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Development of prognostic model 
for preterm birth using machine 
learning in a population‑based 
cohort of Western Australia births 
between 1980 and 2015
Kingsley Wong1,2*, Gizachew A. Tessema1,3, Kevin Chai1 & Gavin Pereira1,4,5

Preterm birth is a global public health problem with a significant burden on the individuals affected. 
The study aimed to extend current research on preterm birth prognostic model development by 
developing and internally validating models using machine learning classification algorithms and 
population‑based routinely collected data in Western Australia. The longitudinal retrospective 
cohort study involved all births in Western Australia between 1980 and 2015, and the analytic 
sample contains 81,974 (8.6%) preterm births (< 37 weeks of gestation). Prediction models for 
preterm birth were developed using regularised logistic regression, decision trees, Random Forests, 
extreme gradient boosting, and multi‑layer perceptron (MLP). Predictors included maternal socio‑
demographics and medical conditions, current and past pregnancy complications, and family history. 
Class weight was applied to handle imbalanced outcomes and stratified tenfold cross‑validation was 
used to reduce overfitting. Close to half of the preterm births (49.1% at 5% FPR, 95% CI 48.9%,49.5%) 
were correctly classified by the best performing classifier (MLP) for all women when current pregnancy 
information was available. The sensitivity was boosted to 52.7% (95% CI 52.1%,53.3%) after including 
past obstetric history in a sub‑population of births from multiparous women. Around half of the 
preterm birth can be identified antenatally at high specificity using population‑based routinely 
collected maternal and pregnancy data. The performance of the prediction models depends on the 
available predictor pool that is individual and time specific.

Preterm birth, defined as birth before 37 completed weeks of pregnancy, is a significant contributor to neonatal 
mortality and  morbidity1–4, and infants born preterm are at increased risk of lifelong adverse neurological, 
intellectual, respiratory, metabolic and cardiovascular  outcomes5–9. Approximately 15 million babies were born 
prematurely worldwide in 2014, and a large majority (81%) occurred in Asia and sub-Saharan  Africa10. In Aus-
tralia, the prevalence of preterm birth was 8.6% (2014), lower than the global and U.S. figures of 10.6% and 9.6%, 
 respectively10. Nevertheless, it fared worse than other countries like Canada (8.2%) and the U.K. (7.0%) in the 
same  period10. According to a report by the Australian Institute of Health and Welfare, the prevalence of preterm 
birth was 8.6% in 2019, and, despite advances in antenatal care, the occurrence was higher than the trough of 
8.3% in 2010 and was barely lower than the peak of 8.7% in 2017–201811. Importantly, Indigenous Australians 
were disproportionately affected, with a higher prevalence of 13.2%.

Given the profound health impact and the possibility of prevention when detected  early12,13, prognostic 
models have been developed to identify pregnant women with increased risk of preterm birth using prenatal and 
perinatal predictors. However, findings from these studies were affected by a small sample size, a limited number 
of predictors, and methodological and reporting  shortcomings14–16. The discrimination capacity, measured using 
the area under the receiver operating characteristic curve (AUC), of models developed to date, was found to be 
poor to moderate (58–77%)16. In a recent retrospective study that involved more than 2 million births in the U.S., 
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the AUC of an early pregnancy cumulative risk scoring tool for preterm birth was 59.1% (95% confidence interval 
[CI] 58.9–59.4)17. Despite the large sample size, the study neither considered risk factors known to be strongly 
associated with preterm birth, such as socioeconomic status, nor reported additional prediction performance 
statistics for comparison purposes. At the other end of the spectrum, a French prospective study conducted in 
2018 demonstrated that a nomogram (a graphical tool that shows the relationship between outcome probability 
and selected predictors) developed for personalised preterm birth risk evaluation has an AUC of 0.77 (95% CI 
0.72–0.81). Nevertheless, this study was limited as only high-risk women were targeted, and some of the risk 
factors used in the prediction model were not routinely assessed (e.g., cervical length)18. Importantly, among 
the prognostic models developed, there is a paucity of evidence on preterm birth prediction that are timely and 
relevant to the Australian population and utilises readily available health  information19.

Population-based research using routinely collected health data coupled with innovative approache for model 
generation can potentially improve prediction outcomes. Western Australia is the home to the largest and most 
comprehensive collection of routine perinatal data within the country, that span nearly four decades and has a 
complete geographic  coverage20. Using data linkage, the predictive capability of the population-based database 
can be expanded by bringing in predictors from other health-related data  sources21. Linkage can also be applied 
longitudinally to include historical events and vertically to capture features across  generations21. Machine learn-
ing, a subset of artificial intelligence, has been used in reproductive medicine to automate pattern  recognition22. 
By applying algorithms to learn and adapt from experience with data without being explicitly instructed, the 
technology has been adopted as an adjunct to clinicians in the U.S. for interpreting electronic foetal heart 
 monitoring23. In predictive analytics, models developed using machine learning have been explored to tackle the 
challenge of identifying stillbirth and perinatal  morbidities24,25. Recent advances in the field of machine learning 
enable the analysis of large-scale health data and improve prediction by generating models that may use novel 
and complex combinations of features (i.e., potential predictors) and weights (i.e., model parameters)26.

An effective prognostic model for preterm birth will contribute to the estimation of individual risk and 
aid in identifying potentially high-risk pregnancies. As a complement to standard antenatal care, the tool can 
inform surveillance strategies and enable efficient use of resources. Crucially, the resulting prediction is locally 
relevant and readily translatable to the Australian antenatal care program. The primary aim of this study was to 
develop models for predicting preterm birth in Western Australia using a suite of machine learning classification 
algorithms and a comprehensive range of routinely collected risk factors and internally validate these models. 
The secondary aim of this study was to compare the performance of the classification algorithms in predicting 
preterm birth.

Methods
Study design and population, and data sources. Data for the longitudinal retrospective cohort study 
were sourced from core population-based administrative and health datasets, linked using the Western Australia 
(WA) Data Linkage System maintained by the WA Department of  Health27. Birth records for the period from 
1st January 1980 to 31st December 2015 were ascertained from the WA Midwives Notification System, a statu-
tory data collection and encompasses all live births and stillbirths that occur from 20 weeks of gestation or have 
a birth weight of at least than 400  g20. These records, augmented with those from the WA Births Registrations, 
formed the preliminary study cohort. The final cohort was established by excluding duplicates as well as births 
with gestational age that was missing or less than 20 weeks (Fig. 1). We then used the provided record identi-
fier to link the birth records to that of the WA Hospital Morbidity Data Collection, WA Cancer Registry, WA 
Death Registrations, WA Register of Developmental Anomalies—Birth Defects, and WA Family Connections, 
which allowed the identification of (1) maternal morbidities before and during pregnancy, (2) birth outcomes 
and (3) reported developmental anomalies for births and families. Extracted records for the cohort also included 
information on socio-demographic factors, chronic medical conditions, past and current pregnancy events, and 
infants’ characteristics.

Outcome and predictors. Preterm birth was defined as births before 37 weeks of gestation. Both sponta-
neous and medically indicated preterm births were included in the definition. Predictors were categorised into 
six main groups, including (1) maternal socio-demographic factors, (2) maternal chronic medical conditions, 
(3) current pregnancy characteristics and complications, (4) past obstetric history, (5) parent’s birth outcomes, 
and (6) grandmothers’ chronic medical conditions and obstetric history. Maternal socio-demographic factors 
included age (< 20, 20–24, 25–29, 30–34, 35–39, ≥ 40 years), ethnicity (Caucasian, Indigenous, other), socio-
economic status, remoteness of residence, and smoking. Based on the maternal residence at the time of birth, the 
Index of Relative Socioeconomic Disadvantage (IRSD) at the statistical local area level was used as a proxy for 
the individual-level socio-economic  status28. The values were divided into quintiles for the state of WA, with the 
first category assigned as the most disadvantaged. The remoteness of residence was categorised as major cities 
or regional/remote using the Accessibility and Remoteness Index for Australia (ARIA +) score remoteness area 
 categories29. Maternal chronic medical conditions included essential hypertension, diabetes mellitus, asthma, 
miscarriage, obesity and circulatory system diseases. Characteristics and complications in current and previous 
pregnancies included gestational diabetes, gestational hypertension, urinary tract infection, cancer registration 
(before or during pregnancy), pre-eclampsia, threatened miscarriage, placenta praevia, placental abruption, pre-
labour rupture of membranes, unspecified antepartum haemorrhage, threatened preterm labour and uterine 
rupture. Other characteristics of current pregnancy included: parity (0, 1, 2, or ≥ 3), year of birth (in five-year 
periods), plurality (singleton, twin, multiple [> 2] gestation), presence of congenital anomalies, and small-for-
gestational-age (SGA) birth as a proxy for foetal growth restriction. Congenital anomalies were defined as any 
birth defect registered in the WA Register of Developmental Anomalies which collects data, including diagnostic 
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information for anomalies, on children with birth defects up until the age of six. We calculated SGA as the low-
est 10th percentile of birthweight by sex and gestation within calendar intervals of five years. For past obstetric 
history, additional predictors included caesarean section delivery, stillbirth, gestational age of the last birth (< 28, 
28–31, 32–36, ≥ 37 weeks), SGA birth and congenital anomalies. For women with two or more birth records 
during the study period, we coded the timing of occurrence for past obstetric events, indicating whether the 
condition/complication occurred in the last birth, not in the last but an earlier birth, no history, or unknown. 
For a subset of births to mothers and fathers who were born during the study period and whose birth details 
were included in our cohort, we ascertained whether they were born preterm, small for gestational age, or were 
diagnosed with congenital anomalies. For these parents, we also recorded the chronic medical conditions and 
past obstetric history of their mothers.

Figure 1.  Study flow diagram *Births containing unknown values for a subset of predictors were excluded 
to reduce multicollinearity of predictors. These predictors were 1) Maternal chronic medical conditions: 
miscarriage (A, B, C, D, E, F); 2) Current pregnancy characteristics and complications: threatened preterm 
labour (A, B, F), parity (A, B, D), small-for-gestational age (A, B, C); 3) Past obstetric history: Caesarean section 
delivery (B, E, F), gestational age of the last pregnancy (B, E, F), small-for-gestational age (B, E, F); 4) Parent’s 
birth outcomes: preterm birth (C), small-for-gestational age (C); 5) Grandmothers’ past obstetric history: cancer 
registration (C).
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Statistical methods. Descriptive statistics were used to summarise the characteristics of the study cohort 
and the prediction results. The minimal study size needed was ascertained using the method by Riley et al.30, 
which targets four aspects of a prediction model (namely margin of error in overall outcome risk, mean absolute 
prediction error, shrinkage of predictor effects and optimism in apparent model fit) to obtain a context-specific 
required sample size that minimises the potential for model overfitting while ensuring precise estimates of key 
parameters. Our sample size far exceeds the required numbers and is thus adequately designed to develop and 
validate the prognostic models.

We first developed three prediction models with full information on relevant predictor groups for specific 
target populations. For these models, we considered the inclusion of predictors collected after birth as a proxy 
for measurements taken during pregnancy (e.g., SGA). The first model (Model A) encompassed all births in the 
study population (n = 953,244, preterm births = 81,578) (Fig. 1) and employed predictors related to maternal 
socio-demographic factors, maternal chronic medical conditions, and current pregnancy characteristics and 
complications. The second model (Model B) extended Model A by adding predictors related to past obstetric 
history, and the cohort was limited to births of multiparous women (n = 465,037, preterm births = 37,978). The 
third model (Model C) comprised predictors of Model A plus those of parent’s birth outcomes and grandmoth-
ers’ chronic medical conditions and obstetric history, and the cohort was restricted to births of parents who were 
born during the study period as previously described (n = 135,943, preterm births = 12,895).

We then developed three additional models with limited sets of predictors to emulate the temporal availability 
of data at a specific time of contact during the pregnancy period. The first model (Model D) contained predictors 
that were collected at the early phase of pregnancy (e.g., at initial antenatal appointment) for both nulliparous 
and multiparous women (n = 953,806, preterm births = 81,706) (Fig. 1). The second model (Model E) extended 
Model D by adding past obstetric history predictors, and thus the cohort was limited to births of multiparous 
women (n = 465,244, preterm births = 38,043). The third model (Model F) included predictors available in the 
late term of pregnancy. It was a replica of Model B with the exclusion of SGA and congenital anomalies, as these 
conditions were ascertained after birth (n = 465,215, preterm births = 38,021).

In all prediction models, the occurrence of preterm births was far outweighed by the number of term births. 
The unequal distribution of classes in the dataset created an imbalanced classification problem that required 
special attention during model development (e.g., class weighting) and evaluation (e.g., reporting using true 
positive rate and positive predictive value instead of accuracy).

Classification algorithms. We applied five different supervised machine learning algorithms to solve the 
binary classification problem of identifying preterm and term births: (1) regularised logistic regression; (2) deci-
sion trees via classification and regression trees (CART); (3) Random Forests; (4) extreme gradient boosting; 
and (5) multi-layer perceptron. These classification algorithms, or classifiers, were chosen because of their wide-
spread application, relative ease of use, and diverse learning capabilities. They also represent a spectrum of clas-
sifiers ranging from conventional (e.g., logistic regression) to modern (e.g., extreme gradient boosting).

Regularised logistic regression (LR) is an extension of logistic regression that incorporates a penalty term on 
the cost function. The L1 penalisation used resulted in variable selection by shrinking the regression coefficient 
of predictors that contribute least to the prediction and thus addressing the issue of overfitting.

Decision trees (DT) use the CART algorithm to make predictions by selecting the most differentiating pre-
dictors using an impurity criterion (Gini impurity or information gain using entropy) at the root and successive 
nodes to split the sample into the best homogenous sets of sub-samples. The risk of overfitting was minimised by 
pruning the depth of the tree and restricting the number of predictors to consider when looking for the best split.

Random Forests (RF) employs bootstrap aggregating (or bagging) to build an ensemble of decision trees using 
random sample subsets and then combine the results by averaging the probabilistic prediction of the trees. This 
classification approach reduces variance by combining diverse trees thus further lessons the effect of overfitting 
and improving prediction performance as well.

Gradient boosting is a method of converting weak learners (e.g., decision trees) into strong ones by first 
identifying shortcomings of a weak learner through gradients (or first-order derivatives) of the loss function 
and then improving upon, or boosting, predictions of the weak learner by adding more weak ones in a gradual, 
additive, and sequential manner. Extreme gradient boosting (XGBoost [XGB]) is a specific implementation of 
the gradient boosting method which enhances efficiency through parallelisation and delivers more accurate 
estimation by using the second-order derivative of the loss function and L1 and L2 regularisations.

Multi-layer perceptron (MLP) is an artificial neural network that mimics the learning processes found in the 
neural network of the human brain. The classifier processes information starting from an input layer, through 
one or more hidden layers, and ending at an output layer. Learning was facilitated through backpropagation using 
stochastic gradient descent. Weights were then learnt through backpropagation, and the activation functions were 
selected as hyperparameters. The nodes of the input layer represent the predictors in the model, and the nodes of 
the remaining layers represent the non-linear functions of weighted combinations of nodes in the previous layers.

Model development. All predictors were categorised as previously described and checked for missing val-
ues. For each model, records with unknown values for a subset of predictors were excluded to reduce multicol-
linearity. Predictors were pre-processed using either one-hot encoding (excluding binary variables) for DT, RF, 
XGB and MLP, or dummy encoding for LR. Class weight was used in all classifiers except MLP (class weight is 
not supported in scikit-learn implementation of MLP) to handle imbalanced outcomes. Hyperparameter tun-
ing was carried out using a grid search (LR, DT), or Bayesian optimisation (using the Tree-Parzen Estimator 
algorithm) combined with the asynchronous HyperBand scheduler (RF, XGB, MLP) over specified parameter 
search space. The hyperparameters of the classifiers were optimised for  F1 score, the harmonic mean of positive 
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predictive value and sensitivity, by tenfold cross-validation. Model performance and generalisability were evalu-
ated using internal validation, which was undertaken using cross-validation by first randomly partitioning the 
data into 10 equal portions with the same prevalence of the outcome in each fold via the stratified k-fold cross-
validation technique. The model was then trained using data from the first 9 folds and validated on the 10th 
fold, and the process was repeated iteratively, resulting in 10 model variants for each classifier. We measured the 
overall performance of the classifier by averaging the values of each selected evaluation metric.

Model evaluation. The performance of each classifier was based on the ability to discriminate between 
preterm births and term births and was evaluated using the following classification metrics: 1) area under the 
receiver operating characteristic curve (AUC); 2) accuracy (ACC); 3)  F1 score (F1); 4) true positive rate (TPR) 
(also called sensitivity or recall); 5) positive predictive value (PPV) (also called precision); 6) negative predictive 
value (NPV); 7) positive likelihood ratio (LR +); and 8) negative likelihood ratio (LR-). Accuracy was defined as 
the proportion of correctly classified individuals. For comparison with prior studies, performance results were 
reported at a false positive rate (FPR) of 5% (95% specificity) and 10% (90% specificity). As the outcome classes 
are highly imbalanced (i.e., the number of term births is overwhelmingly higher than that of preterm births), 
accuracy would be erroneously high even if the classifier predicts all term births correctly and misclassifies 
all preterm births. Therefore, AUC and F1 were mainly used in our reporting of results. The latter was chosen 
because of its balanced view of TPR and PPV, which we assumed are equally important in preterm birth predic-
tion. Feature importance, a non-directional measure of the individual contribution of the corresponding pre-
dictor towards model performance for a specific classifier, was reported. Scoring was determined using a non-
standardised absolute beta coefficient for LR and impurity-based importance measure for tree-based classifiers, 
and ranking was performed in descending order of the value. The top 10 ranked one-hot or dummy encoded 
predictors were then compared. To enable interpretation of the models generated by non-linear tree-based clas-
sifiers, the impact of each encoded predictor on the prediction of preterm birth in the models developed by the 
best classifier was estimated using SHapley Additive exPlanations (SHAP), a unified framework that extends the 
classic Shapley values from game theory to explain the output of machine learning  model31.

All analyses were conducted using miniconda3 4.10.1–5, python 3.8.9, pandas 1.3.0, numpy 1.19.5, scikit-
learn 0.23.2, tune-sklearn 0.4.0 and shap 0.41.0. The results were reported following the Transparent Reporting 
of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD)  statement32.

Ethics. The study was approved by the Human Research Ethics Committees of the Department of Health WA 
and Curtin University. All research activities were conducted in accordance with corresponding guidelines and 
regulations. Informed consent was waived by the Department of Health WA Human Research Ethics Committee 
(PRN RGS0000005148) because the study uses existing and consented registry data and presents minimal harm 
to participants while offering potential benefits to the public.

Results
Study population. The characteristics of the 958,729 births, including 81,974 (8.6%) preterm births and 
876,755 (91.4%) term births, are shown in Supplementary Table 1. When viewed by birth decade, the propor-
tion of births of women aged at or after 35 years tripled from 6.7% in the 1980s to 21.1% in the 1st half of the 
2010s (Supplementary Table 2). Likewise, the portion of births of women of ethnicity other than Caucasian and 
Indigenous has increased over time (1980s: 5.1%; first half of 2010s 25.0%). There was a gradual improvement 
in socio-economic status, as indicated by the top two IRSD quintiles, from close to a third (30.7%) in the 1980s 
to nearly half (47.0%) in the most recent decade studied. A similar trend was observed for the remoteness of 
residence where the majority lived in major cities and had been increasing since the 1980s (1980s 61.8%; first 
half of 2010s 72.7%). Among the maternal chronic medical risk factors, the prevalence of essential hypertension 
has increased seven folds from 0.08% in the 1980s to 0.62% in the most recent decade studied. A similar rise 
was noted for diabetes mellitus and obesity. On the other hand, circulatory heart disease has become less com-
mon over time, with 0.6–1.9% of cases observed in the 1980s and 1990s and only 0.2% in the 2010s. Regarding 
pregnancy characteristics, nearly two-fifth (38.9%) of the births were nulliparous in the 1980s and became more 
so over the decades (first half of 2010s 42.5%). Notably, the prevalence of most of the pregnancy complications 
observed appeared to improve over time. The prevalence of preterm birth has plateaued from the peak of 9.1% in 
the 2000s to 9.0% in the period 2010–2015 after decades of increase (Supplementary Table 2, Fig. 2).

Model performance. Predictors used in the prediction models and the tuned hyperparameters optimised 
for F1 by models are shown in Supplementary Tables 3 and 4, respectively. Overall, at 5% FPR using tenfold cross-
validation, the AUCs ranged from 57.70% (Model D, DT; 95% confidence interval [CI] 57.54–57.86) to 86.43% 
(Model B, MLP; 95% CI 86.21–86.65) and the F1s varied from 12.89% (Model D, LR; 95% CI 12.59–13.19) to 
50.44% (Model B, MLP; 95% CI 49.99–50.89) (Table 1), suggesting that prediction performance depended on 
the selection of the predictors and classifiers. Across the six models, ensemble and neural network classifiers (i.e., 
XGB and MLP) shared the top spots in prediction performance. The performance of classifiers by models at 10% 
FPR using tenfold cross-validation is shown in Table 2.

For model A, which included maternal socio-demographic factors, chronic medical conditions and current 
pregnancy characteristics and complications-related predictors, the best performing classifier (MLP) achieved 
an AUC of 84.41% (95% CI 84.21–84.61) and a F1 of 48.55% (95% CI 48.31–48.79) at 5% FPR (Table 1, Figs. 3 
and 4), a 2.0% and 5.4% increase in the respective metrics over the lowest-performing classifiers (DT and LR). 
For model B, adding predictors of past obstetric history to model A improved performance, as measured using 
AUC and F1, by 1–2 percentage points. MLP was the best-performing classifier with an AUC of 86.43% (95% 



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19153  | https://doi.org/10.1038/s41598-022-23782-w

www.nature.com/scientificreports/

CI 86.21–86.65) and a F1 of 50.44% (95% CI 49.99–50.89). The margin of improvement between the lowest 
(DT) and highest-performing classifiers was 3.8% and 4.5% for AUC and F1, respectively. For model C, includ-
ing family history only marginally improved the prediction performances compared to that of Model A. The 
best-performing classifier (XGB) outperformed the lowest one (DT) by a similar magnitude as that in model B 
(AUC: 3.4%, F1: 4.4%).

Model D included predictors that were available in the early period of pregnancy. The prediction performances 
were the lowest among the models, with the best-performing classifier (XGB) achieving an AUC of 58.70% (95% 
CI 58.52–58.88) and a F1 of 13.38% (95% CI 13.18–13.59) at 5% FPR (Table 1, Figs. 3 and 4). Model E added 
predictors of past obstetric history to Model D and the performance, based on the best performers, increased 
moderately with an AUC of 69.26% (95% CI 68.91–69.61; XGB) and a F1 of 26.04% (95% CI 25.72–26.36; MLP). 
In Model F, factors ascertained after birth (i.e., SGA and congenital anomalies) were excluded from Model B, 
and this has a negligible impact on the performance of preterm birth prediction, as illustrated by the fact that 
the AUC (85.75%, 95% CI 85.47–86.03) and F1 (49.80%, 95% CI 49.34–50.26) of the best performing classifier 
(MLP) were very similar to that in Model B.

Feature importance. Feature importance of the six models by classifiers are presented in Supplementary 
Tables 5 and 6. The estimated coefficients of the models produced using regularised logistic regression algorithm 
are reported in Supplementary Tables 7 and 8. For Model A, current pregnancy characteristics and complica-
tions dominated the top 10 features of importance (Supplementary Table 5). In particular, conditions such as 
pre-labour rupture of membranes, singleton birth and threatened miscarriage were high on the list among the 
tree-based classifiers, whilst, for LR, multiple gestations and threatened preterm labour shared the top 3 spots. 
The inclusion of past obstetric history in Model B slightly changed the rankings, with previous gestational age 
being considered important for DT, RF and XGB but less so for LR. For Model C, none of the predictors related 
to family history appeared on the ten highest-ranked features. For Model D, most maternal socio-demographic 
factors, chronic medical conditions, and parity were featured on the list (Supplementary Table 6). Specifically, 
diabetes and ethnicity were highly ranked, and maternal age was considered important for LR but not so much 
for the tree-based classifiers. Predictors of past obstetric history, particularly previous gestational age and cae-
sarean delivery in the last birth, became the dominant contributors to the model performance of Model E after 
they were added to the early pregnancy predictors in Model D. For Model F, the ranking was similar to that of 
Model B after exclusion of SGA and congenital anomalies.

Model interpretation. The SHAP value summary plots of the six models developed using the best-per-
forming tree-based classifier (XGB) are shown in Figs. 5 and 6. Most predictors with high mean absolute SHAP 
were showcased in the feature importance ranking list, and the direction of association differed among the top 
predictors. For Model A, the presence of specific current pregnancy characteristics and complications, such as 
threatened miscarriage, increased the likelihood of preterm birth, whilst having a singleton birth decreased the 
possibility (Fig. 5). For Model B, in addition to singleton birth, a previous birth with a gestational age of 37 weeks 
or more lessened the risk of preterm birth. For Model C, current pregnancy conditions were noted to be the pre-
dominant drivers, and like that found in feature importance, none of the family history predictors was observed 
on the list. When only limited information was available at the early phase of pregnancy, as in Model D, predic-
tors including nulliparity, maternal indigenous ethnicity, high maternal age at birth (35–39 years) and smoking 
contributed to the increased likelihood of preterm birth (Fig. 6). However, when past obstetric history became 
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Figure 2.  Annual prevalence of preterm birth in Western Australia for the period 1980–2015. Lowess: the 
local linear smooth plot was generated using Cleveland’s tricube weighting function with a bandwidth of 0.8 
(Cleveland, W. S. 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American 
Statistical Association 74: 829–836).
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Model Algorithm

Evaluation metrics

AUC, % Accuracy, % F1, % TPR, % PPV, % NPV, % LR + LR-

Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI)

A

 LR 83.56 
(83.35,83.77)

90.80 
(90.77,90.83)

46.08 
(45.80,46.36)

45.93 
(45.57,46.29)

46.23 
(46.04,46.43)

94.94 
(94.91,94.97) 9.19 (9.12,9.26) 0.57 (0.57,0.57)

DT 82.72 
(82.52,82.92)

90.98 
(90.96,91.01)

47.55 
(47.28,47.82)

47.76 
(47.34,48.17)

47.35 
(47.18,47.51)

95.11 
(95.07,95.14) 9.61 (9.55,9.67) 0.55 (0.55,0.55)

RF 84.23 
(84.04,84.42)

90.99 
(90.96,91.02)

47.75 
(47.47,48.03)

48.13 
(47.76,48.50)

47.39 
(47.19,47.58)

95.14 
(95.11,95.17) 9.62 (9.55,9.70) 0.55 (0.54,0.55)

XGB 84.34 
(84.14,84.54)

91.05 
(91.02,91.09)

48.33 
(48.02,48.64)

48.89 
(48.48,49.30)

47.78 
(47.57,47.99)

95.21 
(95.17,95.24) 9.78 (9.69,9.86) 0.54 (0.53,0.54)

MLP 84.41 
(84.21,84.61)

91.08 
(91.05,91.11)

48.55 
(48.31,48.79)

49.19 
(48.87,49.51)

47.94 
(47.77,48.10)

95.23 
(95.20,95.26) 9.84 (9.77,9.90) 0.53 (0.53,0.54)

B

LR 85.88 
(85.71,86.05)

91.38 
(91.31,91.44)

48.95 
(48.32,49.57)

50.63 
(49.77,51.49)

47.37 
(46.96,47.79)

95.58 
(95.51,95.66) 10.13 (9.96,10.29) 0.52 (0.51,0.53)

DT 83.27 
(83.12,83.42)

91.30 
(91.22,91.38)

48.25 
(47.77,48.73)

49.66 
(48.94,50.38)

46.93 
(46.47,47.39)

95.50 
(95.44,95.56) 9.95 (9.76,10.13) 0.53 (0.52,0.54)

RF 85.47 
(85.28,85.66)

91.37 
(91.31,91.42)

48.83 
(48.34,49.33)

50.46 
(49.78,51.14)

47.31 
(46.97,47.65)

95.57 
(95.51,95.63) 10.10 (9.96,10.24) 0.52(0.51,0.53)

XGB 86.22 
(86.05,86.39)

91.43 
(91.36,91.51)

49.46 
(48.83,50.09)

51.32 
(50.46,52.19)

47.72 
(47.30,48.15)

95.64 
(95.57,95.72)

10.27 
(10.09,10.44) 0.51 (0.50,0.52)

MLP 86.43 
(86.21,86.65)

91.54 
(91.49,91.60)

50.44 
(49.99,50.89)

52.69 
(52.06,53.31)

48.37 
(48.07,48.67)

95.76 
(95.71,95.81)

10.54 
(10.41,10.67) 0.50 (0.49,0.50)

C

LR 83.67 
(83.03,84.31)

90.29 
(90.18,90.41)

47.02 
(46.10,47.94)

45.43 
(44.28,46.58)

48.73 
(48.07,49.38)

94.32 
(94.21,94.44) 9.08 (8.84,9.32) 0.57 (0.56,0.59)

DT 81.34 
(80.81,81.87)

90.28 
(90.13,90.42)

46.63 
(45.81,47.45)

44.80 
(43.69,45.91)

48.66 
(47.84,49.47)

94.26 
(94.16,94.37) 9.05 (8.76,9.35) 0.58 (0.57,0.59)

RF 83.10 
(82.54,83.66)

90.35 
(90.24,90.46)

47.42 
(46.49,48.35)

45.91 
(44.72,47.10)

49.04 
(48.41,49.68)

94.37 
(94.25,94.49) 9.19 (8.96,9.42) 0.57 (0.56,0.58)

XGB 84.09 
(83.47,84.71)

90.50 
(90.37,90.62)

48.67 
(47.70,49.64)

47.54 
(46.30,48.78)

49.87 
(49.20,50.54)

94.53 
(94.41,94.65) 9.50 (9.25,9.76) 0.55 (0.54,0.57)

MLP 83.23 
(82.66,83.80)

90.34 
(90.22,90.47)

47.41 
(46.39,48.42)

45.91 
(44.62,47.20)

49.02 
(48.31,49.72)

94.37 
(94.24,94.50) 9.18 (8.93,9.44) 0.57 (0.56,0.58)

D

LR 58.20 
(58.04,58.36)

87.77 
(87.74,87.79)

12.89 
(12.59,13.19)

10.56 
(10.30,10.83)

16.52 
(16.17,16.87)

91.89 
(91.87,91.92) 2.11 (2.06,2.17) 0.94 (0.94,0.94)

DT 57.70 
(57.54,57.86)

87.72 
(87.64,87.81)

12.92 
(12.69,13.14)

10.63 
(10.38,10.88)

16.46 
(16.24,16.69)

91.90 
(91.88,91.91) 2.10 (2.07,2.14) 0.94 (0.94,0.94)

RF 58.42 
(58.24,58.60)

87.78 
(87.77,87.80)

13.10 
(12.90,13.30)

10.75 
(10.57,10.93)

16.77 
(16.53,17.00)

91.91 
(91.90,91.93) 2.15 (2.11,2.19) 0.94 (0.94,0.94)

XGB 58.70 
(58.52,58.88)

87.80 
(87.79,87.82)

13.38 
(13.18,13.59)

11.00 
(10.82,11.18)

17.09 
(16.86,17.32)

91.93 
(91.92,91.95) 2.20 (2.16,2.24) 0.94 (0.93,0.94)

MLP 58.69 
(58.54,58.84)

87.80 
(87.78,87.82)

13.29 
(13.08,13.51)

10.92 
(10.73,11.11)

16.99 
(16.74,17.24)

91.92 
(91.91,91.94) 2.19 (2.15,2.22) 0.94(0.94,0.94)

E

LR 69.01 
(68.67,69.35)

89.11 
(89.07,89.14)

25.57 
(25.21,25.93)

22.89 
(22.53,23.26)

28.97 
(28.63,29.30)

93.26 
(93.23,93.29) 4.58 (4.51,4.65) 0.81 (0.81,0.82)

DT 66.86 
(66.60,67.12)

88.57 
(88.23,88.91)

25.94 
(25.12,26.77)

24.58 
(22.97,26.19)

27.76 
(27.05,28.47)

93.35 
(93.25,93.45) 4.32 (4.17,4.47) 0.80 (0.79,0.81)

RF 67.70 
(67.44,67.96)

89.09 
(89.05,89.14)

25.46 
(24.93,25.98)

22.78 
(22.24,23.32)

28.85 
(28.37,29.33)

93.25 
(93.21,93.29) 4.56 (4.45,4.66) 0.81 (0.81,0.82)

XGB 69.26 
(68.91,69.61)

89.13 
(89.09,89.17)

25.90 
(25.46,26.34)

23.23 
(22.78,23.69)

29.26 
(28.85,29.67)

93.29 
(93.25,93.32) 4.65 (4.55,4.74) 0.81 (0.80,0.81)

MLP 69.11 
(68.81,69.41)

89.14 
(89.12,89.17)

26.04 
(25.72,26.36)

23.38 
(23.04,23.71)

29.39 
(29.10,29.69)

93.30 
(93.27,93.33) 4.68 (4.61,4.74) 0.81 (0.80,0.81)

F

LR 85.53 
(85.22,85.84)

91.34 
(91.29,91.39)

48.68 
(48.23,49.14)

50.25 
(49.62,50.88)

47.21 
(46.91,47.52)

95.55 
(95.49,95.60) 10.05 (9.93,10.18) 0.52 (0.52,0.53)

DT 83.87 
(83.50,84.24)

91.20 
(91.07,91.34)

48.16 
(47.58,48.74)

50.03 
(48.74,51.32)

46.50 
(45.79,47.21)

95.52 
(95.42,95.62) 9.78 (9.49,10.06) 0.53 (0.51,0.54)

RF 85.35 
(85.03,85.67)

91.32 
(91.27,91.37)

48.50 
(48.08,48.92)

50.00 
(49.43,50.58)

47.08 
(46.80,47.37)

95.53 
(95.48,95.58) 10.00 (9.88,10.11) 0.53 (0.52,0.53)

XGB 85.62 
(85.31,85.93)

91.40 
(91.34,91.45)

49.15 
(48.63,49.68)

50.90 
(50.17,51.62)

47.53 
(47.19,47.88)

95.60 
(95.54,95.66)

10.18 
(10.04,10.32) 0.52 (0.51,0.52)

MLP 85.75 
(85.47,86.03)

91.47 
(91.42,91.52)

49.80 
(49.34,50.26)

51.78 
(51.14,52.42)

47.97 
(47.66,48.27)

95.68 
(95.62,95.73)

10.36 
(10.23,10.49) 0.51 (0.50,0.51)
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known, as in Model E, the additional predictors helped to explain the prediction. Of note was that the absence 
of a previous birth with a gestational age of 37 weeks or more heightened the risk. For Model F, the ranking and 
direction of association were similar to that of Model B.

Discussion
In a large population-based cohort of Western Australia births with more than 80 thousand preterm births, we 
were able to correctly classify nearly half (49% at 5% FPR) of the cases using the model generated by multi-layer 
perceptron and a suite of routinely collected data on maternal socio-demographic, chronic medical conditions 
and current pregnancy characteristics and complications. Augmenting the pool of predictors with past obstetric 
history slightly improved the prediction performance to 53% in a sub-population of birth from multiparous 
women. On the other hand, we found minimal prediction improvement when family history was accounted for 
in the modelling that limited analysis to only births from locally born parents/grandparents (i.e., both parents and 
grandparents were also included in the birth perinatal registry). We also noted that omitting current pregnancy 
characteristics and complications significantly reduced the prediction performances, suggesting that current 
pregnancy information is crucial. The positive predictive values of the models generated were between 46–49% 
(except that of the models with only early pregnancy predictors), indicating that nearly half of the predictions 
of preterm birth were correct. Nevertheless, the values are influenced by the prevalence of preterm birth and 
should be interpreted in the context of an upper bound. In our study, given the overall prevalence of 8.6%, the 
highest possible value of PPV at 100% TPR and 5% FPR was 65%33, and, therefore, our models attained a PPV 
that was around 70% of the maximum possible.

When comparing the performance of the classifier in the prediction of preterm birth, we have observed that 
XGBoost and multi-layer perceptron consistently outperformed the rest. In the overall sample with full informa-
tion on current pregnancy history (i.e., Model A), compared to logistic regression, multi-layer perceptron was 
able to correctly identify an additional 2659 cases (3.3%) among the 81,578 preterm births. Similarly, the TPR 
of multi-layer perceptron was around 2% higher than that of logistic regression in the multiparous sample (i.e., 
Model B). As a result, a further 782 cases were correctly detected among 37,978 preterm births. Nevertheless, 
despite the apparent better performance of XGBoost and multi-layer perceptron, the performance differences 
were small among the algorithms and were much less than the variations among the models developed.

Consistent with previous findings, our study has identified plurality (i.e., number of foetuses in a pregnancy) 
and specific events that occurred during current pregnancy (e.g., pre-labour rupture of membranes, placental 
abruption, pre-eclampsia, placenta praevia and unspecific antepartum haemorrhage) are pertinent risk factors 
for preterm birth, and having a history of preterm birth was also found to be informative for prediction among 
multiparous  women34.

Comparison to other studies. Studies have shown that routinely collected population-based maternal 
and pregnancy data can be used to predict preterm  birth17,25,35–37. Weber et al. applied a suite of algorithms, 
including logistic regression and machine learning techniques, with administrative data to assess the prediction 
of spontaneous early preterm (< 32 weeks, prevalence 1.0%) birth among nulliparous women in California from 
2007 to 2011 (n = 336,214)36. Their optimal model, generated by logistic regression, was able to identify 61% of 
cases at 36% FPR with an AUC of 0.67 (95% CI 0.65,0.68). The model’s TPR, which was approximately 20% at 5% 
FPR as estimated from the reported ROC curve, was lower than ours (46% at 5% FPR, Model A: LR). We have 
postulated that the discrepancy was partially due to differences in the study population (nulliparous women vs. 
all women) and outcome definition (< 32 weeks of gestation vs. < 37 weeks of gestation). Nevertheless, the data 
quality, instead of the prediction tools, may have played an important role in the model performance. For exam-
ple, uncertainty about clinical diagnoses in hospital discharge records, and inadequate life-course risk exposure 
data could have affected the model’s predictability. Using more than 100 maternal and neonatal features from 
the Iranian Maternal and neonatal (IMAN) registry, Khatibi et  al. utilised machine learning algorithms and 
the Map-Reduce approach to develop a model for preterm birth  prediction37. Important predictors identified 
include maternal age, maternal education level, city of birth, foetal sex, parity, pregnancy risk factors, gestational 
diabetes, cardiovascular disease, and chronic illnesses. Their best-performing model, an ensemble of decision 

Table 1.  Performance of models for predicting preterm birth at 5% FPR using tenfold cross-validation, by 
classification algorithms. AUC, area under the receiving-operator characteristic curve; TPR, true positive rate 
(recall or sensitivity); PPV, positive predictive value (precision); NPV, negative predictive value; LR + , positive 
likelihood ratio; LR − , negative likelihood ratio; CI, confidence interval; FPR, false positive rate (1-specificity); 
LR, regularised logistic regression; DT, decision trees; RF, Random Forests; XGB, extreme gradient boosting; 
MLP, multi-layer perceptron. Model A: Cohort—all births; Predictors—maternal socio-demographic factors, 
maternal chronic medical conditions, and current pregnancy characteristics and complications; Model B: 
Cohort—births of multiparous women; Predictors—Model A + maternal past obstetric history; Model C: 
Cohort—births of parents who were born during the study period; Predictors—Model A + parent’s birth 
outcomes and grandmother’s chronic medical conditions and obstetric history; Model D: Cohort—all births; 
Predictors—maternal socio-demographic factors, maternal chronic medical conditions, parity, and birth year; 
Model E: Cohort—births of multiparous women; Predictors—Model D + maternal past obstetric history; 
Model F: Cohort—births of multiparous women; Predictors—Model B excluding small-for-gestational age and 
congenital anomalies in current birth.
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Model Algorithm

Evaluation metrics

AUC, % Accuracy, % F1, % TPR, % PPV, % NPV, % LR + LR-

Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI)

A

LR 83.56 
(83.35,83.77)

87.43 
(87.41,87.46)

44.97 
(44.81,45.14)

60.01 
(59.72,60.29) 35.96 (35.85,36.07) 96.01 

(95.98,96.03) 6.00 (5.97,6.03) 0.44 (0.44,0.45)

DT 82.79 
(82.62,82.96)

87.49 
(87.44,87.55)

45.63 
(45.48,45.78)

61.32 
(61.13,61.51) 36.33 (36.19,36.48) 96.13 

(96.11,96.15) 6.10 (6.06,6.14) 0.43 (0.43,0.43)

RF 84.24 
(84.05,84.43)

87.57 
(87.54,87.60)

45.90 
(45.72,46.08)

61.62 
(61.30,61.93) 36.57 (36.45,36.69) 96.16 

(96.13,96.19) 6.16 (6.13,6.19) 0.43 (0.42,0.43)

XGB 84.34 
(84.15,84.53)

87.62 
(87.59,87.65)

46.23 
(46.05,46.41)

62.19 
(61.89,62.50) 36.79 (36.67,36.91) 96.22 

(96.19,96.25) 6.22 (6.19,6.25) 0.42 (0.42,0.42)

MLP 84.40 
(84.21,84.59)

87.64 
(87.61,87.67)

46.35 
(46.14,46.57)

62.41 
(62.04,62.78) 36.87 (36.73,37.01) 96.24 

(96.20,96.27) 6.24 (6.20,6.28) 0.42 (0.41,0.42)

B

LR 85.88 
(85.71,86.05)

87.90 
(87.85,87.94)

46.44 
(46.13,46.74)

64.25 
(63.70,64.80) 36.36 (36.16,36.55) 96.59 

(96.54,96.64) 6.42 (6.37,6.48) 0.40 (0.39,0.40)

DT 83.42 
(83.22,83.62)

87.87 
(87.79,87.96)

46.28 
(45.98,46.57)

63.96 
(63.39,64.54) 36.25 (36.02,36.49) 96.56 

(96.51,96.61) 6.40 (6.33,6.46) 0.40 (0.39,0.41)

RF 85.44 
(85.27,85.61)

87.95 
(87.90,88.00)

46.79 
(46.46,47.12)

64.89 
(64.29,65.48) 36.59 (36.37,36.80) 96.65 

(96.59,96.70) 6.49 (6.43,6.55) 0.39 (0.38,0.40)

XGB 86.22 
(86.04,86.40)

88.00 
(87.95,88.05)

47.14 
(46.80,47.49)

65.53 
(64.89,66.16) 36.81 (36.59,37.04) 96.71 

(96.65,96.76) 6.55 (6.49,6.61) 0.38 (0.38,0.39)

MLP 86.41 
(86.20,86.62)

88.06 
(88.01,88.11)

47.53 
(47.22,47.84)

66.24 
(65.68,66.79) 37.06(36.86,37.27) 96.77 

(96.72,96.82) 6.62 (6.56,6.68) 0.38 (0.37,0.38)

C

LR 83.67 
(83.03,84.31)

87.14 
(87.02,87.26)

46.86 
(46.12,47.60)

59.79 
(58.57,61.01) 38.53 (38.04,39.02) 95.53 

(95.40,95.66) 5.98 (5.86,6.11) 0.45 (0.43,0.46)

DT 81.36 
(80.64,82.08)

87.61 
(87.35,87.87)

46.44 
(45.55,47.34)

56.61 
(55.63,57.60) 39.38 (38.51,40.24) 95.23 

(95.13,95.34) 6.21 (5.98,6.43) 0.48 (0.47,0.49)

RF 83.13 
(82.57,83.69)

87.16 
(87.03,87.28)

46.97 
(46.20,47.75)

60.00 
(58.71,61.29) 38.60 (38.09,39.11) 95.55 

(95.41,95.69) 6.00 (5.87,6.13) 0.44 (0.43,0.46)

XGB 84.11 
(83.49,84.73)

87.29 
(87.17,87.41)

47.76 
(47.00,48.52)

61.28 
(59.99,62.57) 39.13 (38.63,39.63) 95.69 

(95.55,95.82) 6.14 (6.01,6.27) 0.43 (0.42,0.44)

MLP 83.01 
(82.41,83.61)

87.11 
(86.99,87.23)

46.67 
(45.90,47.44)

59.49 
(58.21,60.76) 38.40 (37.89,38.91) 95.50 

(95.36,95.63) 5.95 (5.82,6.08) 0.45 (0.44,0.46)

D

LR 58.20 
(58.04,58.36)

83.83 
(83.80,83.85)

15.98 
(15.78,16.18)

17.95 
(17.71,18.20) 14.40 (14.23,14.57) 92.13 

(92.11,92.15) 1.80 (1.77,1.82) 0.91 (0.91,0.91)

DT 57.76 
(57.59,57.93)

83.90 
(83.85,83.96)

16.16 
(16.05,16.28)

18.12 
(17.93,18.30) 14.59 (14.52,14.67) 92.15 

(92.14,92.16) 1.82 (1.81,1.83) 0.91 (0.91,0.91)

RF 58.43 
(58.27,58.59)

83.87 
(83.85,83.89)

16.37 
(16.18,16.56)

18.42 
(18.19,18.66) 14.72 (14.57,14.88) 92.17 

(92.15,92.19) 1.84 (1.82,1.87) 0.91 (0.90,0.91)

XGB 58.70 
(58.52,58.88)

83.89 
(83.86,83.91)

16.58 
(16.37,16.79)

18.69 
(18.43,18.95) 14.89 (14.72,15.07) 92.20 

(92.17,92.22) 1.87 (1.84,1.89) 0.90 (0.90,0.91)

MLP 58.69 
(58.53,58.85)

83.88 
(83.86,83.91)

16.59 
(16.41,16.78)

18.71 
(18.49,18.94) 14.90 (14.75,15.06) 92.20 

(92.18,92.22) 1.87 (1.85,1.89) 0.90 (0.90,0.91)

E

LR 69.01 
(68.66,69.36)

85.47 
(85.43,85.51)

28.04 
(27.70,28.39)

34.63 
(34.14,35.12) 23.56 (23.31,23.82) 93.92 

(93.88,93.97) 3.46 (3.41,3.51) 0.73 (0.72,0.73)

DT 66.96 
(66.64,67.28)

85.53 
(85.46,85.61)

27.23 
(26.84,27.62)

33.11 
(32.43,33.80) 23.13 (22.87,23.38) 93.81 

(93.75,93.86) 3.38 (3.33,3.43) 0.74 (0.73,0.75)

RF 67.71 
(67.45,67.97)

85.39 
(85.36,85.43)

27.36 
(27.06,27.65)

33.64 
(33.21,34.06) 23.05 (22.83,23.27) 93.84 

(93.80,93.88) 3.36 (3.32,3.41) 0.74 (0.73,0.74)

XGB 69.24 
(68.91,69.57)

85.50 
(85.46,85.55)

28.35 
(27.98,28.71)

35.07 
(34.54,35.60) 23.79 (23.52,24.06) 93.96 

(93.92,94.01) 3.51 (3.45,3.56) 0.72 (0.72,0.73)

MLP 69.14 
(68.80,69.48)

85.50 
(85.45,85.54)

28.24 
(27.86,28.61)

34.89 
(34.35,35.43) 23.71 (23.44,23.99) 93.95 

(93.90,94.00) 3.49 (3.44,3.54) 0.72 (0.72,0.73)

F

LR 85.53 
(85.22,85.84)

87.85 
(87.79,87.91)

46.14 
(45.75,46.54)

63.69 
(62.97,64.41) 36.18 (35.92,36.43) 96.53 

(96.47,96.60) 6.37 (6.30,6.44) 0.40 (0.40,0.41)

DT 83.75 
(83.42,84.08)

87.75 
(87.65,87.85)

45.84 
(45.46,46.23)

63.43 
(62.73,64.13) 35.89 (35.59,36.19) 96.51 

(96.44,96.57) 6.29 (6.21,6.38) 0.41 (0.40,0.41)

RF 85.35 
(85.04,85.66)

87.91 
(87.85,87.97)

46.54 
(46.14,46.94)

64.42 
(63.69,65.16) 36.43 (36.17,36.69) 96.60 

(96.53,96.67) 6.44 (6.37,6.51) 0.40 (0.39,0.40)

XGB 85.63 
(85.32,85.94)

87.89 
(87.83,87.95)

46.41 
(46.03,46.80)

64.19 
(63.50,64.87) 36.35 (36.10,36.60) 96.58 

(96.52,96.64) 6.42 (6.35,6.49) 0.40 (0.39,0.41)

MLP 85.68 
(85.32,86.04)

87.91 
(87.87,87.96)

46.57 
(46.23,46.91)

64.45 
(63.83,65.07) 36.46 (36.24,36.67) 96.60 

(96.55,96.66) 6.45 (6.39,6.51) 0.40 (0.39,0.40)
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Table 2.  Performance of models for predicting preterm birth at 10% FPR using tenfold cross-validation, by 
classification algorithms. AUC, area under the receiving-operator characteristic curve; TPR, true positive rate 
(recall or sensitivity); PPV, positive predictive value (precision); NPV, negative predictive value; LR + , positive 
likelihood ratio; LR − , negative likelihood ratio; CI, confidence interval; FPR, false positive rate (1-specificity); 
LR, regularised logistic regression; DT, decision trees; RF, Random Forests; XGB, extreme gradient boosting; 
MLP, multi-layer perceptron. Model A: Cohort—all births; Predictors—maternal socio-demographic factors, 
maternal chronic medical conditions, and current pregnancy characteristics and complications; Model B: 
Cohort—births of multiparous women; Predictors—Model A + maternal past obstetric history; Model C: 
Cohort—births of parents who were born during the study period; Predictors—Model A + parent’s birth 
outcomes and grandmother’s chronic medical conditions and obstetric history; Model D: Cohort—all births; 
Predictors—maternal socio-demographic factors, maternal chronic medical conditions, parity, and birth year; 
Model E: Cohort—births of multiparous women; Predictors—Model D + maternal past obstetric history; 
Model F: Cohort—births of multiparous women; Predictors—Model B excluding small-for-gestational age and 
congenital anomalies in current birth.
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Figure 3.  Performance, evaluated using AUC, of classification algorithms (10-fold CV), by models. AUC, area 
under the receiver operating characteristic curve; LR, regularised logistic regression; DT, decision trees; RF, 
Random Forest; XGB, extreme gradient boosting; MLP, multi-layer perceptron; CV, cross-validation.
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Figure 4.  Performance, evaluated using F1, of classification algorithms (10-fold CV), by models. F1, F1 score; 
LR, regularised logistic regression; DT, decision trees; RF, Random Forest; XGB, extreme gradient boosting; 
MLP, multi-layer perceptron; CV, cross-validation.
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Figure 5.  Summary plot of the SHapley Additive exPlanations (SHAP) value for models (A), (B) and 
(C) developed using the XGBoost classifier. The “beeswarm” plot on the left shows the distribution of the 
SHAP value (in log-odds scale) calculated using the test dataset. Each dot represents a prediction result of a 
particular feature for a particular individual. The colour of the dots shows the feature values (red = present/1, 
blue = absent/0). A positive SHAP value means the predictor increases the likelihood of preterm birth, and a 
negative value means otherwise. The bar graph on the right side shows the mean absolute SHAP value for each 
feature. The feature names are displayed on the far left in order of the mean absolute value. PROM, pre-labour 
rupture of membrane; APH, antepartum haemorrhage; GA, gestational age; SGA, small for gestational age; w, 
weeks.
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Figure 6.  Summary plot of the SHapley Additive exPlanations (SHAP) value for models (D), (E) and 
(F) developed using the XGBoost classifier. The “beeswarm” plot on the left shows the distribution of the 
SHAP value (in log-odds scale) calculated using the test dataset. Each dot represents a prediction result of a 
particular feature for a particular individual. The colour of the dots shows the feature values (red = present/1, 
blue = absent/0). A positive SHAP value means the predictor increases the likelihood of preterm birth, and a 
negative value means otherwise. The bar graph on the right side shows the mean absolute SHAP value for each 
feature. The feature names are displayed on the far left in order of the mean absolute value. y, years; SES, socio-
economic status; IRSD, The Index of Relative Socio-economic Disadvantage; GA, gestational age; w, weeks; SGA, 
small for gestational age; PROM, pre-labour rupture of membrane; APH, antepartum haemorrhage.
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trees, support vector machines and random forests with weighted voting, can predict preterm birth with an 
accuracy of 81% and an AUC of 68%. However, no other model performance statistics were presented, so a 
direct comparison with our study was impossible. In a more recent study, using population-based data from 
the United States natality datasets that provide demographic and health information on births that occurred 
between 2013 and 2016 (n = 12,864,146), Koivu and Sairanen employed logistic regression and machine learning 
methods to develop novel risk models for the prediction of pregnancies with delivery before 37 weeks of gesta-
tion (prevalence 7.4%)25. A gradient boosting decision tree algorithm provided the best model with a TPR of 
31% at 10% FPR and an AUC of 0.67 (95% CI 0.67,0.67). The model prediction was subsequently validated by a 
New York City dataset collected during the years 2014 to 2016 (n = 285,871, preterm birth prevalence 6.7%), and 
the prediction performances were lower with this dataset (AUC 0.64 [95% CI 0.63,0.64], TPR 24% at FPR 10%). 
Despite the large volume of data involved in the U.S. study, their number of predictors was limited as they were 
derived from information in the birth certificates only. Moreover, although a handful of past obstetric history 
predictors (e.g., previous preterm birth) were used, they were simply dichotomised without considering that nul-
liparous and multiparous women were included in the modelling. These factors might explain why the results of 
our study (AUC 0.69 [95% CI 0.69,0.70], TPR 35% [95% CI 35,36] at FPR 10%, Model E: XGB) were better than 
that of their validation sample.

Other studies have employed additional risk factors collected during pregnancy to boost prediction perfor-
mance. In the U.K., researchers combined proximal predictors, including cervical length (CL) and quantitative 
foetal fibronectin (qfFN), with other pertinent risk factors to develop a risk assessment tool for the prediction 
of spontaneous preterm birth (sPTB) in asymptomatic high-risk women. The research was translated into an 
online platform (QUiPP) for widespread  use38. The study was recently re-evaluated with an expanded cohort 
(n = 1,803), and when both CL and qfFN were incorporated into the model, the AUC for the prediction of sPTB 
at < 37 weeks’ gestation was 0.746, and the TPR at 5% FPR was estimated to be 25%39. In a separate but related 
study where the risk-assessment tool was applied to a cohort of high-risk women with symptoms of threatened 
preterm labour, the AUC for the prediction of the same outcome was 0.73 (95% CI 0.63–0.83) and the TPR at 
5% FPR was 20%40. Despite the difference in study design between the QUiPP studies and ours, it is neverthe-
less noteworthy to mention that the performance of their models was comparable to that of our model (Model 
E, MLP: AUC 0.691, TPR 23.4% at 5% FPR) in which only administrative data on socio-demographics, chronic 
medical conditions and past obstetric history were used. Furthermore, our predictors were not necessarily 
restricted to be proximal to the birth, and we utilised a more generalisable population.

Strengths and limitations. Our study harnessed the benefits of using professionally curated population 
data on all births that occurred in Western Australia over three decades. The databases’ extensive time coverage 
allowed us to study many predictors, including familial factors that are otherwise not feasible. Furthermore, due 
to the administrative nature of the data, information on medical and family history was objectively collected and 
systematically recorded, thus avoiding the shortcomings associated with traditional health medical records and 
keeping missing data to a minimum.

There are limitations that need to be considered. Regarding predictors, firstly, their measurement could 
have changed over time due to shifts in practices. For example, there was a notable increase in the incidence of 
gestational diabetes in 2012–2013 due to a change in the diagnosis criteria of gestational diabetes by the Aus-
tralasian Diabetes in Pregnancy Society because of the new consensus guidelines established by the International 
Association of Diabetes and Pregnancy Study Groups in 2010. Secondly, we do not know when risk factors first 
emerged, which could affect predictive performance if precise timing is required. Thirdly, as interventions and 
their indication were not recorded, the resulting predictions could be problematic because the treatment effects 
could have rendered some of the predictors less relevant. Fourthly, simplicity and interpretability can be gained 
by categorisation, but the ability to extract predictive information could be diminished as a result. Lastly, it is pos-
sible that machine learning was unable to detect the signal from the noise when categorised predictors were used.

Regarding the outcome and model development, firstly, spontaneous and medically indicated preterm births 
were collectively analysed because the study was prognostic instead of aetiologic and prediction performance 
(e.g., TPR and PPV) benefits from larger case numbers. Secondly, we have used class weight to improve class 
imbalance, but other methods, such as resampling, might be useful and haven’t yet been explored. Thirdly, the 
assumption of the equal importance of TPR and PPV in prediction performance is likely conservative, and a 
different weighting that caters for a specific clinical context might be necessary. Fourthly, the expansive time 
coverage of the databases allowed us to explore family factors in preterm birth prediction, but the sample size 
of the family linkage cohort was limited as the ancestors of the birth cohort are mostly migrants, and thus they 
were not included in the local birth perinatal registry. Lastly, although feature importance on model performance 
and the contribution of predictors to model prediction was investigated, we did not examine how the predictions 
using the multi-layer perceptron classifier were generated in this study. The insights gained can help promote 
acceptance and facilitate future model development.

Clinical significance. The results of our study are promising, and the evidence contributes to establishing 
an effective prediction mechanism to identify pregnancies at elevated risk of preterm birth. The decision sup-
port system that utilises the proposed prediction algorithm can be used to inform individualised care. It aids 
clinicians by providing an objective evaluation of the risk of preterm birth based on administrative and clinical 
predictors already routinely collected in the antenatal system, thus having minimal impact on the workload. Fur-
thermore, the assessment can be repeated when new information becomes available during the antenatal period. 
The longitudinal data can benefit clinicians and patients in evaluating progress and planning for preventative 
treatments and future interventions.
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Conclusions
We demonstrated that around half of the preterm birth could be identified antenatally at high specificity using 
population-based routinely collected maternal and pregnancy data. We have found that the performance of the 
prediction models largely depends on the available predictor pool that is individual and timing specific and is 
less reliant on the algorithms used for model development. Further research is needed to externally validate 
the models and to improve the performance using additional informative predictors and treatment indicators.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to the terms of the 
ethics approval granted by the Western Australian Department of Health Human Research Ethics Committee 
(WA DOH HREC) and the data disclosure policies of the Data Providers. The datasets may be available from 
the corresponding author upon request and subject to approval from the DOH HREC and relevant custodians.
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