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Application of multi‑objective 
optimization in the study 
of anti‑breast cancer candidate 
drugs
Yuan Mei & Kaijun Wu*

In the development of anti-breast cancer drugs, the quantitative structure-activity relationship model 
of compounds is usually used to select potential active compounds. However, the existing methods 
often have problems such as low model prediction performance, lack of overall consideration of the 
biological activity and related properties of compounds, and difficulty in directly selection candidate 
drugs. Therefore, this paper constructs a complete set of compound selection framework from three 
aspects: feature selection, relationship mapping and multi-objective optimization problem solving. 
In feature selection part, a feature selection method based on unsupervised spectral clustering 
is proposed. The selected features have more comprehensive information expression ability. In 
the relationship mapping part, a variety of machine learning algorithms are used for comparative 
experiments. Finally, the CatBoost algorithm is selected to perform the relationship mapping between 
each other, and better prediction performance is achieved. In the multi-objective optimization part, 
based on the analysis of the conflict relationship between the objectives, the AGE-MOEA algorithm is 
improved and used to solve this problem. Compared with various algorithms, the improved algorithm 
has better search performance.

Breast cancer is the most common cancer in women worldwide. From the 2020 edition of the Global Cancer 
Statistical Report released by the International Agency for Research on Cancer in February 20211, we can know 
that the prevalence of female breast cancer has surpassed that of lung cancer in 2020, becoming the cancer 
with the highest incidence of cancer in the world. In China, breast cancer ranks fourth in the national cancer 
incidence, second only to lung cancer, colorectal cancer and gastric cancer2. Therefore, the development of anti-
breast cancer drugs is of great significance. In the field of medicinal chemistry, many scholars have studied and 
analyzed a large number of drugs, and found that compounds with antagonistic activity may be candidate drugs 
for the treatment of breast cancer3. When measuring the quality of a candidate drug, the biological activity of 
the compound ( IC50 , which is usually taken as a negative logarithm and expressed by PIC50 . The larger the PIC50 
value indicates the higher the biological activity), the properties of pharmacokinetics and the Safety, collectively 
known as ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) properties, should be considered 
comprehensively. In clinical experiments, due to the differences between the data obtained on experimental 
animals and clinical data, it has brought some troubles to researchers. At the same time, considering the high 
cost of a single experiment, it is not conducive to repeated testing4. In recent years, with the development of 
computers, researchers have gradually used computer models to analyze experimental data5,6. By constructing 
the quantitative structure-activity relationship (QSAR) model to predict new compounds with better biological 
activity, the research cost is greatly reduced and the research efficiency is improved.

In traditional research methods, linear weighting is often used to explore the relationship between the molecu-
lar descriptors of compounds and their biological activity and ADMET properties7–9. This is often inefficient, 
and the model prediction results often have large deviations. In addition, these studies often only consider the 
relationship between individual molecular descriptors and a single target, ignoring the interaction between a large 
number of molecular descriptors in actual drug preparation. In recent years, various machine learning algorithms 
have been widely used in the construction of QSAR models10–13, and have achieved good predictive performance. 
However, many current studies mainly focus on building a relationship model between the molecular descriptors 
of compounds and their biological activities and their ADMET properties to improve the predictive performance 
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of the models. Lack of exploration of the relationship between molecular descriptor selection process, compound 
biological activity and AMDET properties, it is impossible to directly select drug candidates.

Therefore, this paper discusses the selection of molecular descriptors, the relationship mapping model 
between molecular descriptors and their biological activities and five ADMET properties, and multi-objective 
optimization. A complete selection framework for anti-breast cancer drug candidates was constructed. Specifi-
cally, the contributions of this paper are as follows.

•	 From multiple perspectives, a new feature selection method based on unsupervised spectral clustering is 
designed. The selected features have less redundancy and more comprehensive information expression ability.

•	 Based on the analysis of the conflict relationship of six optimization objectives, the AGE-MOEA algorithm14 is 
improved and used to solve the problem. Compared with many algorithms, the improved algorithm achieves 
better search performance.

•	 A complete anti-breast cancer candidate compound selection framework was proposed, which provided 
guidance for the selection of candidate compounds.

Related work
Feature selection.  Feature selection is the process of selecting independent feature subsets with stronger 
expression information from the original feature set. Generally, drug candidate data has the characteristics of 
high-dimensional small samples, and there is often a lot of redundant information. Feature selection not only 
helps to remove redundant features and reduce the training time of the model, but also helps to improve the pre-
diction performance of the model. Traditional feature selection methods are often based on supervised, such as 
Relief algorithm15, CFS algorithm16. However, sample class labeling is often difficult to obtain, so in recent years, 
unsupervised feature selection algorithms have attracted wide attention from scholars.

Dash et al.17 proposed an unsupervised feature selection algorithm based on entropy ranking, which uses 
information entropy to measure the importance of features, so as to select the optimal feature subset. Hou et al.18 
proposed a multi-view feature selection method based on adaptive similarity and view weight. By learning the 
common similarity matrix of different views, the common structure of each view is described. The sparse L2,1
-norm constraint is used to learn the sparse feature selection matrix. Li et al.19 proposed an unsupervised multi-
view feature selection method based on similarity matrix learning and matrix correction. Feature selection is 
embedded in the learning of data manifold structure graph20. The two promote each other, which can effectively 
reduce information redundancy and retain feature correlation. Xie et al.21 proposed the idea of unsupervised fea-
ture selection based on spectral clustering(FSSC). On the basis of using the adaptive spectral clustering algorithm 
to cluster the correlation coefficient matrix between features, a feature importance measure method combining 
feature discrimination and feature independence is proposed to filter the features in the cluster. The experimental 
results show that FSSC achieves better performance in three unsupervised feature selection methods. However, 
it is worth noting that FSSC only conducts experiments on small sample data sets with a sample size of about 
100, and its performance on this issue is slightly bleak.

Therefore, this paper continues the follow-up work of FSSC, and uses the correlation coefficient, cosine simi-
larity and grey correlation degree between features to mine the hidden layer relationship between features from 
multiple perspectives. At the same time, after using the spectral clustering algorithm for feature clustering, the 
sum of the weights of the edges connected to the features in the cluster is used as the measure of the importance 
of the current features, and the important features are selected.

Relation mapping.  QSAR relationship mapping model is one of the computer-aided tools for drug discov-
ery and design. Through the description information of compounds, the relationship between activity, toxicity 
and carcinogenicity of compounds is established. In recent years, with the development of machine learning 
algorithms, the predictive performance of QSAR relationship mapping models has also been improved.

Miler et al.22 established and compared 24 predictive models and found that the predictive performance of 
the nonlinear model was better. Gu et al.23 used graph attention network to classify and predict the properties of 
drug ADMET, and achieved good classification results, but did not discuss the selection of molecular descrip-
tors for optimal compounds, and the overall prediction of their algorithm Performance is low. Xie et al.24 used a 
neural network model to predict and analyze the properties of drug ADMET, and the prediction accuracy was 
improved to a certain extent, but did not discuss the selection of compounds. Jia25 used a variety of machine 
learning algorithms to build a quantitative prediction model between compounds and molecular descriptors, 
but lacked an overall consideration of the pros and cons of compound treatments. Xu et al.26 combined particle 
swarm algorithm and machine learning algorithm to predict the biological activity and ADMET properties of 
the compound respectively, and analyzed the drug mechanism of the compound comprehensively. However, 
the overall prediction performance of the model is still low, and in addition, the overall consideration of the 
biological activity and ADMET properties of the compound is lacking, and the task of compound selection 
cannot be directly performed.

Therefore, this paper combines a variety of machine learning algorithms to experiment, and finally selects 
CatBoost algorithm27 to map the relationship between each other, which achieves higher prediction performance 
and lays a foundation for the optimization of subsequent compound selection problems.

Multi‑objective optimization.  In order to select drugs, on the basis of completing the selection of com-
pound molecular descriptors and the construction of the relationship mapping model, it is necessary to combine 
the six relationship mapping models to solve the optimization problem, so as to obtain the value range of impor-
tant molecular descriptors corresponding to the six optimization objectives as good as possible.
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Generally, the multi-objective optimization problem can be defined as follows.

where χ is the solution space and x is the potential solution; f1(x), ..., fm(x) are objectives to be optimized, m is the 
number of objectives to be optimized ; g(x) and h(x) are inequality constraint and equality constraint respectively; 
i and j are the numbers of inequality constraints and equality constraints, respectively.

In solving multi-objective optimization problems, it is an important condition to discuss the conflict between 
objectives28. When there is no conflict between the objectives, the optimal solution can be obtained by optimiz-
ing each objective function independently. However, in many problems, there are often both conflict and non-
conflict relationships between goals. Therefore, it is necessary to analyze the relationship between the objectives 
before selecting the multi-objective optimization method. However, in the study of many drug optimization 
problems, this is often absent. In addition, the Pareto front of the optimization problem is often unknown. For 
this reason, Abel et al.28 proposed to combine the results of various optimization algorithms as the approxima-
tion of the Pareto front of the current problem after deduplication and used it to solve the subsequent problems, 
and achieved ideal evaluation results.

On the basis of determining the conflict relationship between objectives, it is necessary to determine the cor-
responding optimization algorithm to solve the problem. Because of the high efficiency of genetic algorithm, it 
has been widely used in solving optimization problems. The NSGA29 algorithm retains the excellent individuals 
in the population through non-dominated sorting, and achieves good solution performance. However, there 
are problems such as high computational complexity and easy loss of excellent individuals. On the basis of 
NSGA algorithm, NSGA-2 algorithm30 introduces fast non-dominated sorting, crowding distance, elite strategy 
and other techniques to solve the above problems. However, when the dimension of the target to be optimized 
is high (usually, we think that the dimension of the target to be optimized is greater than 3, which is a high-
dimensional problem), the populations will become non-dominated. Therefore, the effect of NSGA-2 algorithm 
in solving high-dimensional multi-objective optimization problems will become very unsatisfactory. To this 
end, NSGA-331 changed the crowding degree distance to the reference point method in the selection process, 
and achieved better search performance in high-dimensional target optimization problems. Different from 
the NSGA-2 algorithm approach, MOEA/D32 explicitly decomposes the multi-objective optimization problem 
into several scalar optimization sub-problems defined by a set of weight vectors. Using a steady-state evolution 
model, an appropriate representation of the Pareto front can be achieved by defining a set of “prior” generated 
uniformly distributed weight vectors. It has faster convergence speed and lower computational complexity, and 
the obtained solution distribution is also more uniform. AGE-MOEA14 considers the search performance of 
different Pareto front-end ensemble shapes, and achieves better search performance on multiple tasks. Although 
the AGE-MOEA algorithm has good local search ability, it has some deficiencies in global search ability, and the 
diversity of solution results is also poor.

In order to make up for the insufficiency of current research, this paper adds an analysis of the conflict rela-
tionship between optimization objectives. At the same time, considering that the Pareto front end of this paper 
is unknown, Abel et al.28 adopted the solution set of various optimization algorithms as the approximation of 
the Pareto front end of this problem. Finally, this paper adds improvements to the AGE-MOEA algorithm to 
enhance the search performance of the algorithm. The improved algorithm is used to solve the problem in this 
paper, and the superiority of the improved algorithm is verified.

Drug selection framework
Methods overview.  This experiment aims to construct a drug selection framework for optimal molecu-
lar descriptors of anti-breast cancer-related compounds. Among them, only when the compound has excellent 
biological activity and its ADMET properties are at least 3 human-friendly, can it meet the candidate criteria. 
Therefore, this problem can be regarded as the solution of a constrained nonlinear multi-objective optimization 
problem. The specific solution process of this paper is as follows:

(1)	 First, a multi-view processing method is proposed to explore the deep relationship between features and the 
obtained relationship matrix is regarded as a weighted undirected graph. Use spectral clustering algorithm 
to perform subgraph segmentation and complete feature clustering. The proposed novel feature importance 
measurement method is used for feature selection to obtain the final candidate feature subset.

(2)	 Then, using the selected feature subset, a variety of machine learning algorithms are used to construct the 
relationship model between molecular descriptors and compound bioactivity, molecular descriptors and 
ADMET properties. A CatBoost algorithm based on decision tree and ensemble learning is selected to 
construct the subsequent optimization objective function.

(3)	 Finally, for the above six optimization objectives, after determining the Pareto front end of this problem, 
the conflict relationship between the objectives is analyzed. The AGE-MOEA algorithm14 is improved, and 
the improved algorithm is used to solve the final multi-objective optimization problem.

Data pre‑processing.  Considering the large amount of redundant data in the original molecular descrip-
tors, the features with more than 90% of the molecular descriptors with 0 value and the features with a correla-
tion greater than 95% were eliminated. In addition, in order to facilitate the subsequent optimization processing, 
the hERG values in ADMET properties (Caco-2, CYP3A4 , hERG, HOB, MN) are exchanged between 0 and 1 

(1)
min
x∈χ

f (x) = (f1(x), ..., fm(x))
T

s.t. gi(x) ≤ 0, ∀i ∈ {1, ..., , p}
hi(x) = 0, ∀j ∈ {1, ..., q}
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categories, and category 1 is used to represent the human-friendly properties. . The MN also performs the same 
process.

Feature selection.  In order to improve the versatility of the selected features in solving multiple optimi-
zation objectives, from the perspective of similar feature clustering, a multi-perspective-based unsupervised 
feature clustering selection framework is designed. The specific framework is shown in Fig. 1.

As shown in Fig. 1, in the process of feature selection of the original data, the correlation coefficient, cosine 
similarity and gray correlation coefficient33 are used to explore the relationship between features. The specific 
calculation formula is as follows.

Correlation coefficient. 

where r represents the correlation coefficient between feature x and feature y ; xi represents the ith value of fea-
ture x; y represents the ith value of characteristic y; x and y are the averages of all values of characteristic x and 
characteristic y, respectively.

Cosine similarity. 

where, cosΘ represents the angle between feature x and feature y; xi represents the ith value of feature x; yi rep-
resents the ith value of characteristic y.

Grey correlation coefficient. 

where ρij(k) is the grey correlation coefficient of the jth feature and the ith feature on the kth value; ξ is the 
resolution coefficient, usually 0.5.

Feature importance.  After the above processing, three matrices measuring the relationship between features 
can be obtained. They are regarded as a weighted undirected graph, and the spectral clustering algorithm34 is 
used to cluster the features to form feature clusters with different pharmacological properties.

For the final feature selection, a feature selection algorithm based on the representation of the strongest cor-
relation within a cluster is proposed. The specific calculation process is as follows.

(2)r =

∑n
i=1(xi − x)(yi − y)

√

∑n
i=1(xi − x)2

√

∑n
i=1(yi − y)2

(3)cosΘ =

∑n
i=1 xi ∗ yi

√

∑n
i=1 (xi)

2
√

∑n
i=1 (yi)

2

(4)ρij(k) =
min
i

min
k

|xj(k)− xi(k)| + ξ max
i

max
k

|xj(k)− xi(k)|

|xj(k)− xi(k)| + ξ max
i

max
k

|xj(k)− xi(k)|

Figure 1.   Feature selection flow chart.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19347  | https://doi.org/10.1038/s41598-022-23851-0

www.nature.com/scientificreports/

As shown in Algorithm 1, in the process of intra-cluster feature selection, first, each cluster in the clustering 
results obtained after spectral clustering begins to traverse, and the mask matrix is used to block the feature 
weights in the feature relationship matrix that do not belong to the current cluster. (That is, feature importance 
is calculated only within the current cluster.) Then, the node with the largest sum of edge weights in the current 
cluster is used as the most important feature representation in the current cluster (representing the strongest 
correlation between the current feature and other features in the cluster.) Then, the most important features in 
the current cluster are stored in the candidate feature subset. After repeating the above filtering operation for 10 
times, features with a frequency greater than 10 are taken as the final features.

Relation mapping.  In the compound selection process, the six objectives of the current compound bio-
activity ( PIC50 ) and ADMET properties (Caco-2, CYP3A4 , hERG, HOB, MN) need to be considered simul-
taneously. Therefore, it is necessary to establish the relationship between molecular descriptors (features) and 
these six objectives. Among them, the prediction of PIC50 value is a regression problem, and the prediction of 
ADMET properties (Caco-2, CYP3A4 , hERG, HOB, MN) is a binary classification problem. After comparative 
analysis with various machine learning algorithms, the CatBoost algorithm27 was finally selected to construct the 
relationship mapping model between them. Among them, CatBoost is a GBDT framework with fewer param-
eters, support for categorical variables, and high accuracy, implemented with oblivious trees as base learners. He 
solved the problems of Gradient Bias and Prediction shift, which can effectively reduce the occurrence of over-
fitting and improve the accuracy and generalization ability of the algorithm.

Based on the respective feature mapping relationships between the six targets to be optimized ( PIC50 , Caco-
2, CYP3A4 , hERG, HOB, MN) and the selected molecular descriptors. The compound selection process can be 
expressed as a constrained multi-objective optimization problem shown in Formula 5. (The biological activity 
and ADMET properties of the compound are as high as possible provided that at least three of the ADMET 
properties of the compound are beneficial to the human body.)

where h1(x), ..., h6(x) represents the six objective functions of PIC50 , Caco-2, CYP3A4 , hERG, HOB and MN, 
respectively. x = (x1, x2, ..., xn) ∈ X ⊂ Rn is the n-dimensional feature vector.

Multi‑objective optimizationn.  In order to solve the above six objective functions. The differential evolu-
tion operator is used to improve the crossover process of AGE-MOEA algorithm14 to enhance the global search 
ability of the algorithm. Finally, the improved algorithm is used to solve this problem. AGM-MOEA is a multi-
objective optimization algorithm based on evolutionary algorithm, which performs well in exploring the Pareto 
surface with complex geometry. The specific calculation process of the improved AGE-MOEA algorithm is as 
follows.

(5)min H(x) = (−h1(x),−h2(x), ...,−h6(x))
T

s.t. | − h2(x)− ...− h6(x)| ≥ 3
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As shown in Algorithm 2, first, N populations are randomly initialized (line 2). Then, in each iteration pro-
cess, the differential evolution operator is used for crossover, and the polynomial mutation operator is used for 
mutation to generate offspring (line 4). The resulting population is then divided into non-dominated levels(or 
fronts) using a non-dominated sorting algorithm30 (line 5) and normalized using the normalization method in 
NSGA-331 (line 6). The value of the parameter p is calculated from the first non-dominated front ( F1 ) in each 
generation. Combined with the p value, the survival score is used to score the current non-dominated frontier 
from the aspects of diversity and proximity. By selecting the solution from the non-dominant frontier, a frontier 
(or level) is selected each time to form a new population of M solutions. The process terminates when the addi-
tion of solutions for the current non-dominant front end Fd exceeds M. Finally, after sorting the survival scores 
in descending order, the remaining solutions are selected.

The differential evolution operator35 is used to replace the simulated binary crossover used in the original 
algorithm to generate the offspring(line 4 of the algorithm).

F and CR are two control parameters, where F = 1, CR = 0.7; the offspring is y = (y1, ..., yD) , D is the number of 
decision variables; xr1, xr2, xr3 is three different parents; p is the random number of [0,1].

Performance evaluation.  To objectively measure the performance of the relational mapping model, we 
use mean squared error to evaluate the model’s performance on the PIC50 regression prediction task, and accu-
racy to evaluate the model’s performance on the ADMET property regression prediction task.

Similarly, in order to objectively measure the performance of various multi-objective optimization algorithms, 
two indicators, inverted generational distance plus ( IGD+)36 and hypervolume (HV)37, are introduced here to 
evaluate the model search performance. The specific calculation method is as follows.

Inverted generational distance plus.  Given a set of reference points Z = z1, z2, ..., z|M| , where zj = (zj1, zj2, ..., zjm) 
is the Pareto frontier point in the m-dimensional target space. Then IGD+(A,Z) is the average distance from 
each reference point zj to the nearest solution ai ∈ A . In addition, the lower IGD+ means that set A has better 
approximation along the Pareto front. The specific calculation formula is as follows.

(6)y =

{

xr1 + F(xr2 − xr3), p < CR
xr1, otherwise

(7)IGD+(A,Z) =
1

|Z|

|Z|
∑

j=1

min
ai∈A

dIGD+(ai , zj)

(8)dIGD+(ai , zj) =

√

√

√

√

m
∑

k=1

(max(aik − zjk , 0))2



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19347  | https://doi.org/10.1038/s41598-022-23851-0

www.nature.com/scientificreports/

Hypervolume.  For a m-objective space, HV represents the volume of a hypercube composed of each solution 
ai = (ai1, ai2, ..., aim) and the reference point zi = (zi1, zi2, ..., zim) . In addition, the higher HV indicates that set 
A has better approximation along the Pareto front. Its specific definition is as follows.

where � is the standard Lebesgue measure38. In this experiment, the reference point of HV is selected as the 
maximum value of Pareto frontier plus 1.

Experimentation
Experimental environment and model parameters.  The hardware platform of this experiment is 
NVIDIA RTX3080 GPU, 12th Gen Intel(R) Core(TM) i7-12700KF CPU and 32GB RAM. The experimental 
software platform is Pychame 2019, and the algorithm libraries used are mainly Sklearn and Pymoo.

In this experiment, the number of clusters of spectral clustering used in feature selection is 25. A 10-fold cross-
validation method was used to train and evaluate the relational mapping model. In solving the multi-objective 
optimization problem, the initial population size is 200, and the number of iterations is 210, which is consistent 
with Reference28. Crossover probability pc = 1 in genetic operation ; mutation probability pm = 1/n , n is the 
dimension of decision variable ; cross distribution index νc = 20 ; the variation distribution index νm = 20 . Other 
parameters are consistent with those of the original algorithm.

Introduction of data sets.  The experimental data set was from the DrugBank molecular database of 
Alberta University39, including three files, namely ERα_activity.xlsx, Molecular_ Descriptor.xlsx and ADMET.
xlsx.

The ERα_activity.xlsx file provided biological activity data for 1974 compounds against ERα , including 
SMILES (Simplified Molecular Input Line Entry System). The biological activity value of the compound against 
ERα (expressed by IC50 , as the experimental measured value, the unit is nM, and the smaller the value is, the 
greater the biological activity is, and the more effective it is to inhibit the activity of ERα ) and the PIC50 (i.e., the 
negative logarithm of IC50 ) obtained by transforming the IC50 value. This value is usually positively correlated 
with biological activity, that is, the greater the PIC50 value indicates the higher the biological activity ; in the 
actual QSAR modeling, pIC50 is generally used to represent the biological activity value).

The Molecula_Descriptor.xlsx file gives 729 molecular descriptors (i.e. independent variables) for 1974 com-
pounds. The first column is also the SMILES formula for compounds(numbered in the same order as above), 
followed by a total of 729 columns, each representing a molecular descriptor of the compound (i.e. an independ-
ent variable). Molecular descriptors of compounds are a series of parameters used to describe the structure and 
properties of compounds, including physical and chemical properties (such as molecular weight, LogP, etc.), 
topological structure characteristics (such as the number of hydrogen bond donors, the number of hydrogen 
bond acceptors, etc.), etc.

The ADMET.xlsx file provides data on the five ADMET properties of the above 1974 compounds. The first 
column is also the SMILES formula (the numbering order is the same as that before) representing the structure 
of the compound. The following five columns correspond to the ADMET properties of each compound, and the 
corresponding values are provided by the binary classification method. Caco-2: ’1’ represents the compound 
of intestinal epithelial cell permeability is good, ’0’ represents the compound of intestinal epithelial cell perme-
ability is poor; cYP3A4: ’1’ means the compound can be metabolized by CYP3A4, ’0’ means the compound can 
not be metabolized by CYP3A4; hERG: ’1’ represents that the compound has cardiotoxicity, and ’0’ represents 
that the compound does not have cardiotoxicity; hOB: ’1’ indicates that the oral bioavailability of the compound 
is good, and ’0’ indicates that the oral bioavailability of the compound is poor; mN: ’1’ means the compound is 
genotoxic, ’0’ means the compound is not genotoxic.

Experimental result.  Feature selection.  The feature selection algorithm proposed in this paper is used to 
run 10 times on the data set after data cleaning. The features with a frequency greater than 10 times are selected 
as the final candidate features, and 37 molecular descriptors are finally obtained. In order to more specifically 
reflect the specific meaning of the molecular descriptors selected, the classification of their pharmacological 
properties was counted here, and the results are shown in Table 1.

The electrotopological state index is a two-dimensional molecular descriptor based on the atomic level pro-
posed by Kier and Hall40, the founder of molecular connectivity. It can simultaneously characterize the topologi-
cal structure and electrical characteristics of compound molecules, and has been widely used in QSAR studies of 
drugs. Similar to the electrotopological state index, the extended topological chemical atom(ETA) index41 was 
proposed by Roy and Ghosh for the extension of the concept of topological chemical uniqueness of arrival(TAU) 
developed in the valence electron mobility (VEM) environment in the late 1980s. It is equally important in the 
study of toxicity and ecotoxicity modeling in the field of quantitative structure-activity relationships (QSARs). It 
can be seen from Table 1 that 13 molecular descriptors belong to the ’Atom type electrotopological state’ category, 
and 4 molecular descriptors belong to the ’Extended topochemical atom’ category, accounting for the first and 
second in the selected molecular descriptors, respectively. It can be seen that the features selected by the feature 
selection algorithm in this paper have certain rationality. In addition, the 37 molecular descriptors selected 
covered a total of 16 different categories of pharmacological properties. This shows that the pharmacological 
properties of the selected molecular descriptors cover a wide range. Compared with the original molecular 

(9)HV(A,Z) = �(
⋃

ai∈A

[ai1, z1] × · · ·[aim, zm])
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descriptors, the selected molecular descriptors have rich information expression ability and better retain the 
important pharmacological properties of the original molecular descriptors.

In order to measure the pros and cons of more specific feature selection algorithm. In this paper, the selected 
molecular descriptors are used to combine the SVM algorithm for PIC50 regression task and ADMET property 
classification task experiment, and the effect is compared with the feature selection method proposed by FSSC21 
algorithm. The results are shown in Table 2.

It can be seen from Table 2 that the performance of the selected features on the SVM algorithm is better than 
that of the FSSC algorithm after using the unsupervised feature selection algorithm proposed in this paper. The 
reason is that the FSSC algorithm uses features with higher variance and lower correlation as candidate features, 
which has limitations. When a feature in the original data is affected by noise, its variance often increases. With 
the increase of noise samples, it often interferes with the prediction performance of the model. At the same time, 
the lower correlation means that the relationship between the current feature and other features in the cluster 
is weaker. Using this feature to represent the candidate features of the entire cluster does not fully reflect the 
overall characteristics of the current cluster. Therefore, this paper first eliminates noise samples by data cleaning, 
and it is reasonable to use the most relevant features to represent the candidate features of the current cluster.

Relation mapping.  The CatBoost algorithm27 is compared with a variety of traditional machine learning algo-
rithms (SVM, AdaBoost, GBDT, XGBoost, RandomForest) for 10-fold cross validation and compared with the 
PsoBpSvm26 algorithm in the prediction of six optimization objectives. The results are shown in Table 3.

As can be seen from Table 3, using the features selected in the previous section for relational mapping 
experiments, the performance of the selected features on many machine learning algorithms is better than 
the PsoBpSvm algorithm. This again verifies the effectiveness of the feature selection method proposed in this 
paper. In addition, it can be seen that the CatBoost algorithm shows better prediction performance than other 
machine learning algorithms.

Table 1.   Candidate molecular descriptor classification statistics.

Description types Number Description types Number

Atom type electrotopological state 13 Chi cluster 3

Extended topochemical atom 4 Chi chain 3

Molecular linear free energy relation 2 ALOGP 2

Autocorrelation (mass) 1 Atom count 1

Carbon types 1 BCUT​ 1

Hbond acceptor count 1 Chi path cluster 1

Molecular distance edge 1 Largest Pi system 1

Ring count 1 XLogP 1

Table 2.   Comparison of feature selection algorithms. AVG:ADMET property prediction average accuracy. 
Significant values are in [bold].

Algorithm PIC50 AVG

FSSC 0.50 89.61

Ours 0.48 89.73

Table 3.   Comparison of relation mapping models. AVG:ADMET property prediction average accuracy. 
Significant values are in [bold].

Algorithm

Index evaluation

PIC50 Caco-2 CYP3A4 hERG HOB MN AVG

SVM 0.48 89.43 91.47 90.07 85.21 92.46 89.73

AdaBoost 0.72 87.46 91.97 89.71 83.45 90.70 88.66

GBDT 0.53 90.42 92.88 90.77 85.84 93.09 90.60

XGBoost 0.53 89.36 92.39 89.50 83.94 91.90 89.42

RandomForest 0.50 90.35 93.02 90.91 86.69 94.50 91.09

PsoBpSvm 0.53 89.37 94.06 84.14 79.09 84.49 86.23

CatBoost 0.44 91.12 93.52 91.33 86.83 94.85 91.53
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Target conflict analysis.  Because in this problem, the Pareto front is unknown. Therefore, the treatment method 
of Reference28 is adopted here. A variety of optimization algorithms (NSGA-230, NSGA-331, AGE-MOEA14 and 
the algorithm in this paper) are used to run 10 times respectively. The calculated results are combined and de-
duplicated as the approximate solution of the Pareto front of this problem. At the same time, in order to analyze 
the conflict relationship between the various objectives, this paper uses the parallel coordinate system42 used 
in28 to analyze the relationship between the various objectives. It should be noted that the parallel coordinate 
system is often used to visualize the values of each target to represent the correlation between the paired targets. 
The greater the slope of the line between one target and another, the greater the potential conflict between the 
two. The specific results are shown in Fig. 2. (Among them, normalization is used to scale the scale differences 
between different targets. At the same time, in order to prevent the overlap of lines from adversely affecting the 
observation, the data was scaled in the range of 0.9–1.1).

It can be seen from Fig. 2 that there is a large fluctuation in the slope of the connection between different 
targets. That is to say, among the six objectives to be optimized, there is both a competitive relationship and a 
mutual relationship between different objectives. Therefore, this problem is not easy to directly transform the 
multi-objective optimization problem into a single-objective optimization problem by weighting. In addition, 
weights are often harmful43.

To supplement the correlation analysis between objectives, we analyzed the correlation between objectives 
in the selected Pareto front approximation, as shown in Fig. 3.

It can be seen from Fig. 3 that there was a positive correlation between PIC50 and CYP3A4 , hERG, MN, and a 
negative correlation between PIC50 and Caco-2, HOB. Therefore, in the optimization process of PIC50 , the opti-
mization process of some targets will be suppressed, and the synchronous optimization between them cannot be 
realized. Similarly, there are similar conflict effects in the optimization process of other objectives.

Multi‑objective optimization results.  Due to the different correlation between the objectives, the complexity of 
the Pareto surface shape is determined. Through the previous analysis, it can be seen that there are both conflict 
and mutual promotion relationships among the six optimization objectives. It can be seen that the Pareto surface 
corresponding to this problem is more complex. Considering the advantage of AGE-MOEA algorithm in explor-
ing complex Pareto surface shape, this paper chooses AGE-MOEA algorithm as the benchmark algorithm and 
improves it. At the same time, in order to visually display the results of various algorithms, CYP3A4 , Caco-2 and 
PIC50 are selected as X, Y and Z axes respectively. The solution results are compared with the approximate values 
of the Pareto front obtained above, and the specific results are shown in Fig. 4.

It can be seen from Fig. 4 that the algorithm in this paper has achieved more search results in solving this 
problem than the other three algorithms. At the same time, in order to measure the performance of various 
algorithms more specifically, objective evaluation indicators are selected for performance evaluation. The results 
are shown in Table 4.

It can be seen from Table 4 that the algorithm in this paper has achieved better performance than the other 
three multi-objective optimization algorithms, and its solution results have better approximation to the refer-
ence Pareto frontier.

After the above solution, the optimal range of 37 important molecular descriptors selected out in the anti-
breast cancer candidate drugs can be obtained, which provides a direction for the selection of compounds. The 
specific value range is shown in Table 5.

Figure 2.   Optimization target conflict analysis.
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Figure 3.   Optimization target correlation analysis.

Figure 4.   Visualization of solution results.
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Ablation experiment.  Analysis of cluster number.  In the selection of the number of clusters, it is usually 
based on the elbow rule or the contour coefficient. However, in this experiment, it was found that the effect of 
subsequent experiments using the features selected by such methods was poor. The reason is that the differences 
between features are small. Therefore, in this experiment, we will select the number of clusters according to 
the prediction performance of the SVM model after 10 cross-validations. The specific experimental results are 
shown in Table 6.

It can be seen from Table 6 that when the number of clusters is 25, the feature mapping model has the best 
performance on the ADMET property. When the number of clusters increases to 30, the prediction performance 
of the model on ADMET properties decreases slightly, but the prediction performance on ADMET properties 
increases slightly. Considering that the increase of the number of features will increase the training cost of the 
model, but the performance difference is not large, the number of clusters selected in this experiment is 25.

Analysis of population initialization size.  In order to analyze the influence of the initial population size on the 
algorithm, the initial population size is discussed here. The specific results are shown in Table 7.

It can be seen from Table 7 that when the population initialization scale is 200, the algorithm has reached 
convergence. Increasing the initial population size to 300 will not improve the performance of the algorithm. 
Therefore, in this experiment, the initial population size is 200.

Table 4.   Comparison of optimization algorithms. Significant values are in [bold].

Algorithm IGD
+ HV

NSGA-2 1.59 12.74

NSGA-3 1.59 6.21

AGE-MOEA 1.70 8.67

Ours 0.04 57.17

Table 5.   Molecular descriptor value range.

Molecular descriptors Range Molecular descriptors Range

ALogP [1.27, 4.89] AMR [123.17, 175.16]

nO [3.25, 6.87] ATSm1 [42.17, 53.10]

BCUTp-1h [12.76, 15.41] C3SP2 [3.45, 7.07]

SCH-5 [0.08, 0.31] SCH-7 [0.66, 1.32]

VCH-6 [0.20, 0.43] SC-3 [1.98, 2.96]

SC-4 [0.08, 0.27] SC-5 [0.46, 1.00]

SPC-4 [5.21, 7.16] nHBd [1.67, 3.08]

nHBint5 [0.57, 1.97] ndO [0.87, 2.94]

SHBa [37.23, 68.11] SwHBa [25.73, 39.62]

SHBint10 [4.42, 19.27] minHssNH [0.05, 0.46]

mindsCH [0.23, 1.15] minaaaC [0.37, 1.32]

maxHBa [12.12, 17.77] maxwHBa [2.04, 2.62]

maxHCsats [0.46, 0.91] maxaaCH [2.04, 2.60]

ETA_Epsilon_1 [0.60, 0.68] ETA_Beta_ns_d [1.33, 2.22]

ETA_EtaP_F [1.14, 1.31] ETA_EtaP_B [0.01, 0.02]

nHBAcc [2.59, 6.91] nAtomP [16.66, 30.59]

MDEC-33 [10.26, 20.24] MLFER_BH [1.55, 2.74]

MLFER_S [2.70, 3.68] nRing [3.99, 6.19]

XLogP [2.99, 6.47]

Table 6.   Comparison of the number of clusters. Significant values are in [bold].

Clustering number PIC50 AVG

20 0.49 89.40

25 0.48 89.73

30 0.47 89.70
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Conclusion
Aiming at the selection of anti-breast cancer candidate drugs, this paper proposes a complete drug selection 
framework from three aspects: feature selection, relationship mapping and multi-objective optimization. In the 
feature selection part, the relationship between features is explored from multiple perspectives of correlation 
coefficient, cosine similarity and gray correlation coefficient. Spectral clustering is used for feature clustering and 
a new feature importance measurement method is proposed to select the final intra-cluster features. In the rela-
tionship mapping part, a variety of machine learning algorithms are used for comparative experiments. Finally, 
the CatBoost algorithm is selected for relationship modeling, which achieves better prediction performance. In 
the multi-objective optimization part, based on the analysis of the conflict relationship between the objectives, 
the AGE-MOEA algorithm is improved. The improved algorithm is used to solve this problem, which achieves 
better search performance than many algorithms. We hope that the anti-breast cancer drug selection framework 
proposed in this paper can provide guidance for actual drug selection.

Data availibility
The data generated during this study are included in the article and its Supplementary information.
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