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Fabrication of in‑situ rod‑like 
TiC particles dispersed Ti matrix 
composite using graphite power 
sheet
Ning Wang1, Yongbum Choi2*, Kentaro Oue1 & Kazuhiro Matsugi2

Titanium matrix composites (TMCs) with TiC reinforcements were fabricated by an in‑situ method 
that evolves pure titanium foils (thick: 100 μm) and graphite powder sheets by spark plasma sintering. 
20 μm thick graphite powder sheets with PVA (polyvinyl alcohol) were fabricated as carbon resources. 
The effects of different sintering temperatures and heating time on microstructural features, 
interface, and properties of the composites were investigated. The structural and microstructural 
analyses were performed by EPMA, FE‑SEM, and EDS. The XRD patterns taken from the cross‑
section of the prepared composites revealed the composites are composed of  TiCx and hexagonal 
close‑packed (HCP) α‑Ti. Homogeneous rod‑like  TiCx particles reinforced TMCs were evaluated by 
tensile property. The tensile properties of the rod‑like  TiCx‑reinforced TMC show that the tensile 
strength (UTS) is 479 Mpa, which is 81.4% higher than pure titanium. The formation mechanism and 
enhancement mechanism of rod‑like  TiCx particles are also discussed.

Titanium matrix composites (TMCs) as lightweight structural materials have received a lot of interest in the 
last decades by reason of their excellent properties, such as high elastic modulus, high strength, good creep, and 
fatigue resistance even at elevated  temperatures1–6. Therefore, it has a broad application prospect in many fields 
such as the aerospace industry, biomedical and healthcare industry, the energy, and power generation industry 
and the petrochemical  industry1–4. However, Ti base materials will gain substantial prospects for more wide-
spread application if their properties can be improved beyond current Ti alloys and processing technologies. It 
is possible to produce TMCs with more competitive cost and performance, which will have great prospects in 
the field of replacing other metallic  materials2–4. Therefore, researchers have conducted a lot of exploration on 
titanium matrix composites to provide better properties and performance.

As well known, it has been found that the mechanical properties of TMCs mainly depend on the composition 
and microstructure of the matrix and reinforced  particles7. The in-situ synthesis method refers to the synthesis 
of reinforcing materials in the matrix by utilizing the reaction between the reactants and the alloy matrix. The 
in-situ fabrication technique is considered to be one of the most promising methods for preparing titanium 
matrix composites in the matrix due to the fine size and the strong interfacial bonding between the matrix and 
the reinforcement  phase3. Many high-modulus ceramic reinforcements for TMC have been investigated, such as 
SiC, TiB,  Al2O3, and TiC. Among them, TiC is considered as the most promising reinforcement material due to 
its excellent chemical compatibility with Ti  matrix5,9. TiC is a transition metal carbide with a face-centered cubic 
(FCC) NaCl-type structure. Its true composition is often non-chemometric and is represented by the general for-
mula  TiCx. Here x is the ratio of C to Ti, which ranges from 0.46 to 0.988–10. Conventional methods of preparing 
TMCs are mostly mechanical alloying (MA), powder metallurgy (PM), and ingot metallurgy technique (IM) with 
both advantages and disadvantages, uneven distribution of TiC particles, extremely high sintering temperature 
and complex heat treatment procedures are considered major  drawbacks11,12. Generally, laminated sintering is 
used in the preparation of composites with micro-laminated structures, which has the advantages of uniform 
distribution, simple preparation processes and strong interfacial  bonding13. In this study, TMCs were fabricated 
by hot press sintering on alternating stacks of titanium foils and graphite powder sheets. In order to completely 
diffuse the graphite layer into the titanium matrix, ultra-thin graphite powder sheets made of graphite powder 
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and PVA were used as a carbon source for the laminated sintering. In addition, the microstructural evolution 
during the fabrication of in-situ TiC-reinforced TMCs was investigated with a particular focus on the formation 
mechanism of rod-like TiC particles. Tensile tests were carried out as an assessment of the mechanical properties.

Materials and experimental
Starting materials. Pure Ti plates (> 99.49%, 1 mm thick), pure Ti foils (> 99.49%, 0.1 mm thick), graph-
ite powder (> 90%, 5 μm), and PVA solution (polyvinyl alcohol, 13 wt%) were used as starting materials. The 
detailed properties of pure titanium are listed in Table 1.

Fabrication of graphite powder sheet. The graphite powder sheet as the carbon source was prepared 
as follows (shown in Fig. 1): 0.3125 g graphite powders were mixed in 12.5 g PVA solution (13 wt %) in a beaker 
and continuous stir at 323 K for 1 h to form a homogeneous solution. The resultant solution was rolled evenly on 
a transparency film and then put in a drying oven to evaporate the solvent at 343 K for 24 h. The thickness of the 
resultant graphite powder sheet is about 20 μm. As shown in Fig. 1a, the graphite powder sheet shows smooth 
and uniform in texture.

Reaction of single layer of graphite powder sheet and Ti plates. Two Ti plates and one graphite 
powder sheet were cut into ɸ10 mm disks and then use fine quartz sandpaper to remove the oxide film on the 
surface of Ti plates. One piece of graphite powder sheet was sandwiched by two pieces of Ti plates and then sin-
tered in a spark plasma sintering (SPS) furnace at 873 K, 973 K, 1073 K, 1173 K, and 1273 K, respectively, under 
50 MPa for 0.6 k s to investigate the amount of reaction production (TiC) between graphite powder sheets and 
Ti plates with different sintering temperature.

Fabrication of TMCs with multi‑layer graphite powder sheets. TiC reinforced Ti matrix compos-
ites were prepared in a similar way as above. Ti plate, Ti foils, and graphite powder sheets were cut into ɸ10 
mm disks and then the Ti plates and foils were cleaned in the ultrasonic bath of acetone for the 1.2 k s. Then, 
two thick Ti plates are placed on the top and bottom ends, alternating between one piece of graphite powder 
sheet and one pieces of titanium foil in the middle as shown in Fig. 2a. A total of 10 pieces of graphite powder 
sheet and 9 pieces of titanium foil were used. The mass fraction of graphite is 0.82 wt %. LBN spray (ingredients: 
methyl ethyl ketone, dimethyl ether, isopropyl alcohol, nitrocellulose, manufactured by Showa Denko) was used 
as release agent. And then the samples were sintered in a spark plasma sintering (SPS) at 1273 K under 50 MPa 
for 0.6 k s. To investigate the effect of sintering temperature and heating time, the experiment of sintering at 
1473 K for 0.6 k s and 1473 K for 3.6 k s was conducted. Microstructures of composites are revealed by Scanning 
Electron Microscope (SEM, TOPCON SM-520, Japan). The powder morphology and sintered microstructure 
were observed by Electron Probe Micro-Analyzer (EPMA, JXA-8900, Japan). X-ray diffraction (XRD; D/max-

Table 1.  Properties of pure titanium.

Thickness t (mm) Purity (%) Tensile strength σTS/ (MPa) Yield strength σYS/ (MPa) Elongation δ (%)

1  > 99.49 320 165 27

Figure 1.  Schematic illustration of fabricating processes of Graphite powder sheet: (a) the SEM image of 
graphite powder sheet.
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2500/PC, Japan) analysis was carried out using Cu Kα radiation (λ = 1.54056 Å) at a scanning speed of 1° /min 
over the 2θ range of 30° –75°. A hydraulic servo strength tester (SHIMAZU, EHF-LV020K1-020) is used for the 
tensile test of composite materials. Tensile test conditions are based on ASTM test method E8M-11, crosshead 
speed 0.5 mm / min. Strain gauge F-02 W-12T11W3 (strain limit 2%, manufactured by Minebea Co., Ltd.) for 
Young’s modulus measurement. The shape of the test piece of the tensile tester is shown in Fig. 2b. The fracture 
surface of the test piece after the tensile test is observed using SEM.

Results and discussion
To observe the process of titanium-carbon diffusion reaction, a set of samples with different sintering 
temperatures was prepared. Figure 3a–e shows the vertical section of single-layer Ti matrix composite. 
Figure 3a’–e’ are replication views of the residual graphite sheet after sintering. At the sintering temperature of 
873 K, almost no reaction was observed at the bonding area between the two titanium plates and the graphite 
powder sheet. At the sintering temperature of 973 K and above, it can be observed macroscopically that the 
titanium plates bonded together, and the bonding area increased as the sintering temperature increased. When 
the sintering temperature was increased to 1273 K, about 95% of the graphite sheet reacted with titanium plates. 
At microscopic view, the reaction process is shown in Fig. 4. BSE image and area mapping of the sample with 
sintering temperature of 1073 K is shown in Fig. 4a. A dark gray interlayer can be seen at the interface of remained 
graphite and titanium plates, which is considered to be TiC. In some places, two titanium plates bond together, 
which is probably caused by the uneven thickness of graphite powder sheet. When the sintering temperature was 
increased to 1273 K, as shown in Fig. 4b, most of the graphite layer disappeared, but some short gray lines were 

Figure 2.  (a) Schematic illustrations of preparation processes of large-scale samples; (b) Image of shape of 
tensile specimen (ASTM test method E8M-11, unit: mm).

Figure 3.  SEM images of Ti matrix composite by different of sintering temperature: 873 K(a), 973 K(b), 
1073 K(c), 1173 K(d) and 1273 K (e); (a’)-(e’): Corresponding replication view of the residual graphite.
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observed at the original graphite powder sheet positions. In addition, many gray particles interspersed around the 
original graphite powder sheet position, but there are few particles presenting away from the center. To analyze 
the gray particles formed in the matrix, an FE-SEM image and EDS point analysis on these gray particles are 
shown in Fig. 5. As the results of point analysis, the dark gray particles are determined to be  TiCx particles. These 
TiC particles have an average particle size of 1 µm. Besides, the standard free energy ΔG of TiC formation was 
calculated by following equation when the sintering temperature is lower than 1973 K:

(1)�G = −184571.8+ 41.382T − 5.042TlnT + 2.425× 10
3
T
2
− 9.79× 10

5/T(T < 1939K)

Figure 4.  (a) BSE image and area mapping by EPMA of bonding area of TMC of 1073 K; (b) BSE image of 
TMC of 1273 K; (c) Schematic illustration of synthetic process of in-situ TiC particles dispersed TMC.

Figure 5.  FE-SEM image and point analysis by EDS of TiC reinforced TMC sintered at 1273 K.
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The Gibbs free energy ΔG for the reaction of titanium and graphite at 1073 K and 1273 K can be calculated as 
-172 kJ/mol and -174 kJ/mol,  respectively14,15. This result indicated the formation of  TiCx at 1073 K and 1273 K 
is spontaneous generation. Figure 4c is a schematic diagram of the diffusion–reaction between graphite and 
titanium matrix with increasing temperature.

In order to investigate the mechanical properties of composites, large-scale multi-layered specimens of in-
situ TiC reinforced TMCs were fabricated. Several layers of graphite powder sheets and titanium sheets were 
used as starting materials (as shown in Fig. 2). Figure 6 shows XRD patterns of large-scale samples with differ-
ent sintering temperature and heating time. It is evident from the Figure that each composite consists of  TiCx 
and hexagonal close-packed (HCP) α-Ti. The sample with sintering temperature of 1473 K for 3.6 k s shows 
the biggest diffraction peak intensity. Figure 7 shows the microstructure of the large-size TiC reinforced TMCs. 
Figure 7a is the sintering temperature of 1273 K for heating 0.6 k s. For this sample, there are both dark lines 
and gray lines were observed. The dark line is considered to be residual graphite and the gray line is considered 
to be the  TiCx layer formed at the bonding area of Ti foils and graphite powder sheet. In Fig. 7b, by keeping the 
holding time constant for 0.6 k s and increasing the sintering temperature to 1473 K, there are no deep dark lines 
were observed instead a gray line appeared in the original position. It demonstrates the graphite has completely 
reacted with Ti matrix at 1473 K. Figures 7c,d are the samples of sintering temperature of 1473 K for 3.6 k s. In 
this sample, no obvious thick long lines were formed, instead numerous rod-like  TiCx particles were observed 
in the matrix and homogenous composite was obtained. In Fig. 7b, due to the short holding time, the C atoms 
in the graphite layer have not completely diffused into the Ti matrix, resulting in a locally high concentration 
of C atoms. Therefore, a layer-like  TiCx forms at the interface. When the holding time is increased to 3.6 ks, the 
sample is closer to thermodynamic equilibrium and most of the carbon atoms diffuse uniformly throughout 
the  sample16,17. However, at the original position of graphite powder sheets, straight dotted lines formed by the 
arrangement of the short rod TiC can be still observed. The solid solubility of carbon atoms in titanium matrix 
is 0.05 wt% at room temperature, and 0.13 wt % above 1193 K. Figure 7e shows the schematic diagram of the 
ORs of  TiCx and α-Ti. The mechanism of formation of rod-like  TiCx particles were discussed in the following. 
Previous studies have already indicated the α-Ti co-deposited with TiC follows the crystallographic relation-
ship: (0001) α // (111) TiC; [11_20] α-Ti // [110] TiC, in accordance with the TiC (111) preferred  orientation8,18. As 
shown in Fig. 7c, the short rod-shaped  TiCx exhibits a regular angle to the direction of the Ti foils, at around 45 
degrees. This is thought to be the carbon atoms precipitating out of the titanium matrix and growing in a selective 
orientation along the (0001) α-Ti// (111) TiC. When the temperature is lower than 1155 K, the atomic structure of 
titanium is HCP, and the solubility of carbon atoms in titanium is ~ 0.05 wt%19; when the temperature is higher 
than 1155 K, the atomic structure of titanium is body-centered cubic (BCC), and the solubility of carbon atoms 
in titanium is ~ 0.15 wt%. When the temperature rises to 1153 K, the C atoms are dissolved from the graphite 
powder sheets. Part of the C atoms diffuse into the Ti matrix. When the temperature falls below 1153 K, the 
C atoms precipitate due to the reduced solubility of the C atoms, and the precipitated C atoms diffuse into the 
titanium octahedral voids along the (0001) α-Ti// (111) TiC in a selective orientation, forming  TiCx. In addition, 
many  TiCx particles with an average diameter of about 1 µm can also be observed in Fig. 7c,d, which is similar 
to the particles in Fig. 4b.  TiCx particles with two morphologies are present in the TMC prepared made from 
laminated stacks. Previous studies have demonstrated that the final shape of in situ  TiCx is directly related to the 
value of  x20. In C-atom vacancy structures, the number of C atoms is less than in structures without vacancies. 
Therefore, during the formation of  TiCx crystals, the low C contributes to the atomic vacancies. As a result, it 
does not grow into a cube, but into a  sphere20,21. Therefore, when the value of x turns low, the TiC particles do 
not grow into short rods, but into sphere particles.

Figure 8 shows the tensile stress–strain response curves for pure titanium and 1473 K TMC over 3.6 k s. The 
rod-like  TiCx reinforcement improves the strength of the titanium matrix but reduces its ductility compared 
to pure titanium. The composites showed significant improvements with ultimate tensile strength (UTS) of 
479 MPa, yield strength (YS) of 289 MPa and elastic modulus (E) of 234 GPa, 81.4%, 140.8% and 120.7% higher 

Figure 6.  XRD pattern of TiC reinforced TMC sintered with different sintering temperature and heating time.
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Figure 7.  (a) BSE images of TiC reinforced TMCs sintering at 1273 K for 0.6 ks; (b) 1473 K for 0.6 ks; (c) and 
(d) 1473 K for 3.6 ks; (e) The schematic diagram of the ORs of TiC and α-Ti.

Figure 8.  Tensile strength-displacement curve of of pure Ti and TiC reinforced TMC at 1473 K for 3.6 k s.
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than that of pure Ti, respectively. These enhancements came at the cost of ductility, which was reduced by 49.0%. 
Figure 9 shows the fracture diagram of the rod  TiCx-reinforced TMC sample after tensile testing. As shown in 
Fig. 9a, the composite shows typical ductile fracture characteristics with some river patterns and tear ridges 
clearly visible on the fracture surface. Some cracks can be observed in the corresponding magnified image of 
Fig. 9b. This observation suggests that the applied load may have been transferred from the substrate to the  TiCx 
particles, since strong interfacial adhesion can provide effective load transfer capability and thus increase the yield 
 strength17. Moreover, there are many ununiform dimples could be observed, which indicating good plasticity. 
Strengthening mechanism of rod-like  TiCx particles in Ti matrx were discussed in the following.  TiCx particles 
have excellent mechanical strength with an elastic modulus of 450 GPa, which is much higher than that of pure 
Ti (106.4 GPa). When load is applied to the composite, the hard TiC particles are able to bear part of the load. 
As shown in Fig. 9a, It shows a brittle fracture manner in the  TiCx particles and ductile manner in the matrix. 
In addition, the in-situ synthesized  TiCx particles have strong interfacial adhesion with the Ti matrix, which 
ensures an effective load transfer capability, thereby increasing the yield  strength18. As shown in Fig. 9b, strong 
bonded interfaces between Ti and TiC transfer loads without debonding. In our work, the addition of a small 
amount of carbon (0.82 wt %) resulted in a significant increase in the tensile strength of the titanium matrix. 
However, the tensile properties of our rod-like  TiCx-reinforced TMCs are not outstanding when compared to 
the reference literature. For instance, Castro et al.22 reported a 0.21 vol.% TiC-reinforced TMC by ingot casting 
metallurgy technique, with UTS of 565 MPa, which correspond to an increase of 47.4%, compared to pure Ti 
(UTS of 386 MPa). Lu et al.23 reported a 3 wt.% PCS (polycarbosilane) of TiC-reinforced TMC by powder metal-
lurgy, with UTS of 861 MPa, which correspond to an increase of 56.8%, compared to HDH (hydride-dehydride) 
pure Ti (UTS of 549 MPa). In contrast, although the UTS of our rod-like TiC reinforced TMC was 479 MPa, it 
significantly increased by 81.4% compared to the pure Ti (UTS of 264 MPa). As well known, the tensile properties 
of composites are also highly dependent on the matrix. Therefore, in future research, we will focus on improving 
the tensile properties of rod-like  TiCx reinforced TMCs for example by changing matrix materials.

Conclusion
(1) Graphite powder sheet and titanium plates were bonded together due to the solid phase reaction over 
973 K. The bonding area increased as the temperature increased. The bonding rate was up to 95% at sintering 
temperature of 1273 K.  TiCx particles with an average diameter of 1 µm were observed in the Ti matrix nearby 
the original position of graphite powder sheet.

(2) For large samples, a homogenous rod-like  TiCx particles reinforced TMC using pure titanium foils and 
graphite powder sheet was fabricated by increasing the sintering temperature and holding time to 1473 K for 
3.6 k s. XRD indicated all composites are composed of  TiCx and hexagonal close-packed (HCP) α-Ti.

(3) The rod-like  TiCx particles reinforced TMC have improved mechanical properties compared with pure 
titanium. The result of tensile test revealed the tensile strength of 479 MPa, yield strength of 289 MPa and elastic 
modulus of 234 GPa, which were 81.4%, 140.8% and 120.7% increased, respectively.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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