.

Sunflower seed classification.  A ResNet-based classification model was used to classify sunflower seeds accord-
ing to differences in the appearance of sunflower seeds.

Compression of the classification model.  Compress sunflower seed classification models by the IMP algorithm.

Exploring the impact of the pruning degree on model performance.  The sunflower seed classification model was 
subjected to ‘Performance-wise pruning’ and ‘Lightweight-wise pruning’, respectively. The effects of different 
pruning degrees on classification performance were compared.

Analysis of the effect of different pruning methods on model performance.  The ResNet-based sunflower seed clas-
sification model was compressed by layer-wise pruning and global pruning, respectively. The effects of different 
pruning methods on the classification performance were compared.

Acquisition of sunflower seeds object images in multi‑object scene.  In order to meet the data 
sample needs of the sunflower seed classification model, the sunflower seed objects should be detected first. As 
sunflower seeds are small targets, an object detection algorithm suitable for detecting small objects is necessary 
to obtain sunflower seed object images.

10 videos were randomly selected for object detection from the 100 videos taken, and the object detection 
video capture is shown in Fig. 3.

A batch of object images were extracted per 10 frames. Based on the appearance and color of sunflower 
seeds, the acquired sunflower seed object images were classified into 6 categories: Normal A, Normal B, Lightly 
discolored seeds, Yellow skinned seeds, Heavy discolored seeds, and Semi-deflated seeds. To ensure a balanced 
sample, 1000 images were randomly selected for each category, making a total of 6000 images, from which 600 
images were randomly selected as the validation set, 600 images as the test set, and the remaining 4800 images 
as the training set. Two randomly selected sunflower seed object images from each class were used as sample 
images. The sample images of sunflower seeds are shown in Fig. 4.

Sunflower seeds’ object detection method.  The YOLOv5 was used to obtain sunflower seed object 
samples. YOLOv5 is based on the original YOLO model25–27, with optimization of data pre-processing, feature 
extraction, feature fusion, backbone network, and loss function. The model has the advantages of small volume 
and fast training compared to other object detection methods. The Mosaic data enhancement method28 is used 
in the data pre-processing stage. The Mosaic method stitches four images into the training data after random 
cropping, an improvement in its ability to detect small objects.

Since deeper feature maps carry more semantic information and less positional information, and the opposite 
for shallow feature maps. Therefore, it is not sufficient to use only the Feature Pyramid Network (FPN)29, which 
conveys semantic information from the top down. YOLOv5 adds the Path Aggregation Network (PAN)30 after 
the FPN layer, which conveys positional information from the bottom up. Above improvement allows for fur-
ther integration of bottom and top levels information and handles the multi-scale variations problem in object 
detection with a small increase in computational effort.

Figure 3.   Object detection video capture.
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Figure 5 shows the structure of the sunflower seed object detection model based on YOLOv5. The “CBL” mod-
ule is composed of Convolution + Batch normalization + Leaky Relu, and the extended structure of this module is 
illustrated in the first image inside the dashed box in the lower left corner of Fig. 5. The “Focus” module represents 
the Focus layer proposed in YOLOv5. It is a special down-sampling technique that uses a slicing operation to 
split the high-resolution feature map into numerous low-resolution feature maps and then performs a convolu-
tion operation after stitching together the multiple feature maps. This method can reduce the information loss 
caused by down-sampling. The second image in the dashed box in the lower left corner of Fig. 5 illustrates the 
method’s unfolding structure. The “C3-n True/False” module in Fig. 5, which is based on the CSPNet structure, 
consists of a CBL module, n Bottleneck modules, and a convolutional layer. The fifth image in the dashed box in 
the lower left corner of Fig. 5 illustrates the method’s unfolding structure. In the C3-n structural diagram, the 
“Bottleneck True/False” module successfully integrates Bottleneck and normal convolution by combining “True/
False”, resulting in less code and a clearer design. The third and fourth images in the dashed box at the bottom left 

      

      
Normal A Normal B Lightly discolored Yellow skinned  Heavy discolored  Semi-deflated 

  

Figure 4.   Sunflower seed samples.
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of Fig. 5 depict the extended structure. The ‘SPP’ module in Fig. 5 is Spatial pyramid pooling, which converts a 
feature map of any size into a fixed-size feature vector. The expanded structure is shown in the 6th image of the 
dashed box in the bottom left corner of Fig. 5.

Sunflower seeds classification.  In order to ensure that the model retains the same maximum perfor-
mance as the original model even after compression, we proposed a method for classifying sunflower seeds by 
a ResNet-based classification model. It could reduce the impact of pruning on model performance using the 
short-circuiting mechanism of ResNet31. The core idea of ResNet is to increase the residual units by the short-
circuiting mechanism to achieve long-range transmission of information. It can solve the degradation problem 
of the network and allow neural networks to adopt deeper designs. ResNet has a recursive nature and integra-
tion properties. The recursive nature is shown in Eq. (1), where the output of each residual block is based on the 
combination of two sub-blocks.

where yi is the output of layer i, fi is the convolution sequence for layer i, and yi−1 is the output of layer i−1 (as 
input to layer i).

To better express the integration properties of the ResNet, a ResNet with three residual blocks from input y0 
to output y3 is used as an example, and Eq. (2) is a recursive expression of the ResNet with those three residual 
blocks. Equation (2) is expanded to Eq. (4) to make the integration structure of the ResNet more apparent.

where y0 is model inputs, yn is the output of layer n, and fn is the convolution sequence for layer n.
ResNet has O(2n) implicit paths connecting inputs and outputs. Adding a residual block will double the 

number of implicit paths, as shown in Figs. 6 and 7. Figure 6 shows a ResNet with three residual blocks built 
according to Eq. (2). Figure 7 shows an expanded view of Fig. 6 according to Eq. (4), where the circular nodes 
indicate addition.

In traditional CNNs, the input always flows in a single path from the first layer to the last, removing the 
network structure changes the unique path from input to output, deactivating the neurons on those paths and 
changing the distribution of all subsequent layers, resulting in a reduced model performance. However, a ResNet 
network is an integrated model assembled from a collection of paths. There is low dependence among these paths 
and the performance of the residual network is not significantly affected when deleting some layers from the 
ResNet network (i.e., discarding some of the paths), as shown in Fig. 8.
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In order to verify the effectiveness of the classification and compression methods in this paper, some classical 
CNNs were also used as comparisons, as shown in Table 1.

IMP algorithm based on LTH.  The redundant parameters, which have no positive impact on the final out-
put, have been one of the main drawbacks of deep learning models for a long time. A neural network compres-
sion technique that reduces model parameters and improves inference performance by removing these redun-
dant parameters is called pruning.

LTH proposes that by using the IMP algorithm on a randomly initialized feedforward network, a re-trainable 
sparse sub-network could be found. This sub-network has only 5–10% of the original parameters left after 
multiple pruning, but similar performance as that. Such a sparse sub-network is called a “Winning Ticket”. In 
addition, networks that have been moderately pruned (minus 50–80% of the number of parameters) tend to 
outperform the non-pruned model.

The method in this study pruned unnecessary connections that have little impact on the performance of 
the network, i.e., weights were evaluated to be of minimal rank. The IMP determined which parameters could 
be pruned out without affecting the performance of the model. More and more connections were pruned, the 
remaining connections forming the “Winning Ticket” architecture. Applying the IMP algorithm, only a small 
number of weights were pruned after each pruned iteration and then evaluated and pruned periodically to reduce 
the impact of noise on the overall model. The network could only be trained well if the initialization weights of 
the original network were used when initializing the sub-networks; re-initializing the weights would result in 
poor model training. During the training process, the pruning process was implemented by a binary mask that 
set all weights smaller than a preset threshold to 0 and frozen them so that the corresponding connections were 
no longer involved in the training.

The steps used in this study to filter the optimal sparse sub-network from the CNN-based sunflower seed 
classification model that is close to the performance of the original model using the IMP algorithm are as follows:

(1)	 Randomly initialize the original CNN and save the initial weights W0.
(2)	 Generate an initialization mask m.
(3)	 Train the model to convergence using the sunflower seed dataset to obtain the model’s weights Wk.
(4)	 Prune the parameters in Wk according to the pruning rate (pruning rate is a hyperparameter) and update 

the mask m.
(5)	 Initialize the network by the initial weights saved in step (1) and retrain the sparse network.
(6)	 Repeat steps (3)–(5) until the desired level of sparsity is achieved, or the accuracy of the model is signifi-

cantly reduced. The above process is shown in Fig. 9.

Figure 8.   Deleting some paths in unraveled view for 3-Block ResNet.

Table 1.   Other networks used in experiment as comparisons.

Model Characteristic

LeNet32

LeNet is one of the first convolutional neural networks and is the starting point for a large number of neural network 
architectures. Its application of convolution to maintain the local correlation of an image and invariance of image translation, 
scaling and deformation through local receptive fields, shared weights, pooling, etc. As an end-to-end model, LeNet does not 
require the use of multiple steps for classification work as in traditional machine learning

AlexNet
AlexNet applied Rectified Linear Unit (ReLU)33 for the first time in CNN to solve the gradient disappearance problem that 
often occurs when using Sigmoid and to improve the computational speed, as well as random discarding and data augmenta-
tion to solve the overfitting problem

DenseNet34

Instead of widening the network structure and deepening the number of layers to improve the network performance, 
DenseNet innovatively uses feature reuse and bypass to make the model highly parametric efficient. This approach not only 
reduces the number of parameters and effectively suppresses overfitting but also alleviates the problem of gradient disappear-
ance to a certain extent
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Results and discussion
The experimental environment in this study was a 64-bit Ubuntu system, an Intel Xeon Gold 6139 processor, 
and an NVIDIA GeForce RTX 2080Ti GPU. The programming language was Python 3.7, all models were based 
on Pytorch 1.2.0, and the development tool was PyCharm 2020.

To compare the differences among sunflower seed classification models with different networks, the hyper-
parameters in Table 2 were kept constant for experiments.

The experiments were designed to train the models to convergence using the hyperparameters mentioned 
in the table above. Different training cycles were used to achieve convergent training for LeNet5 and AlexNet 
as they did not reach convergence within a given 150 training cycles (epoch). The modified hyperparameters 
are shown in Table 3.

Sunflower seeds classification result.  The performance of sunflower seed classification models based 
on 4 CNNs were tested by experiment, and a comparison of the best accuracy and the number of parameters of 
each model was shown in Table 4.

Model sparsification.  As can be seen from Table  4, models used in this study were characterized by a 
large number of parameters, leading to high computational costs, so the sunflower seed classification model 
was compressed using the IMP algorithm based on LTH. The experiments set the iterative pruning rate to 10% 

Figure 9.   IMP schematic.

Table 2.   Hyperparameter configuration.

Hyperparameter Value

Learning_rate 1.2e−3

Batch_size 60

Print_frequence 10

Prune_percent 10

Prune_iteration 25

End_epoch 150
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and pruned after each iteration, with a total of 25 pruned iterations set and each pruned iteration containing 
150 epochs (among them, each pruned iteration of LeNet5 contains 300 epochs and each pruned iteration of 
AlexNet contains 250 epochs).

Analyzing the model structure, the ResNet has integration properties, the dependency between paths is not 
strong, dropping some paths has little impact on the ResNet, so the ResNet suffers less from pruning.

Performance‑wise pruning.  Since pruning can impact model performance, this section conducts Performance-
wise pruning experiments on the models with maximum assurance of model performance. Figure 10 shows 
the Loss-Accuracy curves of each model when the best accuracy emerges during the pruned processing, where 
LeNet5 is chosen after the 10th pruned iteration; AlexNet is chosen after the 16th pruned iteration; ResNet18 is 
chosen after the 12th pruned iteration; and DenseNet121 is chosen after the 8th pruned iteration.

Table 3.   Modified hyperparameter.

Model End_epoch

LeNet5 300

AlexNet 250

ResNet18 150

DenseNet121 150

Table 4.   Comparison of the best accuracy and the number of parameters of each model without pruning.

Model Best accuracy (%) The number of parameters (M)

LeNet5 83.61 0.062

AlexNet 83.89 57.01

ResNet18 86.94 11.17

DenseNet121 89.72 6.96
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Figure 10.   Loss—accuracy value for models with performance-wise pruning.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19890  | https://doi.org/10.1038/s41598-022-23869-4

www.nature.com/scientificreports/

According to Fig. 10 and Table 5, the models with performance-wise pruning (remaining 20–50% of param-
eters) outperformed the non-pruned models. The best accuracy of LeNet5, AlexNet, ResNet18, and DenseNet121 
all increased by 4.17%, 5.28%, 1.95%, and 1.66%, respectively. According to the experiments, the use of per-
formance-wise pruning with very little constraint on computational resources and cost can both compress the 
model appropriately and improve its performance.

Lightweight‑wise pruning.  In this section, the Loss-Accuracy curves of each model after the 25th pruned itera-
tion were selected. As shown in Fig. 11.

According to Fig. 11 and Table 6, LeNet5, AlexNet, and DenseNet121, after 25 pruned iterations of pruning, 
the number of parameters was only 8–10% of the non-pruned model, but the performance was still close to 
the non-pruned model. Therefore, using lightweight-wise pruning is an effective method when computational 
resources and costs are very limited.

Table 5.   Comparative table of various data with performance-wise pruning.

Model Pruned iterations
Remaining parameters as a 
percentage (%) Best accuracy (%) Best accuracy with non-pruned (%)

LeNet5 10 39.0 87.78 83.61

AlexNet 16 20.6 89.17 83.89

ResNet18 12 31.4 88.89 86.94

DenseNet121 8 48.1 91.38 89.72
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Figure 11.   Loss—accuracy value for models with lightweight-wise pruning.
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In summary, the model after performance-wise pruning was able to achieve the best accuracy of 91.38% 
with 48.1% of the remaining parameters, and the model after lightweight-wise pruning was able to achieve the 
best accuracy of 86.39% with 8.0% of the remaining parameters. In practical production, the appropriate prun-
ing level can be chosen by the actual situation of computational resources and costs, so as to meet the needs of 
the sunflower seed classification task while reducing computational costs and saving computational resources.

Different pruning methods.  It was found that after 25 pruned iterations, the best accuracy of ResNet18 
was 78.33%, which was 8.61% lower than the non-pruned one, and did not achieve the expected result.

After analyzing the experimental results, this study concluded that ResNet18 did not achieve the expected 
accuracy because of the fewer layers of the model, so ResNet50 and ResNet101 were chosen as the comparison 
experiments in this study, using the hyperparameters in Table 2. After 25 pruned iterations, the comparison table 
of the best accuracy and the percentage of remaining parameters for ResNet18, ResNet50, and ResNet101 were 
shown in Table 7, and also compared with the non-pruned model.

From Table 7, we can see that the performance of ResNets after deepening the number of layers were still 
not as accurate as expected, so the cause of the performance degradation is not related to the number of layers.

Analyzing the above results, since the pruning method used in this study was layer-wise pruning. The layer-
wise pruning prunes a certain percentage of parameters from each layer of the network. For a deep network 
like ResNet, some layers have far more parameters than others, and when all layers are pruned at the same 
pruned rate, more important parameters will be pruned in layers that have fewer parameters. Moreover, ResNet 
increases the residual units by short-circuiting mechanism to achieve long-range transmission of information. 
And if layer-wise pruning is used, too many parameters will be pruned in the initial layers and in the layers 
with fewer parameters. After several pruned iterations, only a small number of parameters remain in the initial 
layers and layers with few parameters, which degrades the performance of the residual structure. So the prun-
ing method used in this study is not suitable for ResNet, therefore the performance of the model degrades after 
several pruned iterations.

To validate the above analysis, global pruning was used to prune the ResNet for experiments. Global pruning 
could prune the whole network at the default pruning rate to prevent breaking the residual structure of ResNet. 
LeNet5, AlexNet, and DenseNet121 were also used as comparisons to demonstrate that ResNet was least affected 
by pruning.

As shown in Fig. 12 and Table 8, after 25 pruned iterations using global pruning, the accuracy of ResNet101 
increased by 11.39% compared to using layer-wise pruning, the accuracy of ResNet50 increased by 9.72% and 
the accuracy of ResNet18 increased by 9.17%. With 8–10% of the parameters remaining, the model performance 
was still close to the model when non-pruned.

Table 9 shows a schematic table of ResNet18’s partial layer’s parameters using layer-wise pruning and global 
pruning, respectively, at a pruning rate of 10%. We can tell from Table 9 that the layers with fewer parameters 
were over-pruned with layer-wise pruning. In contrast, when using global pruning, the parameters of the less 
parametric layers were retained due to the overall pruning throughout the network.

Figure 13 illustrates a comparison of the accuracy and the rate of remaining parameters for each model when 
using different pruning methods. According to Fig. 13, LeNet and AlexNet have fewer layers and the number 
of parameters in each layer has little variation, so the difference in performance of the models using different 
pruning methods is small. ResNet and DenseNet not only have more layers but also have a greater variation 
in the number of individual layer parameters, so using layer-wise pruning would disrupt the layers with fewer 
parameters. In addition, since ResNet contains residual structure, global pruning can better preserve the residual 
structure, so ResNet is more suitable for global pruning.

Table 6.   Comparative table of various data with lightweight-wise pruning.

Model
Remaining parameters as a percentage 
(%)

Best accuracy after the 25th pruned 
iteration (%) Best accuracy with non-pruned (%)

LeNet5 8.3 82.78 83.61

AlexNet 8.0 86.39 83.89

ResNet18 8.0 78.33 86.94

DenseNet121 8.1 80.01 89.72

Table 7.   Comparative table of various data after increasing the number of layers.

Model
Remaining parameters as a percentage 
(%)

Best accuracy after the 25th pruned 
iteration (%) Best accuracy with non-pruned (%)

ResNet18 8.0 78.33 86.94

ResNet50 8.1 77.22 85.56

ResNet101 8.1 75.83 85.56
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Conclusion
In this work, we simulated the practical production and took CF363 sunflower seeds collected in Chifeng, Inner 
Mongolia, China as data samples. By constructing the simulation chamber, the YOLOv5 object detection algo-
rithm was used to detect sunflower seeds object images from the captured video recorded to construct a sun-
flower seed classification dataset. A ResNet-based classification model was used to classify sunflower seeds based 
on differences in the appearance of sunflower seed objects. Based on the LTH, the ResNet-based classification 
model was compressed by the IMP algorithm to pick out sparse sub-network with similar performance to the 
original network.

After several experiments, the model applied performance-wise pruning (20–50% of parameters remaining) 
outperformed the non-pruned model; the model applied lightweight-wise pruning had only 8–10% of parameters 
left, and the performance was still similar to the non-pruned model, proving that the IMP algorithm based on 
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Figure 12.   Loss—accuracy value for models with global pruning.

Table 8.   Comparative table of various data with global pruning.

Model
Remaining parameters as a 
percentage (%)

Best accuracy with Global pruning 
(%)

Best accuracy with Layer-wise 
pruning (%) Best accuracy with non-pruned (%)

ResNet18 8.0 87.50 78.33 86.94

ResNet50 8.1 86.94 77.22 85.56

ResNet101 8.1 87.22 75.83 85.56

LeNet5 8.3 83.33 82.78 83.61

AlexNet 8.0 84.72 86.39 83.89

DenseNet121 8.6 86.39 80.01 89.72
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LTH can compress the model while achieving performance similar to the original one. In practical production, 
the appropriate level of pruning can be selected according to the actual situation of computational resources 
and costs, thus reducing the computational resources and lowering the costs required for classification, making 
it more suitable for practical production under different conditions and further optimizing the sunflower seed 
grading, pricing, and marketing system.

It was demonstrated that the ResNet-based sunflower seed classification model using global pruning preserved 
the original performance of the model better than using layer-wise pruning. After using global pruning for 25 
pruned iterations, the best accuracy of the sunflower seed classification model was 87.50%, a 9.17% improve-
ment over the compression method using layer-wise pruning. The comparison experiments with other models 
also demonstrated that the ResNet-based sunflower seed classification model by global pruning had minimal 
impact on the model performance while reducing the cost of sunflower seed classification, and the selected 
sparse sub-networks are more robust.

Limited by the speed of the sliding of sunflower seeds in the steel chute, it was difficult to observe some 
smaller features such as mold spots and worm-eaten holes in the sunflower seed object images. Therefore, the 
next work will focus on how to obtain non-obvious features in the moving state of sunflower seeds for easily 
classifying sunflower seeds more finely.

Data availability
The data presented in this study are available on request from the corresponding author.
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