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Multifrequency nonlinear model 
of magnetic material with artificial 
intelligence optimization
J. Pawłowski1, K. Kutorasiński2 & M. Szewczyk3*

Magnetic rings are extensively used in power products where they often operate in high frequency 
and high current conditions, such as for mitigation of excessive voltages in high-power switchgear 
equipment. We provide a general model of a magnetic ring that reproduces both frequency and 
current dependencies with the use of artificial intelligence (AI) optimization methods. The model has 
a form of a lumped element equivalent circuit that is suitable for power system transient studies. A 
previously published conventional (non-AI) model, which we take as a starting point, gives a good fit 
of parameters but uneven characteristics as a function of current, which pose numerical instabilities 
in transient simulations. We first enforce the Langevin function relationship to obtain smooth 
characteristics of parameters, which reduces the number of parameters and ensures their even 
characteristics, however, compromises fit quality. We then use AI metaheuristic optimization methods 
that give a perfect fit for the model in the whole range of frequency up to 100 MHz and current up to 
saturation, with smooth characteristics of its parameters. Additionally, for such fitted parameters, we 
show that it is feasible to find a frequency dependence for the magnetic saturation parameter of the 
Jiles-Atherton (JA) model, thus enabling frequency-dependent JA.

Magnetic materials are extensively used in electrical power products, not only for Electromagnetic Interference 
(EMI) suppression, but also  for1 mitigation of overvoltages in electronics and electrical power devices, such 
as power electronics converters, motors and generators, and Gas Insulated Switchgear (GIS). Oftentimes, the 
magnetic rings operate in a single-turn arrangement, e.g., the rings installed onto the shaft of motors to mitigate 
bearing  currents2, or the rings installed onto the GIS busbars for mitigation of Very Fast Transient Overvoltages 
(VFTO)3,4, or for High Frequency Transients mitigation in wind turbine  transformers5. Selection of the magnetic 
rings with a proper material characteristics and geometry, matching the type of the material and its quantity to 
the problem, requires mathematical models usable in practical simulation frameworks.

Magnetic rings modeling
Frequency and current characteristics. For linear conditions (i.e., when the system response is a linear 
function of the forcing magnetic field H ), full information on magnetic system is enclosed in the impedance 
Z(f ) in frequency f -domain, or the equivalent transfer function Z(s) in s-domain, which in the case of a coil 
is a transfer function of current to voltage. The Z(f ) results from underlying, often very complex, physics of a 
given  material6. Coupling between spins in the Ising model or Curie temperature (determining material type)6 
or domain walls movements (determining frequency response and magnetic losses)7, are complex many-body 
phenomena with long story of research and various physical  models8,9. Considering the Z(f ) characteristics we 
enclose in this curve all the physics necessary for power system transients simulations (black box approach). 
From Z(f ) other parameters can be calculated, such as inductance L(f ) and resistance R(f ) of, e.g., a series RL 
model, permeability µ(f ) , or power losses P(f ).

In the case of nonlinear systems, the situation is more complex. First, the harmonic response for a nonlinear 
system is not defined. A natural approximation of nonlinear systems is the assumption of their linear operation 
in a small range of the forcing signal (i.e., small enough for the system to respond linearly). This allows to define 
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a complex impedance Z(f ,Hbias) , which accurately describes the behavior of nonlinear magnetic systems up to 
saturation, in which the forcing magnetic field H(i) is of a form:

where H(iAC) is the small forcing magnetic field induced by a small iAC current (i.e., small enough for the system 
to respond linearly), and Hbias(iDC) is the magnetic field induced by a direct current iDC which establishes the 
operating condition of magnetic ring up to saturation. For magnetic rings operating in one-wire set-up:

where lm is magnetic path in meters, and Ae is the cross-sectional area of the ring in square meters. In this paper 
we use a notation where Z(f ,Hbias(iDC)) is written as Z(f , iDC) . The function Z(f , iDC) is the response of the 
magnetic system at the value of Hbias(iDC) , setting the so-called operating point. The nonlinear system is then 
approximated by a two-dimensional function Z(f , iDC).

The function Z(f ,Hbias) can be measured using an impedance analyzer that generates the magnetic field 
H(iAC) supplemented with a DC power supply providing iDC current to set the Hbias(iDC) operating point. This 
measurement method was introduced  in10 and the results of the measured Z(f , iDC) impedance reported  in10 
were used in the present study.

Magnetic materials modelling. Various models are in use to modeling of magnetic materials in non-
linear conditions. One most notable is the Jiles-Atherton (JA)  model11,12 of nonlinear ordinary differential 
equations for magnetization, defined to describe magnetic hysteresis. Second family of models, Finite Element 
Method (FEM)-based describe local spatial dependence of  magnetization13. The JA model can be coupled with 
the  FEM14,15, extending the latter approach onto nonlinear materials. On the other hand, a different approach 
to modeling of magnetic materials uses the lumped element equivalent circuits (LEEC). The LEEC approach is 
suitable for direct implementation in SPICE or EMTP  simulators16 which enables fast prototyping.

In this paper we apply Artificial Intelligence (AI) algorithms for optimizing of a LEEC model parameters of 
magnetic ring. For this we use metaheuristic optimization methods with Particle Swarm Optimization (PSO) 
and Differential Evolution (DE) and modern implementation of simulated Dual Annealing (DA).

Nonlinear Lumped Elements model
LEEC are typically used to modeling linear responses of magnetic rings in frequency domain, but when lumped 
elements are extended to nonlinear characteristics the LEEC can be efficiently used to modelling of magnetic 
rings in nonlinear conditions as  well10,17. The great advantage of such approach is that it is capable to modeling 
of magnetic rings in both frequency and current domains, and in a form that can be directly implemented in 
circuit simulators such as EMTP or  SPICE16. The approach was used  in10, where the LEEC model was proposed 
that reproduced the impedance characteristics Z(f , i) of magnetic ring in both frequency and current domains.

In this paper, we propose frequency- and current-dependent models of magnetic rings in a form of Z(f , i) , 
where i = i(t) is any current, but the models are based on measured Z(f ,Hbias) . Such models are strictly accurate 
for currents i(t) = iAC + iDC . Generalization of the models for any current i = i(t) is an extrapolation of the 
model beyond the data on which it was created. The scope of applicability of this extrapolation is not investigated 
in this paper.

A dedicated test set-up was proposed  in10 allowing to measure Z(f ) for different bias magnetic field Hbias(iDC) , 
introduced to the magnetic ring by the bias direct current iDC of a reference coil. The impedance characteristics 
Z(f , iDC) was thus formed by a set of Z(f ) functions measured for different values of the bias current iDC defining 
different operating conditions.

Figure 1 shows the Z(f , iDC) characteristics measured  in10 for a nanocrystalline magnetic ring with the DC 
current iDC ranging from zero up to saturation level. We use in this paper the Z

(

f , iDC
)

 curves  from10 as shown in 
Fig. 1 to investigate and propose new LEEC models of magnetic ring extending the model reported  in10. The noise 
visible for frequencies below 104Hz results from the measurement of impedance |Z| (see Fig. 1), which decreases 
as frequency f  decreases, which causes that for small f  there is a large ratio of noise in |Z| to the measured value.

Lumped model. The idea of the LEEC model of magnetic coil introduced  in10,17 is to approximate a fre-
quency response function Z(f ) with a rational function Z(s) in s-domain in a form having equivalent electrical 
circuit representation. The approximation is performed jointly for several operating conditions given by Z(f ) for 
different currents iDC . The network is synthetized in a standard Foster  form18. This way the system impedance 
Z
(

f , iDC
)

 approximates Z
(

f , i
)

 , Z
(

f , iDC
)

= Z
(

f , i
)

 , and is modeled by a rational function:

with nonlinear Lk(i) and Rk(i) elements representing different operating conditions given by current iDC . The 
L0 and R0 elements allow for a general LR model of impedance, such as the one proposed  in19. For the transfer 
function of a dynamical system, where the numerator degree must be less than or equal to the degree of the 
denominator in the general rational function, the two components, L0 and R0 , can be skipped.  In10 the network 
was synthetized with Nl = 7 pairs of Lk(i) and Rk(i) lumped elements, each of which having nonlinear charac-
teristics for Ni = 14 operating conditions given by current iDC values as denoted in Fig. 1, ranging from 0A up 

(1)H(i) = H(iAC)+Hbias(iDC)

(2)Hbias(iDC) =
lm

Ae

iDC

(3)Z(s, i) =

Nl
∑

k=1

sRk(i)

s + Rk(i)/Lk(i)
+ sL0 + R0,
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to saturation. In the present work, we chose the same number Nl = 7 as  in10, which was here confirmed based 
on trial and error as a kind of optimization, in which, on the one hand, we wanted the model to be as simple as 
possible and contain as few elements as possible, and on the other hand, that the fit should be of good quality – in 
the entire frequency domain and for all currents. The increase in the number of parameters did not significantly 
improve the fit, and the decrease made it worse. The resultant network is shown in Fig. 2.

In formula (3) all poles pk(i) = −Rk(i)/Lk(i) are stable, i.e., pk(i) < 0 for all i = iDC and all k . To fit param-
eters, a method based on Pade approximation was used  in10 as described  in17.

Fit on the Lk(i) and Rk(i) ladders connected in parallel allows to model systems which phase is in the range 
of 0-90 deg only, i.e., inductive-resistive systems. Additionally, if we assume that we will use only positive values 
of the elements Lk(i) , L0 and Rk(i) , R0 – then it leads to an additional condition that the circuit must have a 
non-decreasing impedance as a function of frequency. These conditions are valid for the characteristics of mag-
netic rings where capacitive components are negligible. In the measured impedance frequency characteristics 
Z(f ,Hbias) no resonances are observed (see Fig. 1).

When the LEEC model (3) reproduces the Z(f , i) characteristics in a wide frequency range (implying high 
Nl ) and for many currents i = iDC (implying high Ni ), the number of necessary parameters may reach hundreds: 
2NlNi+2. In the case of Z(f , iDC) given by Fig. 1 for Ni = 14 operating currents: 2NlNi + 2 = 2 · 7 · 14+ 2 = 198  
parameters in total. The number of parameters is large because we have a large number of operating currents iDC , 
and we adjust the Z(f ) for each operating current iDC independently. In general, the Ni can be even much higher 
when higher resolution of iDC would be applied, so the current i = iDC can be considered as a second dimension 
of the model. The number of parameters can be further reduced (by half) assuming linear resistance of each Rk 
element, i.e., Rk(i) = const . The magnetic loses depend on the operating current i and decrease when entering 
saturation, as they result from remagnetization of magnetic domains (while the domains are more firmly fixed 
by the external bias magnetic field H , the losses decrease). However, as seen in Fig. 4, the Rk(i) is significantly 
less current-dependent then Lk(i) . In our case, assuming Rk(i) = const does not deteriorate the optimization 
results (fit error), and significantly simplifies the model.

Another limitation of this model is that it does not guarantee that the parameters Lk(i) and Rk(i) will be 
smooth or even continuous functions of current i  , which leads to unphysical behavior related to numerical 
problems during simulations. We will aim at avoiding a situation shown in Fig. 4 with this respect.

Parameters fitting. Vector Fitting (VF)19,20 algorithm is a popular procedure for s-domain rational func-
tion approximation of frequency-domain characteristics. In VF, the poles are enforced to be stable (i.e., with 
nonpositive real part), but the algorithm cannot guarantee that the identified function is a positive real function 

Figure 1.  Experimental data  from10 used in this paper for fitting parameters of models: measured Ztrue
(

f , iDC
)

 
impedance characteristics for frequency range f = 1kHz÷ 100MHz and current up to saturation i = 0÷ 50A ; 
solid lines denote absolute values |Ztrue|

(

f , iDC
)

 and dashed lines denote phase angles ϕtrue
(

f , iDC
)

 ; colors denote 
bias current iDC according to legend.
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Figure 2.  Lumped Element Equivalent Circuit (LEEC) model given by formula (3) proposed  in10 to reproduce 
Z
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)

 characteristics shown in Fig. 1.
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(i.e., it represents a passive system)21. Passivity is important to get stable simulations in time domain, e.g., in 
transient simulations. In our case, the VF cannot ensure that Lk(i) and Rk(i) are both non-negative. Moreover, in 
a vector form of Lk(i) and Rk(i) , i.e., for simultaneous fit of many Z(f ) characteristics (in our case Z(f , i) formed 
by a set of Z(f ) for different currents i ), the VF forces the same poles pk(i) = −Rk(i)/Lk(i) , which is too much 
of a limitation to get a good fit. Another disadvantage of this approach is that it does not guarantee the passivity 
of the fitted lumped elements Rk(i) , Lk(i) , R0 , L0.

The VF is not suitable for fitting Lk(i) and Rk(i) ladders also because it does not guarantee that the order of 
the s-domain rational function Z(s, i) will not be higher than 1 (e.g., 2nd order corresponds to a system with 
capacitance). The VF is a general approach not assuming that the phase of a particular element of the ladder ( Lk(i) 
and Rk(i) for a given k ) is in the range of 0-90 deg, only that the fit will be good. Thus, it does not guarantee that 
the circuit representation of the resulting s-domain function Z(s, i) has a ladder representation as we demand.

In10, the Pade approximation method was used with a properly chosen auxiliary function proposed  in17, allow-
ing to properly represent experimental data Z(f , iDC) . In both the VF and the Pade based methods, however, the 
fits of Z(f ) are made for individual operating currents iDC independently, which gives no guarantee that Lk(i) and 
Rk(i) will change smoothly as a function of current i . This is not suitable for simulations, for which both discon-
tinuous and non-decreasing Lk(i) and Rk(i) parameters in the s-domain rational function Z(s, i) pose a problem.

Nonlinear least squares optimization. Therefore, we start fitting and optimizing the parameters Lk(i) , 
Rk(i) , L0 and R0 of (3) from a standard Nonlinear Least Squares (NLS) method (nonlinear, as there are param-
eters also in the denominator), on which appropriate bounds can be  imposed22 – in our case non-negativity of L 
and R elements. In the NLS we choose Trust Region Reflective (TRR) method to perform minimization and the 
so-called robust soft-L1  regularization22. We will show disadvantages of this method and then we will gradually 
modify the model and the method of parameters fit to develop a good fit and smooth characteristics of L ( Lk and 
L0 ) and R ( Rk and R0 ) elements, with smallest number of parameters.

To get a good fit we also assume that L0 and R0 in (3) are nonlinear, so now in (3) the sL0 + R0 turns into 
sL0(i)+ R0(i) , hence the function (3) now have (2× Nl + 2)× Ni = (2× 7+ 2)× 14 = 224 parameters. Fig-
ure 3a shows the results of fitting, which is good, however not ideal (see also Table 1). The error of the impedance 
model Zfit(s, i) is shown in Fig. 3b, calculated for each operating point (each current iDC ) as defined by:

Figure 3.  NLS results of impedance Z(f , iDC) fitting for model (3): (a) fit vs true values of |Z|
(

f , iDC
)

 and 
ϕ(f , iDC) for two currents: iDC = 5 A, iDC = 50 A; (b) relative error as per (4) for all currents.
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where the measured data (shown in Fig. 1) are represented with Ztrue(s, i) = |Z|i(f )e
jφi(f ), where s = j2π f  , for 

different frequencies f  , and different operating points given by currents iDC . We observe the highest error in the 
range of the smallest frequencies, then it decreases, and for the largest frequencies it increases again.

The key problem in this approach lies in dependencies of L(i) and R(i) parameters on current i  , which is 
shown in Fig. 4. The characteristics L(i) and R(i) are approximately monotonic, but uneven. The NLS numerical 
method matches L(i) and R(i) independently for each current iDC , so numerically there is not any correlation 
between the fits for different currents, which results in the uneven L(i) and R(i) characteristics as a function of 
current i . This may also lead to numerical problems for such a circuit with uneven parameters when using the 
LEEC model in EMTP or SPICE simulators.

Langevin function for nonlinearity modelling
We observe that NSL with the constraints as assumed above fits parameters for LEEC model (3) with current 
dependent L(i) , Rk(i) , L0(i) , and R0(i) well (see Fig. 3), covering wide range of (f , i)-domains. However, this needs 
over 200 parameters and leads to non-smooth characteristics of L(i) and R(i) in i-domain.

Now we apply constraints on current dependence of inductance L(i) using derivative of Langevin function: 
L(x) = coth(x)− 1/x, that is used when discussing  paramagnetism8, and it is also assumed in JA  model11,12. 
We introduce analytical characteristics for current dependencies for two reasons: 1) they have a clear physical 
interpretation, 2) we substantially reduce the number of parameters.

Langevin model for nonlinearity. We assume a simplest physical model for anhysteretic  magnetization6 
and conversely assume derivative of Langevin (DL) function L′(x) 23,24 for nonlinear characteristics of induct-
ance:

with only two parameters needed: l0 – a maximum inductance, and a – scaling factor. The DL deriva-
tive we implemented as follows 23: L(x) = 1/3− x2/15+ 2x4/189−x6/675+ 2x8/11686 for x < 1 , and 
L(x) = 1/x2 − 1/ sinh2(x) elsewhere.

Magnetic losses refer to various energy dissipation mechanisms taking place when a magnetic material is 
subject to a time-varying external magnetic field H . To simplify the model and not compromising optimization 
quality, we assume that energy losses, and thus resistances Rk and R0 no longer depend on operating point (on 

(4)
|Ztrue(s, i)− Zfit(s, i)|

|Ztrue(s, i)|
,

(5)LDL(i) = l0L
′(i/a),

Table 1.  fit relative  error1 averaged over all frequencies and currents for different optimization methods. 1 see 
formula (4), 2the PSO error is unacceptable. for higher values of currents i ≥ 30 A (see Fig. 7). Best result is in 
bold.

Method Average error

Nonlinear Least Squares (NLS) 0.286

Particle Swarm Optimization (PSO) 0.1962

Differential Evolution (DE) 0.084

Dual Annealing (DA) 0.149

Figure 4.  NLS results of inductances L(i) and resistances R(i) in model (3). Here we do not enforce monotonic 
inductance using Langevin derivative and constant resistance.
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current i = iDC ). We verified that this assumption does not lead to a significant increase in the fitting error and 
may be related to the fact that magnetic losses depend much less on the current than the coil inductance itself (see 
Fig. 4). On the other hand, losses strictly depend on frequency, which we consider. Now the model is defined by:

Thanks to this, we significantly reduce the number of parameters, which is now (7+ 1) · 3 = 24 : each L has 
two parameters: l0 and a , and each R represents one parameter (as it is constant). Additionally, it is very impor-
tant that the number of parameters does not depend on the resolution of the Z(f ) measurements as a function 
of current i (as it was before).

Nonlinear least squares optimization. Now we optimize the new model (6) using NLS and we get nice 
smooth L(i) characteristics as shown in Fig. 6. On the other hand, though, giving the constraints in the form of 
D-Langevin (5) makes the fit deteriorated as shown in Fig. 5. The NLS does not cope in this regard: we either 
made the objective function too complicated or the current dependence of L(i) cannot be properly described by 
LDL(i) function. It is clear that we need some other methods to optimize the parameters for this model, beyond 
simple NLS.

Artificial intelligence optimization
Model (6) with inductances Lk(i) and L0(i) in the form (5) has smooth L(i) and R(i) characteristics (see Fig. 6) and 
reduced number of parameters in relation to the original model (3) ( 24 in our case as compared to 198 ). Moreover, 
the number of parameters in the original model (3) depends on the resolution of current iDC , and in the new 
model it relates only to the number of ladder elements. However, adding a constraint in the form (5) makes the 
optimization of this model (parameter selection) much more difficult and results in them giving smooth L(i) 

(6)Z(s, i) =

Nl
∑

k=1

sRk

s + Rk/L
DL
k (i)

+ sLDL0 (i)+ R0.

Figure 5.  NLS with Langevin constraint results of impedance Z(f , iDC) fitting for model (6): (a) fit versus true 
values of |Z|

(

f , iDC
)

 and ϕ(f , iDC) for two currents: iDC = 5 A, iDC = 50 A; (b) relative error as per (4) for all 
currents. Enforcing monotonic inductances and constant resistances make optimization extremally hard. Best 
result after many trials for NLS with Langevin constraint gives unacceptable fitting results.
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and R(i) parameters (as shown in Fig. 6), but having a poor fit (as shown in Fig. 5). We have a good model (6) 
with good physical interpretation, but we cannot fit its parameters. We need better optimization techniques to 
restore the model usability. Thus, we need better parameters optimization technique to restore the model usability.

We will now use and compare two modern approaches to multiparameter optimization: evolutionary algo-
rithms (see Section V.A) and simulated annealing method (see Section V.B).

The evolutionary algorithms are part of artificial intelligence-based computational techniques designed mainly 
for global optimization inspired by biological evolution. We will use two evolutionary approaches: Particle Swarm 
Optimization (PSO)25,26 and Differential Evolution (DE)27,28.

The simulated  annealing29,30 is an optimization method with inspiration coming from annealing in metal-
lurgy. At each time step, the algorithm randomly selects a solution close to the current one, measures its quality, 
and moves to it according to the temperature-dependent probabilities of selecting better or worse solutions. 
Accepting worse solutions allows for a more extensive search for the global optimal solution. We will use modern 
implementation of simulated annealing: Dual Annealing (DA)  algorithm31.

All three methods (PSO, DE, and DA) are metaheuristics. Metaheuristics typically make few or no assump-
tions about the problem being optimized and can search very large (much larger than traditional methods) spaces 
of candidate solutions. However, metaheuristics do not guarantee an optimal solution is ever found. But we will 
show that in our case these methods will be much better than traditional NLS.

Evolutionary optimization. In PSO a population of candidate solutions (particles) are moved around 
in the search-space according to a mathematical formula for the particle’s position and velocity. Each particle’s 
movement is influenced by its local best-known position but is also guided towards the best-known positions in 
the search-space. Figure 7 shows the results for the PSO: a characteristic problem was that it was not feasible to 
find a fit in a wide range of currents, e.g., for i ≥ 30A the fit is already weak.

Figure 6.  NLS with Langevin constraint results of inductances L(i) given by (5) and constant resistances R(i) in 
model (6). Langevin-derivative-like inductances and constant resistances are applied.

Figure 7.  PSO results of impedance Z(f , iDC) fitting for model (6): relative error as per (4) for all currents. 
Unacceptable fitting results.
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DE optimizes a problem by maintaining a population of candidate solutions and creating new candidate 
solutions by combining existing ones, and then keeping that candidate solution which offers the best fit to the 
optimization problem. Figure 8 shows the results of the DE fit, which are superior (see also Table 1). The DE is 
the best method we have tested. In terms of fit accuracy, it is even better than the original model with a much 
greater number of parameters as proposed  in10. Additionally, it provides smooth (physical) characteristics of 
L(i) and R(i) parameters – see Figs. 9 and 10, which is not provided by the model introduced  in10. The following 

Figure 8.  DE results of impedance Z(f , iDC) fitting for model (6): (a) fit vs true values of |Z|
(

f , iDC
)

 and 
ϕ(f , iDC) for two currents: iDC = 5 A, iDC = 50 A; (b) relative error as per (4) for all currents. Now using 
DE metaheuristic optimization method that gives best fit with lowest error, much better than standard NLS 
(compare with Fig. 5).

Figure 9.  DE results of inductances L(i) given by (5) and constant resistances R(i) in model (6).
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hyperparameters of the DE algorithm were used: population size = 300 , mutation constant = 0.7, crossover prob-
ability = 0.8 , and best1bin  strategy32. Figure 10 shows fit results for another run of the DE algorithm with the same 
parameters – now the characteristics are slightly different. This shows that different runs of the algorithm results 
in slightly different parameter sets for the model and therefore slightly different matches. This is a characteristic 
feature of probabilistic optimization methods.

Annealing. Now we will compare the results obtained for soft-computing evolutionary metaheuristics with 
more traditional approach: simulated annealing, for which we chose modern implementation of Dual Anneal-
ing (DA) 31. The DA combines the generalization of Classical Simulated Annealing (CSA) and Fast Simulated 
Annealing (FSA) coupled to a  strategy33 applied for local searching on accepted locations. The results are slightly 
worse than for DE (see Table 1), especially for lower frequencies – see Fig. 11. The DA had similar problem to 
PSO with finding a fit in a wide range of currents. The parameters applied: initial temperature = 20000 , visit 
parameter = 2.8 , and acceptance parameter = −100.

JA Models
Finally, there is one more advantage of taking the fit of the current characteristics for inductance L(i) in the form 
of the Langevin derivative (5): thanks to this, we obtain the frequency characteristics of magnetic saturation Ms , 
directly proportional to l0 in (5), as presented in Fig. 13.

Frequency-dependent Ms enters JA and makes it frequency dependent. We also checked the variability of 
a parameter from (5) and it remains almost fixed ( ±10% ) which is physically justified. The attempts of the 
frequency dependent JA model have been  reported34,35, however, our method makes it possible to derive the 
frequency dependence of the parameter that enters JA and hence we can naturally/easily get the frequency 
dependent JA.

Summary
In this work, we presented a method of creating lumped element equivalent circuit (LEEC) model of magnetic 
rings that can be implemented in EMTP or SPICE alike simulators for performing power system transient 
studies. We presented the method of selecting model parameters with the use of AI metaheuristic optimization 
algorithms.

Three AI metaheuristic optimization algorithms were tested: Particle Swarm Optimization (PSO), Differential 
Evolution (DE) evolutionary algorithms, and modern implementation of simulated Dual Annealing (DA). The 
DE algorithms proved to be effective in terms of fitting accuracy of the model parameters for the whole range of 
frequency and currents. The models were tested based on the measured impedance characteristics for frequency 
up to 100 MHz and current up to saturation.

We showed that the proposed method works on the actual measurements, i.e., it gives good fit and smooth 
current characteristics of the parameters. We presented that the parameters (inductances L and resistances R ) 
behave physically, i.e., L decreases with the current, and R is relatively constant, which shows that our model 
is not only heuristic, but has a physical justification. As a byproduct, we were able to determine the frequency 
dependence of the magnetic saturation MS parameter, which can be directly inserted to Jiles-Atherton (JA) 
model, and therefore it is easy to obtain the JA extension to the frequency domain, which can be useful in many 
applications. The Langevin function used in this work has a physical interpretation, which reduces number of 
parameters in the model.

Figure 10.  DE results of inductances L(i) given by (5) and constant resistances R(i) in model (6). Another 
Results for fitting model (6) with DE optimization, similar courses as in Fig. 9 but now a bit more ordered.
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The presented method is universal, and the selection of the rings used in the study was dictated by their 
reference to the actual and significant areas of application. Introducing further (apart from Langevin) physical 
dependencies to the model (e.g. taking into account geometry, size, or material) could be beneficial, as it could 
reduce the number of model parameters. The open question, in this case, is whether we would still be able to 
optimize such a model (find its parameters with sufficient accuracy) using the methods described in the paper.

Figure 11.  DA results of impedance Z(f , iDC) fitting for model (6): (a) fit vs true values of |Z|
(

f , iDC
)

 and 
ϕ(f , iDC) for two currents: iDC = 5 A, iDC = 50 A; (b) relative error as per (4) for all currents. DA gives a bit 
worse results on model (6) than DE (compare with Fig. 8).

Figure 12.  DA results of inductances L(i) given by (5) and constant resistances R(i) in model (6).
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Data availability
The codes used to calculate the results of this study are available from the corresponding author upon reason-
able request.
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