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Frequency response characteristics 
and failure model of single‑layered 
thin plate rock mass under dynamic 
loading
Feng Li1,2, Chenchen Wang1*, Runchuan Sun1, Guangyou Xiang1, Baorui Ren1 & Zhao Zhang1

In underground engineering, disturbance of dynamic load can change layered rock mass stress state 
and induce accidents. Traditional elastic mechanics can’t effectively solve the complex deformation 
problem. However, Hamiltonian mechanics system can overcome this problem. Dual variables are 
introduced in symplectic space to solve the deflection equations of single‑layered thin plate rock mass. 
Comparing vibration parameters, it’s found the 1st, 5th and 6th order are effective vibration modes. 
The resonance characteristics of thin plate are obtained with three dynamic loads. It’s found the thin 
plate is most likely to resonate and damage due to the smallest resonance frequency interval and the 
largest vibration amplitude by impact wave and rectangular wave respectively. Then, the vibration 
mode of multi‑layered rock mass is analyzed through Multiple Reference Impact Testing. The failure of 
fine sandstone is caused by the resonance of effective vibration modes by hammer excitation. Finally, 
the failure mechanism of thin plate is obtained by the failure theory and LS‑DYNA. It’s found the four 
sides and corners suffer tensile shear failure and shear failure respectively. When tensile failure occurs 
in central, the main crack and secondary crack propagate along long axis and short axis to form “O‑十” 
failure mode.

In the process of geological deposition, sedimentary rocks with bedding structure are formed due to gravity. The 
sedimentary rocks with obvious bedding structure can also be considered as multi-layered rock  mass1–4. The 
layered rock mass can maintain good mechanical properties and strong stability without external  disturbance5,6, 
but with the development of underground engineering, the stress state of deep buried layered rock mass will 
change and cause deformation and  failure7–9. Therefore, the study on mechanical properties of layered rock 
mass is urgent. Multi-layered rock mass can be regarded as formed by cementation of single rock mass with 
various properties. So, the material properties of layered rock mass are heterogeneous, which leads its nonlinear 
mechanical  properties10,11. In order to clarify the mechanical properties of layered rock mass, several scholars 
have carried out a series of mechanical experiments. Zuo prepared coal-rock combination specimens with dif-
ferent lithologies by adhesive  tape12–14, they established nonlinear theoretical model of coal-rock combination, 
pre-peak and post-peak stress–strain models under uniaxial  compression15,16. Zhang discussed relationship 
between layers and mechanical parameters of multi-layered rock mass by true triaxial compression tests. It was 
found the peak strength and peak strain increases along with confining pressure increases. The mechanical 
properties and statistical damage constitutive model under hydraulic-mechanical coupling rock mass was estab-
lished by comparing the deformation characteristics and failure  modes2. Wang studied the effect of interlayer 
thickness and strength on mechanical behavior and failure processes of layered rock mass with holes through 
uniaxial compression experiments. They found interlayer thickness and strength would lead the change of peak 
strength and elastic modulus of rock  mass17. Liu conducted true triaxial compression experiments on two types 
of foliation orientation according to the large anisotropic deformation caused by the change of original rock 
stress state. They found the strength and failure modes of layered rocks greatly due to the lateral stress differ-
ences ( σ2 − σ3 ) has great influence on different foliation directions. Correspondingly, in order to avoid large 
anisotropic deformation, the angle between the tunnel axis and foliation strike should be as large as  possible18. 
Cai considered the influence of intermediate principal stress on rock fracture and strength, the developed path 

OPEN

1School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), 
Ding No.11, Xueyuan Road, Haidian District, Beijing 100083, China. 2State Key Laboratory for Geomechanics 
and Deep Underground Engineering, China University of Mining and Technology (Beijing), Beijing 100083, 
China. *email: cumtbwangchenchen@126.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-23792-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19047  | https://doi.org/10.1038/s41598-022-23792-8

www.nature.com/scientificreports/

of microcracks and fractures in rock was analyzed by using numerical simulation (FEM/DEM). Stress-induced 
fracturing and microcracking leading to onion-skin fractures, spalling and slabbing in layered rock mass were 
 revealed19. In order to study mechanical properties of composite rock mass, Zienkiewicz proposed multilayered 
rock mass model which considered viscoplastic strain rate as the sum of each joint group and rock  material20. 
Further Wu proposed an anisotropic composite model based on the Drucker-Prager criterion. The model not 
only can describe anisotropic characteristics of rock strength and deformation, but also can realize nonlinear 
 operation21. Several researchers studied rock mechanical properties and failure modes through uniaxial or triaxial 
compression experiments from macroscopic perspective, which is not comprehensive for considering the meso-
scopic evolution of the creep fracture in layered rock mass. Zhao obtained the influence of inclination, thickness, 
weak layers on creep failure mode through analyzing the initiation, propagation, penetration process of cracks 
in layered rock  mass22. Wang studied two curved failure mechanisms for single and multiple rock layers in high-
pressure gas storage tunnel based on the upper bound theorem and variational principle. The analytical solutions 
of critical uplift pressure and failure surface were solved, which can provide theoretical references for tunnels 
design and  construction23. By analyzing the stress–strain characteristics and failure characteristics of layered 
rock mass in these researches, they established the damage constitutive model which can provide strong support 
for deformation and failure of roadway surrounding  rock4,24,25. However, the low strain rate loading condition 
is not suitable for all cases. In roadway excavation and tunnel excavation, the dynamic impact load with high 
strain rate can be generated when using mechanical tools and blasting  excavation26,27. The rock failure modes 
caused by the two loading conditions are quite different, the fundamental reason is the rock failure mechanisms 
under the two loading conditions are different. In underground engineering, layered rock mass will be damaged 
by impact load with high strain rate, so it is necessary to study the deformation and failure characteristics of 
layered rock mass under dynamic impact load.

Because the depletion of coal resources in shallow strata, coal mines enter deep strata mining. With the depth 
increase, the ground stress and gas stress of coal seam increase. The stress state of layered rock mass became 
more complicated, dynamic disasters such as gas outburst and rock burst occur more  frequently28–30. Under 
strong dynamic disturbances, the damage of multi-layered rock mass in the upper part of the roadway is fatal to 
the safety production in  mines27,31,32. Now most failure mode studies of layered rock mass are focusing on the 
quasi-static loading conditions with low strain rate, while the failure modes under impact load and quasi-static 
load are quite  different33. But there are few studies on the layered coal rock mass under impact load, which have 
great significance for dynamic disaster control in mine. Braunagel studied the effect of rapid stress cycles on 
dynamic compressive strength using modified split Hopkinson pressure bar (SHPB). They found the failure mode 
of rock changes from localized failure along discrete fractures to distributed fracturing, the compressive strength 
of granite decreases twice under cyclic  loading34. Xie constructed the dynamic mechanical constitutive model 
of the coal-rock combination specimens by SHPB. They found the strain softening effect were stronger than the 
hardening effect in coal-rock combination specimens, main damage location was in the coal  body35. According to 
the experiment result, Wen studied the dynamic compression characteristics of layered rock mass with significant 
strength changes. They found the dynamic compressive strength of layered rock mass increases approximately 
linearly with loading strain rate increased. Recording crack propagation paths by high-speed camera, it was 
found the bedding plane dip angle control the failure mode for parallel or near-parallel to the dynamic wave 
trans-mitting  direction36.Han found the localized slabbing degree of composite rock mass was sensitive to the 
filled joint thickness, but all specimens ultimately exhibited an axial splitting  failure37. Furthermore, Han studied 
the influence of interlayer strength on stress propagation, crack propagation mechanism and failure mode in 
composite rock-mortar specimens by SHPB and DIC. It was determined that tensile cracks initiate at the rock-
mortar interface along the loading direction eventually leading to tensile  failure38. Qiu studied the influence of 
interfacial roughness and loading rates effect on crack extension velocity. The results showed that the larger the 
interfacial roughness, the easier the crack penetrates the composite rock mass, and the average crack propagation 
speeds increase with loading  rate39,40. Zheng proposed a numerical 3D mesoscopic approach based on the discrete 
element method combined with XCT images to characterize the dynamic impact behavior of heterogeneous 
coal-rock. According to the model, the meso-damage mode and fracture mechanism of heterogeneous coal-rock 
under different impact modes and impact velocities were  studied41,42. Since the existing phase field mode can only 
model the tensile-induced fracture which can’t well reproduce the diversity of dynamic fracture, Duan proposed 
a new phase field model which involved all the commonly seen dynamic fracture mechanisms to reflect dynamic 
rock diversity under impact loading. Through this model, crack initiation and propagation can be automatically 
characterized by phase field evolution equation, and different fracture modes of layered rock can be  predicted43. 
In addition, some scholars used thin plate theory to study the breaking form and caving law of the gob roof. 
Zuo simulated the roof fracture experiment of goaf by thin plates, which explained the O–X failure mode of thin 
plate was initiated by tensile-shear  stress44. Because of transverse shear stress strengthened with plate thickness 
increase, the failure mode of “O − *” appear. These studies provide good foundation for exploring the dynamic 
mechanical properties of layered rock mass, but now the complex deformation characteristics and failure mode 
of layered rock mass are still unclear using traditional elastic mechanics. However, the failure characteristics of 
layered rock mass are very important for underground engineering. So, further research on this aspect is required.

Now, the fracture research on thin plates is based on the traditional elastic mechanics, it’s difficult to find all 
solutions which strictly meet the boundary conditions in the solution process. So, the boundary conditions are 
often given by saint venant  principle45–47. However, the substitution method will lead large errors in the boundary 
calculation results, which is difficult to reflect the real  situation48,49. Hamilton mechanical system can overcome 
the shortcomings of some boundary conditions in traditional elastic  mechanics50–52. During solving process, this 
method can reduce the order of high-order differential equations to decrease the difficulty of solving by introduce 
the dual variables in symplectic  space53,54.So the Hamiltonian mechanics system can solve the end, local complex 
deformation problems which are difficult to deal by traditional elastic  mechanics55. In order to clarify the failure 
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characteristics of multi-layered rock mass, it’s necessary to clarify the failure characteristics of single-layered thin 
plate rock mass. In this paper, the mechanical problem of single-layered thin plate rock mass is transformed into 
solving the eigenvalue and eigenvector of Hamiltonian. Based on the separation variable method, the deflection 
vibration mode function of single-layered thin plate rock mass is derived, the controlling equations of thin plate 
are solved by the Duhame integral. Subsequently, the resonance characteristics of single-layered thin plate rock 
mass under different dynamic loads are discussed, which the correctness of the theoretical derivation is verified 
by analyzing the effective vibration mode parameters in MRIT. Finally, the failure characteristics of single-layered 
thin plate rock mass under impact load are obtained through failure theory and numerical simulation.

Deflection equation of single‑layered thin plate rock mass under forced vibration
Control equation of single‑layered thin plate rock mass. As shown in Fig. 1, in this paper the single-
layered thin plate rock mass is transversely isotropic in mechanical properties. The density of the rock mass is ρ, 
the thickness is h, the size is a × b, the elastic modulus is E, the Poisson’s ratio is υ, the x–y plane is neutral plane.

Based on the transient equilibrium conditions of the internal mechanics of thin plate rock mass, the differ-
ential equation of single-layered thin plate rock mass can be derived under forced  vibration56:

where w (x, y, t) is the deflection; D is the bending stiffness of single-layered thin plate rock mass; ρ is the density 
of single-layered thin plate rock mass; q(t) is external dynamic load.

To solve the homogeneous Eq. (1), set q(t) = 0, the free vibration differential equation of single-layered thin 
plate rock mass as  follows50:

In this paper, we assume that the vibration of single-layered thin plate rock mass has the following harmonic 
oscillator with time as:

where ω is the natural frequency; W(x,y) is the deflection mode function.
Bring Formula (3) into Formula (2), we can get:

where k4 = ρhω2/D.

Hamilton dual vibration equation of single‑layered thin plate rock mass. It is necessary to 
decouple the physical parameters in (4) using the Hamilton dual equations. If set θ = ∂W/∂x, the relationship 
between the physical parameters as  follows57:

If vector v = [W, θ, − Vx, Mx], the dual equation in Hamilton system as  follows58:

The Eq. (8) can also be expressed as:

(1)D∇4w(x, y, t)+ ρh
∂2w(x, y, t)

∂t2
= q(t)
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∂t2
= 0
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Figure 1.  Mechanical calculation model of single layered thin plate rock mass.
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Solution of the Hamilton dual equations. Based on the symplectic geometry method and separation of 
variables, the solutions of (9) can be obtained. W(x) and W(y) are the deflection modes along the x and y direc-
tions respectively, the specific forms as  follows58–60:

where α1 and α2 are the eigenvalues in the x direction, β1 and β2 are eigenvalues in the y direction, α1, α2, β1, β2 
satisfy the following rules:

α2
1 + α2

2 = β2
1 + β2

2 = 2k2 , α2
1 + β2

1 = k2 , α2
2 + β2

2 = 3k2 , α2
2 − β2

1 = k2.

Deflection equation of single‑layered thin plate rock mass under free vibration. In order to 
obtain the deflection equation of single-layered thin plate rock mass under free vibration, the boundary condi-
tions should be determined. In this section, single-layered thin plate rock mass in a state of four edges fixed and 
isn’t disturbed by external load.

In the y direction of thin plate rock mass, there are the following relations:
W(x,0) = 0, ∂W(x,0)/∂y = 0; W(x,b) = 0, ∂W(x,b)/∂y = 0.
Combined with (9), we can get:

With (11), the frequency equation along the y direction can be obtained as:

The deflection equation as follows:

where
k1 =

cosα1b−cosh α2b
α2
α1

sin α1b−sinh α2b
 , k2 = cosβ1a−cosh β2a

β2
β1

sin β1a−sinh β2a
.

Deflection equation of single‑layered thin plate rock mass under forced vibration. Solution of 
the control equation. The solutions’ form of the non-homogeneous control Eq. (1) can be expressed as follows:

Insert (15) into (1):

With (4),

Then,

The orthogonality of the deflection equations as  follows61:

(9)
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We multiply both sides of (18) by Wm(x,y) and do integral over the thin plate:

Set

Then,

Based on Duhamel’ Integral, the solutions can be expressed as follows:

And then,

The main vibration mode Wm(x,y) of single‑layered thin plate rock mass. Combining the frequency equation 
of single-layered thin plate rock mass, the main vibration mode is solved by Newton’s iterative method and the 
calculated values of the first 10 order vibration modal parameters are shown in Table 1. It’s found that the 1st 
order,5th order and 6th order vibration functions are the main vibration modes by comparing the first 10 order 
vibration modal parameters (Table 2).

(19)

∫∫

�

ρhWm(x, y)Wn(x, y)dxdy = 0, (m �= n)

(20)

∫∫

�

ρhW2
m(x, y)[ω

2
mϕm(t)+ ϕ′′

m(t)]dxdy =

∫∫

�

q(t)Wm(x, y)dxdy

(21)Mm =

∫∫

�

ρhW2
m(x, y)dxdy, Pm(t) =

∫∫

�

q(t)Wm(x, y)dxdy

(22)ϕ′′
m(t)+ ω2

mϕm(t) =
1

Mm
Pm(t)

(23)ϕm(t) =
1

Mmωm

t
∫

0

Pm(τ ) sinωm(t − τ)dτ

(24)ϕm(t) =

∫∫

�

Wm(x, y)dxdy

Mmωm

t
∫

0

q(τ ) sinωm(t − τ)dτ

Table 1.  The first 10 vibration modal parameters of single-layered thin plate rock mass.

Parameter 1st order 2nd order 3rd order 4th order 5th order 6th order 7th order 8th order 9th order 10th order

β1 1.443 1.301 2.573 2.483 1.227 3.643 2.404 3.589 2.346 2.346

β2 2.145 3.247 2.949 3.765 4.437 3.895 4.802 4.514 5.930 5.930

α1 1.122 2.104 1.019 2.001 3.015 0.975 2.940 1.935 3.904 3.851

α2 2.329 2.795 3.778 4.042 3.479 5.243 4.494 5.433 4.248 5.083

k 1.828 2.474 2.767 3.189 3.255 3.771 3.797 4.078 4.079 4.509
∫∫

�

Wm(x, y)dxdy 13.589 8.1 ×  10–12 7.0 ×  10–12 0 8.503 12.565 − 4.3 ×  10–11 3.1 ×  10–9 4.9 ×  10–10 0

Table 2.  Main mode frequency of single-layered thin plate rock mass with different lithology (ωm).

Frequency Lithology 1st order (rad·s−1/Hz) 5st order (rad·s−1/Hz) 6st order (rad·s−1/Hz) Elastic modulus E(GPa) Poisson ratio Density (Kg/m3) Size

Fine sandstone 189.4/30.1 600.6/95.6 806.3/128.3 28.8 0.2 2800 a:3.6; b:3.0;

Sandstone 137.5/21.9 436.1/69.4 585.3/93.1 13.5 0.25 2550

Coarse sandstone 135.6/21.6 429.9/68.4 577.0/91.8 14.1 0.22 2700

Limestone 115.0/18.3 364.7/58.0 489.5/77.9 10.7 0.18 2800

Siltstone 114.7/18.2 363.6/57.9 488.0/77.7 10.1 0.2 2680

Sandy mudstone 105.5/16.8 334.6/53.3 449.2/71.5 7.8 0.27 2530 h:0.06

Mudstone 91.8/14.6 291.1/46.3 390.8/62.2 5.8 0.28 2500

Coal 63.2/10.1 200.5/31.9 269.1/42.8 1.5 0.32 1400

Soft Coal Seams 34.9/5.6 110.5/17.6 148.4/23.6 0.4 0.39 1300
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Vibration laws of single‑layered thin plate rock mass under dynamic loading
The Fourier series expressions under dynamic loading. Fourier transform can be used to obtain the 
Fourier series expressions and waveforms of rectangular waves, triangular wave and impact wave. The Fourier 
series expressions and waveforms of dynamic loading with amplitude A = 1, period T = 2 s as shown in Table 3. 
When the Fourier series expressions are inserted in Eq. (4), the time harmonic vibration term φm(t) of thin plate 
rock mass as shown in Table 4. Then, the vibration equation of thin plate rock mass can be obtained with Eq. (3). 
When the vibration frequency of dynamic loading and the main vibration mode (ωm) of thin plate rock mass 
satisfy Eq. (25), resonance phenomenon occurs.

Resonance frequency distribution laws of dynamic loading. The vibration frequency and period of 
the dynamic load is ω = π rad/s (0.5 Hz), T = 2 s. By plotting φm(t) versus ωm under three different dynamic loads, 
the resonant frequency characteristics of thin plate rock mass are revealed at t = 0–20 s, 0.01 s interval, algebraic 
and term n = 150.

Resonance frequency distribution laws of rectangular wave. Under the rectangular wave, the time harmonic 
vibration term φm(t) of effective modes which the 1st, 5th and 6th orders are analyzed and the vibration patterns 
as shown in Fig. 2. It’s found that the resonance frequency interval caused by rectangular wave is 2π (2ω), the 
resonant amplitude φm(t) distributed in ωm = π–15π rad/s (ω–15ω). According to (25), the thin plate rock mass 
will resonate when ωm = nω. With rectangular wave, when n is odd number, the resonance phenomenon is obvi-
ous. When n is even number, the resonance phenomenon is not obvious. The amplitude of resonance decreases 
exponentially with the resonance frequency increases.

Resonance frequency distribution laws of triangular wave. Under the triangular wave, the time harmonic vibra-
tion term φm(t) of effective modes which the 1st, 5th and 6th orders are analyzed and the vibration patterns as 
shown in Fig. 3. Like the effect of rectangular wave, the resonance frequency interval caused by triangular wave 
is 2π (2ω), the resonant amplitude φm(t) distributed in ωm = π–15π rad/s (ω–15ω). With triangular wave, when n 
is odd number, the resonance phenomenon is obvious. When n is even number, the resonance phenomenon is 
not obvious. The amplitude of resonance decreases exponentially with the resonance frequency increases.

Resonance frequency distribution laws of impact wave. Under the impact wave, the time harmonic vibration 
term φm(t) of effective modes which the 1st, 5th and 6th orders are analyzed and the vibration patterns as shown 
in Fig. 4. Different from the rectangular wave and triangular wave, the resonance frequency interval caused by 

(25)n2ω2 = ω2
m, while: nω = ωm(n = 1, 2, 3, 4 . . .)

Table 3.  The Fourier series expressions and waveforms of dynamic loading q(t) (A = 1).

Dynamic loading FFT series expression waveforms of dynamic loading
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∞
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n sin2
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2
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n

(

1
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T

∞
∑
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cos(nωt)

)

Table 4.  The time harmonic vibration term φm(t) of single-layered thin plate rock mass under dynamic 
loading.

Dynamic loading The time harmonic vibration term φm(t)
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∞
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∑
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impact wave is π (ω), the resonant amplitude φm (t) relatively small. With impact wave, single-layered thin plate 
rock mass will resonate when n is positive integer. The amplitude of resonance keeps constant with the resonance 
frequency increases.

By analyzing the resonance parameters generated from different dynamic loads. On the one hand, the reso-
nance frequency interval caused by impact wave is the smallest in dynamic loads, so that single-layered thin 
plate rock mass will resonate easily by impact wave. On the other hand, the resonant amplitude of rectangular 
wave is the biggest in dynamic loads, so that the resonance effect caused by rectangular wave is the most obvious. 
Correspondingly, the damage effect by rectangular wave acting on thin plate rock mass is the most significant.

Figure 2.  The vibration of φm(t) of ωm under rectangular wave.

Figure 3.  The vibration of φm(t) of ωm under triangular wave.

Figure 4.  The vibration of φm(t) of ωm under impact wave.
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Spectrum structure analysis experiment of dynamic loading. Experimental system and sam‑
ple preparations. The similarity simulation experiment is widely used to simulate the deformation and 
failure laws of overlying strata in mining. In this paper, the similarity simulation experiment platform is 
1800 mm × 160 mm × 1100 mm. We use five types rock mass to simulate multi-layer coal and rock mass, the rock 
mass from the top to the bottom of the model are fine sandstone, medium sandstone, coal, coarse sandstone, 
mudstone respectively. The thickness of each rock mass is 200 mm and the bulk density similarity ratio is 1:1.6. 
The composition and ratio of similar materials in each layer rock mass as shown in Table 5.

Action points and sensors distribution. In the traditional experimental modal analysis, the force hammer is 
used as the excitation device. Hammering method is the most widely used modal test method due to its con-
venient installation, strong mobility and less channel requirements. According to the number of data acquisi-
tion equipment channels, hammering method can be divided into Single Reference Impact Testing (SRIT) and 
Multiple Reference Impact Testing (MRIT)62,63. MRIT can obtain more row or column matrix parameters for 
spectral analysis, MRIT is more convenient than  SRIT64,65. So MRIT is used in this paper, 9 hammer action 
points are arranged in turn on the top surface of fine sandstone, 100 mm apart from two adjacent action points. 
In order to reduce the damage of fine sandstone structure caused by the force hammer, iron blocks with size of 
80 mm × 80 mm are placed at each action point as shown in Fig. 5. The 1#–5# action point is arranged vertically 
at the top plane center of fine sandstone, the action points 6#, 8# and 7#, 9# are located on the left and right sides 
of the top of fine sandstone, which arranged at 45° and 135° in the horizontal direction. The vibration amplitude 
which caused by force hammer is measured by magnetoelectric speed sensors (2D001), the No.1-No.4 sensors 
are distributed respectively at the interfaces of each layer rock mass, the surface of the sensor (signal receiving 
surface) attached the interface of each rock mass. The magnetoelectric signal is transmitted to the distributed 
network dynamic signal test system (DH5981), which is used for data acquisition and analysis.

Variations amplitude and amplitude‑frequency distribution. When 2# action point is acted by the force ham-
mer, the amplitude curve of each layer rock mass obtained by No.1–No.4 sensors as shown Fig. 6. It’s found that, 
the vibration trends measured by four sensors are similar. When t1 = 15 ms, the No.1 sensor reaches the first 
extreme value  s1 = − 0.005 mm; When t6 = 51 ms, the No.1 sensor reaches the peak  s6 = 0.014 mm. When the 2#, 
4# and 6# action points are respectively acted by the force hammer, the extreme points and corresponding time 
points of amplitude curve as shown in Table 6. Under the disturbance of impact load, the vibration period of 
each layer rock mass is  T1 = 18–21 ms, the vibration frequency is 45–52.5 Hz.

When 2# action point is acted by the force hammer, the amplitude-frequency distributions of each sensor 
as shown Fig. 7. It’s found that the amplitude vibration trends measured by four sensors are similar. When 
p1 = 50.5 Hz, the No.1 sensor reaches peak 7.2 ×  10−3 mm, other sensors reach peak at this nearby frequency. 
Based on Hilbert Huang transform (HHT), the interface vibration waveforms are decomposed by  EEMD27,29,32. 
Combined with energy formula: 

∫∞

−∞
x2(t)dt , the energy distributions and marginal spectrum of the decomposed 

waveforms are  obtained30,56.
With 2# action point is excited, the vibration waveform is decomposed into five vibration modes (IMF1–IMF5) 

as shown in Fig. 8a. IMF1, IMF2 and IMF3 occupy most energy of the vibration waveform in Fig. 8b, so they 

Table 5.  The composition and ratio of similar materials of each layer.

Serial number
Layers of coal and 
rock mass

Compressive strength/MPa

Fine sand /Kg Cement/Kg Gypsum/Kg Water /KgRaw material Similar material

1 Fine sandstone 120 0.75 72.98 7.30 17.03 9.73

2 Medium sandstone 80.1 0.50 81.09 8.11 8.11 9.73

3 Coal 10 0.063 86.49 7.57 3.24 9.73

4 Coarse sandstone 61.5 0.384 83.40 6.95 6.95 9.73

5 Mudstone 27.4 0.171 88.46 6.32 6.32 10.11

Computer

Portable source

Power
supply

Magneto electric speed sensors
buried at the interfaces

DH5981(8CH)

Fine sandstone

Medium sandstone

Coal

Coarse sandstone

Mudstone

Sensor
cable

Figure 5.  Experimental model and data acquisition system.
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are called effective vibration modes. IMF2 is called the main vibration mode due to it takes up 96% of the total 
energy. It’s found that the vibration frequency of the original waveform in 40.0–90.0 Hz  (P1–P3) by analyzing 
the marginal spectrum in Fig. 8c. When the vibration frequency P2 = 50.5 Hz, the marginal spectral amplitude 
reaches the maximum value. By analyzing the marginal spectrum of effective vibration modes (IMF1, IMF2 and 
IMF3), the predominant frequencies of IMF1、IMF2 and IMF3 are P4 = 236.8 Hz, P5 = 50.2 Hz and P6 = 45.9 Hz 
respectively. The resonance frequency range caused by impact load is 225–262.5 Hz and 45–52.5 Hz. Accord-
ing to Table 2, it’s found that the main vibration modes frequency of fine sandstone is 30.1–128.3 Hz which is 
similar to the disturbance frequency of impact load. This cause resonance and enhance the failure effect of fine 
sandstone under impact load.

The failure mode of single‑layered thin plate rock mass under dynamic loading. Based on the first strength theory 
and third strength  theory66, the maximum shear stress(τmax) distribution of the 1st, 5th and 6th mode as shown 
in Fig. 9. In 1st mode, the maximum shear stress concentrates at the middle of the four sides, which is sym-
metrical along the long and short central axis. The maximum shear stress of the 5th mode distributes in the 
long central axis and the middle of the two short sides, which are symmetrical along the long central axis. The 
maximum shear stress of the 6th mode distributes in the short central axis and the middle of the two long sides, 

Figure 6.  Amplitude time-history curves under 2# action point excited alone.

Table 6.  The extreme points of amplitude curves of 2#, 4# and 6# action points.

Extreme value (mm) /Time (ms) s1/t1 s2/t2 s3/t3 s4/t4 s5/t5 s6/t6 s7/t7 s8/t8 s9/t9 s10/t10 s11/t11 s12/t12

2# action point 0.005/15 0.014/18 0.011/21 0.010/33 0.011/42 0.014/51 0.014/61 0.013/70 0.011/80 0.006/99 0.006/99 0.004/109

4# action point 0.004/12 0.009/15 0.007/22 0.012/29 0.013/38 0.015/49 0.015/58 0.014/67 0.011/78 0.008/86 0.007/97 0.004/117

6# action point 0.001/7 0.002/13 0.005/18 0.005/25 0.005/33 0.005/43 0.005/52 0.004/62 0.003/72 0.003/82 0.002/92 0.002/101

Figure 7.  Amplitude-frequency distribution of interface vibration under 2# action point excitation.
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which are symmetrical along the short central axis. It’s found that the stress σx of the 1st and 6th effective mode 
are greater than the stress σy, the stress σy of the 5th effective mode is greater than the stress σx, the shear stress 
is relatively small. So that the tensile failure is the main failure pattern in the center of thin plate rock mass. At 
the middle of the four sides on the thin plate rock mass, the stress σx, σy and τmax concentrate together. The shear 
stress τxy of the 1st, 5th and 6th modes and stress σy of the 6th mode are concentrated at four corners. Therefore, 
four sides of the thin plate rock mass are the tensile-shear failure caused by the combined action of tensile stress 
and shear stress, four corners are the shear failure caused by the shear stress. On the area outside the four sides 
and four corners, τmax of the 1st mode is relatively small, τmax of the 5th and 6th modes concentrate along the long 
central axis and short central axis of the thin plate respectively. When thin plate rock mass subjected to dynamic 
load, many main cracks are formed along the long central axis, a small number of secondary cracks are formed 
along the short central axis of thin plate.

Numerical simulation of the dynamic damage and failure. In LS-DYNA, the PLASTIC_KINEMATIC mate-
rial model and Cowper Symonds model are used to simulate the failure of the thin plate rock mass under the 
dynamic  load67. The dynamic damage and failure process of thin plate rock mass as shown in Fig. 10. From 
Fig. 10a, it’s found that cracks first appear in the middle and corners of the four sides on the thin plate, these 
cracks develop further along the boundary. Subsequently, cracks are generated in the center of the thin plate, 
the cracks extend outward along the long and short central axes of the thin plate in Fig. 10b. And the number 
of cracks along the long central axis is much larger than the cracks along the short central axis in Fig. 10c. The 
numerical simulation results are consistent with theoretical derivation in Fig. 9. So that, the failure position can 
be determined by 1st effective mode which in the middle of the four sides, four corners and central area of the 
thin plate. The trend of the cracks can be determined by the 5th and 6th effective modes, which along the long 
central axis and short central axis.

Figure 8.  The waveform decomposition under 2# action point excitation.
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Discussions
The failure patterns of single-layered thin plate rock mass with thickness of 2 cm and critical thickness of 4.5 cm 
were studied under static load by the simulation experiment device for roof breakage in goaf as shown in Fig. 11 
44. The results showed that: (1) With static load in Fig. 11a, the four sides of single-layered thin plate rock mass 
were subjected to the combined action of shear stress and tensile stress. The shear stress caused tensile shear 
failure on the four sides and formed an “O” ring. (2) The tensile failure not only occurred in the central area of 
single-layered thin plate rock mass, but also formed main vertical crack which propagated along the long axis. 
The main vertical crack splitted into “X” type crack, when it extended to the four corners. Finally, the “O-X” 
failure pattern was formed. (3) With the thickness of rock mass increases(critical thickness is 4.5 cm), it’s quite 
clear that there has a horizontal crack along the short central axis, which made the thin plate rock mass formed 
“O-❋” failure pattern in Fig. 11b.

According to the Figs. 9 and 10, four sides and four corners of single-layered thin plate rock mass occur 
tensile shear failure and shear failure under dynamic load. The main crack along the long central axis and the 
secondary crack along the short central axis are formed in the center of thin plate due to tensile-shear failure 
and shear failure. So the “O-十” failure pattern of single-layered thin plate rock mass is formed. Therefore, it’s 
obvious that the fracture mechanism of thin plate rock mass under dynamic load and static load is different, and 

Figure 9.  The maximum shear stress(τmax) distribution of the 1st, 5th and 6th mode.

Figure 10.  The dynamic damage and failure process of single-layered thin plate rock mass.
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the fracture characteristics are also different.The reason for the difference of fracture characteristics in thin plate 
rock mass is the stress loading condition in different ways. In Zuo’s study, the stress is mainly loaded to the rock 
mass under static loading conditions with low strain  rate12–14,44, the failure mechanism is like the rock failure 
criterion which established by other scholars. However, the main content of this paper is the failure character-
istics of layered rock under dynamic impact load with high strain rate. Based on the vibration characteristics, 
the deflection equation and effective vibration mode are deduced by Hamilton mechanical system. Combined 
with experiment and numerical simulation, the failure of single-layer thin rock mass is caused by the resonance 
which is induced by the effective vibration mode under dynamic impact load. On the one hand, the research 
results can use the resonance effect to accelerate the rock breaking process, reduce the energy consumption of 
rock breaking and improve the rock breaking efficiency; on the other hand, it can provide new ideas for the use 
and maintenance of built roadways and tunnels.

Conclusions
In this paper Hamiltonian mechanics system is used to solve the deflection equations of single-layered thin 
plate rock mass, the main vibration modes and resonance characteristics under different dynamic loads can be 
obtained. Through theoretical analysis and numerical simulation, the failure mode of single-layered thin plate 
rock mass is obtained. The specific conclusions are as follows:

(1) Based on the dual equation and Duhamel’s integral, the mechanical model of single-layered thin plate rock 
mass is established. The main vibration modes (1st, 5th, and 6th modes) and the frequencies of thin plate 
rock mass are verified.

(2) The resonance frequency interval and resonant amplitude φm(t) caused by rectangular wave, triangular 
wave and impact wave can be obtained. With resonance frequency increase, the amplitude of resonance 
initiated by rectangular wave, triangular wave decreases exponentially, the amplitude of resonance initiated 
by impact wave keeps constant.

(3) The thin plate is most likely to resonate and damage due to the smallest resonance frequency interval and 
the largest vibration amplitude by impact wave and rectangular wave respectively.

(4) According to the MRIT, the vibration waveform can be decomposed into five vibration modes, the main 
vibration mode and the effective vibration modes are determined by energy analysis. Comparing main 
vibration modes parameters, it’s concluded the rock mass failure is caused by effective vibration modes of 
dynamic load.

(5) Combining the first and third strength theory, it’s found that the failure of thin plate at the central area, four 
corners and the middle of the four sides, which determined by tensile stress and shear stress of 1st mode. 
Main cracks and secondary cracks formed along the long axis and short axis, which determined by τmax of 
5th and 6th modes.

(6) Through numerical simulation, when tensile failure occurs in the center of thin plate rock mass, the cracks 
expand along the long axis and the short axis respectively to become the main crack and the secondary 
crack. finally the "O-十" failure pattern is formed which is different from the failure pattern formed by 
static load.

Data availability
ThE data used to support the findings of this study are available from the corresponding authors upon request.

Received: 5 September 2022; Accepted: 5 November 2022

Figure 11.  The failure pattern of single-layered thin plate rock mass under static load.
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