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Due to the widespread usage of Android smartphones in the present era, Android malware has 
become a grave security concern. The research community relies on publicly available datasets to 
keep pace with evolving malware. However, a plethora of apps in those datasets are mere clones of 
previously identified malware. The reason is that instead of creating novel versions, malware authors 
generally repack existing malicious applications to create malware clones with minimal effort and 
expense. This paper investigates three benchmark Android malware datasets to quantify repacked 
malware using package names‑based similarity. We consider 5560 apps from the Drebin dataset, 
24,533 apps from the AMD and 695,470 apps from the AndroZoo dataset for analysis. Our analysis 
reveals that 52.3% apps in Drebin, 29.8% apps in the AMD and 42.3% apps in the AndroZoo dataset 
are repacked malware. Furthermore, we present AndroMalPack, an Android malware detector trained 
on clones‑free datasets and optimized using Nature‑inspired algorithms. Although trained on a 
reduced version of datasets, AndroMalPack classifies novel and repacked malware with a remarkable 
detection accuracy of up to 98.2% and meagre false‑positive rates. Finally, we publish a dataset of 
cloned apps in Drebin, AMD, and AndrooZoo to foster research in the repacked malware analysis 
domain.

Android operating system (OS) dominates the smartphone industry with more than 85% global market  share1 
becoming the prime target for malware developers. Industry and researchers are paying significant attention to 
securing smartphone devices. The research community has proposed various solutions to analyze and avoid the 
hazards caused by  malware2,3. However, a torrent of Android malware attacks (over 12 million) has emerged in 
the recent  past4. Most of the time, attackers produce clones by repacking existing legitimate or malicious apps 
to achieve the desired malevolent  objectives5. According to some previous  studies6, 80% of mobile malware is 
repackaged. Since the Android apps are available to download from public app stores, an attacker can easily 
retrieve the legitimate app, reverse engineer and inject malicious code into it. The attacker can later publish the 
modified version of the original app on a public app  store7. This kind of attack refers to a repackaging attack. 
The motivation behind the app repackaging is not always malicious. It has been observed that some developers 
get access to the source code of premium apps, repack and distribute the cloned versions for free, which refers 
to application plagiarism. The plagiarized version of premium apps is further used as a source of income by 
incorporating paid advertisements and in-app purchases.

Numerous techniques have been proposed to detect Android repackaged  malware8. Machine learning (ML) 
being the core element of Android malware detection, most of the techniques discussed  in8 focus on detecting 
the clones. However, to our knowledge, no previous study has investigated the effects of removing repackaged 
apps from training datasets. The classification results of ML algorithms highly depend on the quality of the data 
used for the training process. However, pre-processing the training data can be a time-consuming task. In the 
case of Android, the apps need to be reverse-engineered to extract the features. Various tools are used to reverse 
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engineer the Android  apps9, whereas the time required for the reverse engineering process depends on the app’s 
size. Since 2015, Google has increased the size limits on Android apps from 50 to 100  MB10, and with the growth 
of the apps, the cost of reverse engineering could increase even further. Moreover, the training and optimization 
time required for the ML algorithms also depends on the size of the training dataset. Consequently, the repack-
aged apps in the training sets of ML algorithms result in increased costs.

This paper first highlights the problem of repackaged malware by finding the potential clones of existing 
malware in three benchmark Android malware datasets. In order to quantify the occurrence of repacked mal-
ware in the datasets, we match the package names of samples under observation with those of known malicious 
packages. Then, we investigate the impact of cloned apps based on the same package names on multiple machine 
learning models. We name our proposed technique as AndroMalPack, which extracts permissions, APIs and 
Intent-based features from the apps dataset to train the machine learning models. AndroMalPack removes all 
the repacked malware samples (based on package name reusing) from the training set. However, it retains the 
repacked malware in the test sets to measure the effectiveness of ML models. AndroMalPack employs seven 
different machine learning models (support vector machine (SVM), linear regression (LR), decision trees(DT), 
random forests (RF), xgboost (XGB), AdaBoost (AB) and k-nearest neighbours (KNN) ) with default hyper-
parameters trained on the clones free train-sets. Moreover, AndroMalPack selects the best performing ML model 
on reduced datasets and tunes the hyper-parameters by employing nature-inspired algorithms (NIAs) to achieve 
even better results. Three nature-inspired algorithms (bat, firefly and grey wolf optimizer) are used to optimize 
the hyper-parameters of the best performing classifier. Finally, we publish a comprehensive dataset of cloned 
apps based on the same package names in Drebin, AMD and AndoZoo datasets to support further research in 
repacked malware analysis.

The key contributions of this work can be summarized as follows: 

1. We quantify the potential clones of known malware in 3 benchmark Android malware datasets (Drebin, 
AMD and Androzoo) by employing a lightweight and novel strategy based on package names reusing.

2. We propose AndroMalPack, a novel approach for Android malware classification. AndroMalPack is trained 
on clones free data and optimized using nature inspired algorithms. Contrary to traditional 80/20 train and 
test splits, AndroMalPack filters outs the repacked malware (based on package name reusing) from training 
sets, whereas test sets contain all repacked malware in addition to non-repacked and benign samples. Con-
sequently, AndroMalPack significantly reduces the training set size yet retains high classification accuracy. 
Although trained on reduced train sets, AndroMalPack outperforms multiple state of the art techniques in 
terms of classification results.

3. We publish a hash dataset of 389,995 repackaged apps based on package names reusing in Drebin, AMD and 
Androzoo repositories to foster future research in repacked Android malware analysis domain.

The rest of the paper is organized as follows. Section “Background” covers the background concepts, and Sec-
tion “Motivation” presents the motivation for this work and research questions. Section “Datasets” presents 
the details of datasets used and the statistics about potential repacked malware based on package names reus-
ing. Section “AndroMalPack” presents AndroMalPack, an Android malware classifier trained on clones free 
train sets and optimized using nature-inspired algorithms. We then present the experimental results in Section 
“Experimental results”. We discuss the related work and comparison with state of the art in Section “Related 
work”. Section “AndroMalPack dataset” presents details about the published dataset, and we conclude our work 
in Section “Conclusion”.

Background
This section discusses some background about Android application (APK) structure, APK reverse engineering, 
APK repackaging, and the motivation behind this study.

Android application structure. Android applications are usually developed using Java programming 
language and are deployed in a compressed form called the Android application package (APK). APKs can be 
downloaded and installed directly on Android devices from the official app store called Google play or from 
third-party app stores like the Amazon app store, GetJar and Opera app store. A typical Android APK consists 
of the following components: 

1. Dalvik byte code Android applications are written in Java and are further compiled in the form of .class files 
(Dalvik byte code). The .class files are then compressed in the form of a single Dalvik executable file called 
classes.dex which is finally executed on the Dalvik virtual machine (DVM).

2. Manifest file Every Android application has an AndroidManifest.xml file which contains essential information 
about the components and structure of the app. The AndroidManifest.xml file includes the information about 
the main package name, permissions that the app requires, hardware components which the app accesses, 
activities, broadcast receivers, services, and intent filers and the software features required by the app.

3. Resources it includes all the essential resources required by the app like images, animations, layouts and user 
interface strings. All the required resources are compiled into the app at the built time.

4. Libraries contains all compiled external libraries which are used in the app.
5. Signatures The author must digitally sign all the Android applications before deployment on app stores. The 

digital signature is a unique cryptographic hash which represents the author.
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Reverse engineering. Android application package (APK) is a zipped archive that contains classes.dex file, 
AndroidManifest.xml file, resources and libraries in compressed form. The contents of the zip archive are not 
human-readable as the java classes are compressed in the form of a single Dalvik executable (.dex) file. However, 
it is possible to reverse engineer an APK file to extract java source code and corresponding files using several 
tools. Figure 1 explains the steps required to reverse engineer an APK. APK tool is used to unzip the APK file 
to extract classes.dex file. The classes.dex file is then decompiled in form of java-archive .jar file by using dex2jar 
tool. The .jar produced by dex2jar tool contain java byte code in form of .class files which are still not human 
readable. Finally, a java decompiler tool such as JAD is used to decompile the .class files in the form of java source 
code.

Android application repackaging. Application repackaging refers to reverse engineering an app, inject-
ing custom functionality, and re-assembling the app into deployable form. Malware developers commonly use 
application repacking to inject malicious payloads into cloned versions of popular apps on the Android plat-
form. Malware developers often repack existing malware to evade antivirus systems. Most antivirus systems 
depend on the signatures of known malware for malware  detection11. The malicious signatures databases of the 
antivirus systems are updated regularly. In the case of Android, a simple unpack and recompilation of the appli-
cation without any modifications results in a change of the entire  signature12. Re-assembling the app changes 
the organization of contents like classes, methods and variables in the classes.dex file, which eventually affects 
the signature of the app. Consequently, attackers regularly use the practice of simple recompilation to create 
exact clones of known malware to deceive antivirus systems. Apart from malicious code injection and simple 
repackaging, attackers also repack premium apps with custom advertisements and distribute them for free to 
generate revenue.

Application naming conventions. Every Android app available on the app store must have an app name 
and a unique package name. App name refers to the app’s title that appears on the app store. It is not requisite 
for an app to have a unique name as multiple apps on the Android official app store can be found sharing the 
same name. On the other hand, the Android package name is the unique identity of an app which is defined in 
AndroidManifest.xml file. Usually, the package name is the name of the base package, which is created when the 
app is developed. The base package can have further sub-packages containing java classes and activities. No two 
apps installed on the same device can have identical package  name13. If two apps with identical package names 
are installed on the same device, the latter will override the previous one as an updated version. Malware authors 
frequently upload cloned apps with the same package names and slight modifications to trick antivirus systems 
which rely on hash-based detection.

Motivation
Our preliminary study on repacked malware started with an investigation of malware samples from the Dre-
bin  dataset14. Drebin contains 5560 malware samples belonging to 117 different malware families. To detect 
repacked malware, we selected 1793 malware samples from the top 5 families based on the number of samples 
in each family (Table 1). Furthermore, we reverse-engineered the selected apps to extract multiple features like 
permissions, intents, hardware components, the network address and package names. Interestingly, we found 
a massive redundancy amongst the apps’ package names under analysis. Our findings reveal that 48.68% of the 
apps in the selected dataset share some frequently used package names. Consequently, we churned out the apps 
which share the same package names for further analysis. As discussed earlier, simple re-compilation of Android 
apps (re-construction of classes.dex file) results in a significant change in the app’s signature. Therefore, all the 

Figure 1.  Android application package (APK) reverse engineering.
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apps that share the same package names still have different hash values, and as a result, a more robust signature 
generation technique is needed. Our target at this stage was to develop a novel signature generation technique 
such that all the samples that have the same package names should have identical signatures. Subsequently, 
instead of relying on calculating the hash value of classes.dex file, we considered the hash generation for all the 
extracted source code of the apps.

Further analysis of apps sharing the same package names revealed that most share the same source code with 
minor changes. Traditional hash generation algorithms like  SHA115 and  MD516 take input from a file of arbitrary 
size and produce a fixed-length cryptographic hash as an output. Calculating the SHA1 or MD5 hash of two 
identical files will always produce the same output. Most antivirus systems maintain contemporary databases of 
MD5 and SHA1 hashes of know malware. However, a minor change in the original malware results in a significant 
SHA1 or MD5 hash change. Therefore, instead of calculating SHA1 or MD5 hashes of the source codes of the 
apps sharing the same package names, we considered using a more robust hashing technique called  SSDeep17. 
SSDeep is based on a context-triggered piece-wise hashing (CTPH) technique known as fuzzy hashing. CTPH 
is a powerful new technique that can detect homologous files, i.e., almost identical files. Given the fuzzy hashes 
of two almost identical files, i.e. the original file and a file with some minor changes, the ssdeep algorithm can 
provide the similarity score between two hashes. Conversely, SHA1 and MD5 hashes do not have the capability of 
comparing the similarity between two hashes. Therefore, we considered using fuzzy hashes. If there are any minor 
changes in the cloned malware, we still can get a similarity score by comparing it with know malware hashes.

Algorithm 1 presents our fuzzy hash-based methodology to detect repacked malware. Let D be the dataset of 
the top 5 families from the Drebin dataset. We reverse engineer all the apps in D to extract a set of distinct pack-
age names as DPN = {Pn1, Pn2 , Pn3, ...Pnn} . Furthermore, we randomly select one app form D for each package 
name in DPN, calculate its fuzzy hash using SSDeep algorithm and place it in a set FH. The set of fuzzy hashes 
FH and an APK from D are provided as input to the Algorithm 1, whereas a similarity score is produced as an 
output. We calculate the fuzzy hash of the source code of the given APK as the first step (Algorithm 1, line 1). 
The hash of the APK is then compared with all the hashes in FH by using the hash comparison utility of SSDeep 
algorithm (Algorithm 1, line 3). If the similarity score at any point is greater than the threshold value, the APK is 
declared as repacked malware, and the similarity score is returned (Algorithm 1, lines 4–6). The algorithm returns 
0 if none of the hashes in FH has a similarity score above the threshold. The threshold value for experiments 
was set at 70% similarity score.

Table 2 summarizes the results of repacked malware detection by using fuzzy hashes. We used 873 malware 
samples from 5 families for experiments and found six frequently reused packages. Furthermore, we randomly 
selected 1 sample from each set of apps sharing the same package name and calculated its fuzzy hash. The fuzzy 
hash is then compared with hashes of all the remaining samples, which share the same package names. The 
app is declared repacked malware if its fuzzy hash has a 70% similarity score with any of the hashes in FH. As 
reported in Table 2, the average detection rate based on fuzzy hashes of malware samples sharing the same pack-
age name is 58.81%. Although the results from fuzzy hash-based detection are not promising, however, provided 
us with solid motivation for further analysis of repacked malware based on package name reusing. Further in 
this work, instead of focusing on signature-based detection, we employ machine learning-based algorithms to 
detect repacked malware. We further extend the scope of our work by employing another two Android malware 
datasets to investigate malicious apps sharing identical package names. Based on the results of the motivating 
study, we focus on addressing the following research questions further in this study:

Table 1.  Malware samples in Drebin from Top 5 families.

Malware family Samples

FakeInstaller 821

OpFake 363

BaseBridge 330

Kmin 147

FakeDoc 132
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• RQ1: How often do malware samples in benchmark Android malware repositories re-use package names?
• RQ2: Can we consider the malware samples sharing same package names as clones/repacked versions of 

known malware?
• RQ3: What is the impact of repacked malware on ML-based Android malware classifiers?

Datasets
In this section, we focus on addressing the concern raised in RQ1. We explore three well-known Android 
malware datasets,  Drebin14,  AMD18, and  Androzoo19 to quantify malware samples sharing the same package 
names. Table 3 presents the summary of the selected malware datasets. Following is a brief description of the 
selected datasets:

Drebin. Drebin dataset was released in 2014 to foster research in the domain of Android malware analysis. 
Drebin dataset is publicly available and is one of the most cited works in the Android malware  domain20. Drebin 
contains 123,453 benign and 5560 malicious apps, including all the apps from Android malware genome  project6 
(one of the pioneer Android malware datasets).

AMD. Android malware dataset (AMD) was released in 2017 and contains 24,553 Android malware apps 
belonging to 71 different malware families. AMD consists of malware samples collected from 2010 to 2016 and 
is one of the largest publicly available Android malware datasets.

Androzoo. Androzoo is a publicly available, regularly updated and most popular Android apps dataset 
which is currently being used in recent  studies21,22. Androzoo was released in 2016 with more than 3 million 
Android apps and is constantly being updated. By the end of the second quarter of 2021, Androzoo holds more 
than 15 million Android apps. The Android apps in Androzoo are collected from several platforms like the 
Google app store, third-party Android app stores and VirusShare. The Androzoo dataset’s apps are scanned and 
labelled for potential malware by using more than 60 antivirus tools. Androzoo provides meta-data for Android 
apps like size, upload date, signatures and package name in the form of an excel file which is regularly updated. 
We considered 695,470 malware apps from the Androozoo dataset for analysis of repacked malware based on 
package names reusing. Our criteria for app selection from Androzoo was that each app must be labelled as 
malware by at least ten antivirus tools.

Malware clones in datasets. As discussed in Section “Motivation”, our preliminary study on the Drebin 
dataset revealed the presence of frequently reused package names amongst malware samples. Further investiga-
tion on samples sharing the same package names showed that most share almost the same source code. This 
motivation led us to explore multiple well known Android malware datasets further and quantify the samples 
sharing the same or similar package names. Although detecting repacked malware based on package names 
is a lightweight approach and can be easily evaded, our target in this work is to quantify existing clones in the 
dataset rather than detecting novel clones. The reason is that the selected datasets are very popular amongst 
the research community, and hence the presence of clones must be considered in future works to avoid biased 
results. Furthermore, we investigate our claim’s credibility that samples having the same package name are clones 

Table 2.  Fuzzy Hash-based similarity results.

Package name Family Samples Similarity

com.software.application FakeInstaller 234 10.6%

com.software.appinstaller FakeInstaller 193 66.8%

com.keji.danti BaseBridge 164 63.4%

com.extend.battery FakeDoc 120 44.1%

com.km.installer Kmin 65 72.3%

ad.notify1 Opfake 97 96.9%

Table 3.  Summary of selected Malware datasets.

Dataset Families Samples Date

Drebin 117 5560 2014

AMD 71 24,553 2017

Androzoo 1969 695,470 2016
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of known malware. Based on the results of our initial attempt by using fuzzy hashes it has provided us with the 
good ground to further investigate by incorporating ML algorithms.

Algorithm 2 presents our methodology to quantify repacked malware in Drebin, AMD and Androzoo data-
sets based on package names reusing. A dataset is provided as an input to the Algorithm 2, and the number 
of repacked malware based on reused package names is provided as an output. We take an empty set Pnames 
(Algorithm 2, line 1) which is populated with the distinct package names in the given dataset. Furthermore, we 
extract the package names of all the apps in the given dataset using the Androguard tool (Algorithm 2, line 3). 
 AndroGuard23 is a python-based tool which can extract multiple features from AndroidManifest.xml file of a 
given APK. The extracted package name is then appended in the Package names list Pnames if not already present 
in it (Algorithm 2, lines 4-6). Consequently, the list Pnames is populated with all the distinct package names within 
the dataset. The algorithm then returns the number of samples having reused package names (the difference 
between the number of samples and the number of distinct package names in the dataset).

We used the AndroGuard tool to extract package names of samples from Drebin and AMD datasets. In con-
trast, Androzoo already provides information about the package names. The metadata provided by Androzoo 
saved a fair amount of time as the Androguard tool performs reverse engineering of an APK to extract features. 
The time required to reverse engineer an app depends on the size of the app. It took 2.5 seconds on average to 
reverse engineer apps from Drebin and AMD datasets to extract package names using the Androguard tool (Sys-
tem specification shown in Table 4). Our experiments to find repacked malware samples based on package names 
reusing in Drebin, AMD and Androzoo datasets are shown in Fig. 2 (addresses RQ1). 52.3% of the samples in 
Drebin and 29.4% of samples in the AMD dataset contain reused package names. Compared to Drebin and AMD, 

Figure 2.  Quantity of Repacked malware in Datasets based on package names reusing.

Table 4.  System specifications.

Features Specifications

Processor Intel(R) Corei7, 2.60GHz, 6 Cores

GPU NVIDIA GeForce GTX 1650 Ti 4GB GDDR6

Cache size 12MB

RAM 16 GB DDR4-2933MH

Platform Windows 10
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the Androzoo dataset contains far more samples and interestingly, 42.3% of them contain reused package names. 
Table 5 outlines the statistics about the top 10 most reused package names in malware samples in each dataset.

AndroMalPack
As discussed in Sect. “Motivation”, signature-based malware detection is very fragile against a simple mutation 
in original malware. Consequently, malware authors often repack existing malware with minimal modifications 
to trick antivirus systems relying on signature-based detection. Therefore, we employ ML algorithms to create 
a more robust solution for repacked malware detection. The motivation to use ML algorithms is to support our 
claim that malware samples sharing the same package names in popular Android malware datasets are clones of 
known malware. In this section, we propose AndroMalPack (Fig. 3), an ML-based Android malware classifier 
trained on clones free train sets and optimized using nature-inspired algorithms (NIAs).

Data pre‑processing. As shown in Fig. 3, AndroMalPack is provided with a malicious Android apps data-
set. Instead of splitting the dataset into random train and test sets (the traditional approach), AndroMalPack 
extracts the apps’ package names to build the train and test sets. All the apps which have reused package names 
are directly assigned to the test set, whereas 70% of the apps with unique package names are assigned to the train 
set, and 30% are allocated to the test set. Consequently, train and test set distribution by AndroMalPack confirm 
the exclusion of malware samples sharing the same package names from the training set and eventually retains 
diversity and perceptible reduction of training set size. Furthermore, the benign apps dataset apps are randomly 
distributed 70% in the train set and 30% in the test set.

Features set modeling. After train and testing set splits, AndroMalPack extracts the features from the 
Android apps. We use static analysis of apps to extract three different types of features to train ML classifi-
ers. Android permissions and intent filters based features are extracted from AndroidManifest.xml file, whereas 
API calls based features are extracted from the source code of the apps. Following is a brief description of the 
extracted features:

Android Permissions The Android permission model is a framework provided by Android to protect user 
privacy. It is requisite for an app to acquire permissions from the user before accessing any sensitive features 
such as sending SMS, using the camera, and accessing contacts and the user’s current location. The pattern of 
permissions required by an app can be used to train ML algorithms to classify malware and benign apps. Numer-
ous techniques in literature use Android permissions model to detect potential malware in Android  apps2,24,25.

Intent filters define the communication mechanism between different components of an Android app. Intents 
are simple message objects that transfer the information between different modules such as activities, content 
providers, services and broadcast receivers of an Android app. The information about intent filters is listed in 
AndroidManifest.xml file and can be used as a feature set to train ML algorithms to classify malware and good-
ware apps. Many techniques in literature employ intent filters in addition to other features from AndroidManifest.
xml file for malware  detection26–28.

API calls Android application programmable interfaces (APIs) are a set of specifications and protocols that 
are used to build and integrate Android applications. API calls are invoked in apps at run-time to perform dif-
ferent tasks like sending SMS and getting network information. API calls-based features are efficient in malware 
detection and are used by many existing malware detection  techniques29,30.

Table 5.  Top 10 most reused packages in Datasets.

Drebin AMD Androzoo

Package name Sample Package name Samples Package name Samples

com.software.application 234 com.soft.android.appinstaller 548 com.software.application 2114

com.soft.android.appinstaller 193 tk.jianmo.study 384 com.xgbuy.xg 1183

Jk7H.PwcD 117 com.software.application 274 com.soft.android.appinstaller 769

com.extend.battery 110 edu.raj.sphincter 255 ad.notify1 727

ad.notify1 97 jp.bravo.honda 150 com.qihoo.appstore 676

com.convertoman.proin 92 com.android.app 143 ch.nth.android.contentabo_l01_sim_
univ 535

vbkoxh.cswnpr 83 org.slempo.service 143 com.nemo.vidmate 475

com.depositmobi 71 fl.affectionate 114 com.qiyi.video 416

com.software.app 54 de.granulocyte 101 nang.dv 408

com.km.launcher 52 org.zxformat 98 tk.jianmo.study 384
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Figure 3.  Block Diagram of AndroMalPack.
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The aforementioned features are employed to construct feature vectors from samples in the datasets. In order 
to extract the list of distinct permissions, intent filters and API calls, we analysed the manifest.xml files and source 
code of all the Android apps in the three datasets. As a result, we found 623 permissions, 3325 intent filters and 
1326 API calls. We further analysed the extracted permissions, intent filters and API calls to build a diverse 
feature set of discriminating characteristics. We only selected the features with high frequency in malicious and 
benign apps. Consequently, we build a feature vector containing 308 permissions, 585 intent filters and 226 API 
calls. We construct a binary encoded feature vector for each APK such that the presence of a particular feature 
in the APK is marked as 1 in the feature vector whereas absence is marked as 0.

Algorithm 3 explains our methodology for feature set modeling. The Algorithm 3 takes an APK, a list of 
unique permissions, a list of unique API calls and a list of unique intent filters. APK tool is used to extract 
AndroidManifest.xml file of the given APK (Algorithm 3, line 1). Permissions and intent filters-based features are 
then extracted from the AndroidManifest.xml (Algorithm 3, line 2-3). Furthermore, we use the Androguard tool 
to extract all the API calls from the given APK (Algorithm 3, line 4). Then we compare each permission in the 
unique permissions list, and if a particular permission in the unique permissions list is present in the extracted 
permissions set, the corresponding permissions vector bit is set to 1; otherwise, the bit is assigned 0 value (Algo-
rithm 3, line 5-11). The same process is applied to construct the intents vector (Algorithm 3, line 12-18) and the 
API calls vector (Algorithm 3, line 19-25). Finally, the three vectors (Permissions, intent filters and API calls) are 
concatenated and returned by the algorithm (Algorithm 3, line 26-27).

Learning phase. AndroMalPack considers Support vector machines (SVM), Logistic regression (LR), Deci-
sion trees (DT), Random Forest (RF), XGBoost (XGB), AdaBoost (AB) and K-nearest neighbours (KNN) to 
train models. Furthermore, based on the classification results, the best performing model is selected and further 
tuned using nature inspired algorithms. We consider bat algorithm (BA)31, grey wolf optimizer (GWO)32 and 
firefly algorithm (FA)33 to optimize the best performing model in motivation to achieve even better classification 
results. Finally, the results obtained by AndroMalPack are compared with classifiers trained on datasets without 
considering repacked malware to present the efficacy of AndroMalPack.

Experimental results
In this section, we report the evaluation results of AndroMalPack. Prompt from the analysis performed in Section 
“Datasets”, contrary to traditional 80/20 train test splits of datasets, AndroMalPack considers training the clas-
sifiers on reduced train sets. The reduced training set of each dataset confirms the exclusion of malware samples 
sharing the same package names from the training set and eventually retains diversity and perceptible reduction 
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of training set size. Table 6 presents the distribution of samples in train and test sets based on package names 
from Drebin, AMD and Androzoo datasets. We considered all the samples from Drebin and AMD datasets; 
however, we contemplated 25116 samples from the Androzoo dataset. As shown in Fig. 2, the Androzoo dataset 
contains 294,120 potential repacked malware samples, whereas the process of reverse engineering to extract fea-
tures from all these apps is expensive in terms of time and memory. Therefore, we selected 14,939 samples with 
unique package names and 10,177 with reused package names from the Androzoo dataset to reduce samples.

We evaluate the results based on the outcome of the confusion matrix. Confusion matrix summaries the 
results of machine learning classifiers based on correct and incorrect predictions by using the following metrics:

• True Positive (TP): signifies the number of malicious apps correctly classified by the ML classifiers.
• False Positive (FP): signifies the number of benign apps classified as malware by the ML classifier.
• True Negative (TN): signifies the number of malicious apps classified as benign by the ML classifier.
• False Negative (FN): signifies the number of benign apps correctly classified by the ML classifier

The performance metrics which we consider are accuracy (Eq. 1), recall (Eq. 2), precision (Eq. 3) and F1-score 
(Eq. 4) derived from the confusion matrix.

Table 7 presents the results of classifiers trained on reduced train sets with default hyper-parameters settings. 
Apart from the performance on the Drebin dataset, RF outperforms SVM, LR, DT, AB, XGB and KNN in terms 
of classification results. Although the classifiers are trained on reduced train sets, whereas test sets contain all 
the repacked malware samples and non-clone malware and benign apps, RF achieves high precision and recall 
scores. Similarly, Fig. 4 depicts the receiver operating characteristic (ROC) curves derived from classifiers trained 
on reduced train sets. The ROC curves plot the false positive rate (FPR) on the x-axis, whereas the true positive 
rate (Recall) is plotted on the y-axis. The ROC curves show remarkable results where RF yields the best results 

(1)Accuracy =
TP + TN

TP + FP + TN + FN

(2)Recall =
TP

TP + FN

(3)Precision =
TP

TP + FP

(4)F1 = 2×
Precision× Recall

Precision+ Recall

Table 6.  Train and test set splits for classifiers trained on clones free train sets.

Malware dataset
Total malware 
samples

 Malware samples in 
train set

Benign samples in 
train set

Malware samples in 
test set

Benign samples in 
test set

Drebin 5560 2704 4200 2856 1800

AMD 24553 15157 4200 9396 1800

Androzoo 25116 13039 4200 12077 1800

Table 7.  Results of classifiers trained on reduced train sets.

SVM LR DT RF XGB AB KNN

Drebin

Accuracy 96.28 96.24 94.88 96.02 96.09 92.27 96.33

Recall 95.6 95.6 95.4 96.1 95.5 87.9 94.9

Precision 95.7 95.7 93.1 94.8 95.5 93.9 96.6

F-measure 95.7 95.7 94.2 95.5 95.5 90.8 95.8

AMD

Accuracy 96.61 96.26 96.43 96.89 95.85 94.61 95.43

Recall 97.4 97 97.6 97.9 97.4 95.5 96

Precision 97.7 97.7 97.4 97.8 96.8 96.9 97.6

F-measure 97.6 97.4 97.5 97.8 97.1 96.2 96.8

Androzoo

Accuracy 97 97.05 96.55 97.53 96.39 95.61 97.31

Recall 98.7 98.8 98.5 99.5 99.3 98.1 99.5

Precision 96.9 96.9 96.4 97 97.4 95.5 98

F-measure 97.8 97.8 97.5 98.2 97.4 96.8 98



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19534  | https://doi.org/10.1038/s41598-022-23766-w

www.nature.com/scientificreports/

compared to SVM, LR, DT, AB, XGB and KNN. Subsequently, to further enhance the performance of Andro-
MalPack, we employ NIAs to determine the optimal hyper-parameters settings of the best performing classifier 
(RF). We consider Bat algorithm (BA)31 (see Appendix A), Firefly algorithm (FA)33 (see Appendix B) and Grey 
wolf optimizer (GWO)32 (see Appendix C) for hyper-parameters tuning of RF.

Table 8 present the optimal hyper-parameters setting for RF classifiers determined by NIAs (BA, FA and 
GWO) based on Drebin, AMD and Androzoo datasets. Furthermore, Table 9 presents the classification results 
achieved by AndroMalPack, an Android malware classifier based on RF and optimized using NIAs. As compared 
to the results of the RF classifier in Table 7, AndroMalPack remarkably strengthens the performance by employ-
ing NIAs to determine the optimal setting of hyper-parameters. Furthermore, as shown in Table 9, in the case 
of each dataset, RF optimized using BA performs slightly better than FA and GWO, whereas the result obtained 
from FA and GWO are almost similar with a marginal difference. However, in addition to classification results, 
we also consider the time complexity of NIAs as a performance metric for AndroMalPack. Figure 5 depicts the 
time taken by each NIA (BA, FA and GWO) for optimizing the hyper-parameters of RF-based on Drebin, AMD 
and Androozoo datasets. The population size for each NIA was initialized with 50, and max iterations were 
set to 100. Subsequently, BA outperforms FA and GWO in terms of time complexity and classification results. 
Nevertheless, the performance of FA and GWO is also convincing in terms of classification results; however, as 
compared to BA, FA and GWO take a significant amount of time to find the optimal hyper-parameters in the case 
of each dataset (Fig. 5). Therefore, AndroMalPack prefers BA compared to FA and GWO for hyper-parameters 
optimization to enhance the performance of RF for Android malware classification.

The experimental results show that although AndroMalPack excludes all the repacked malware (based on 
package name reusing) from training sets, whereas test sets contain all repacked malware in addition to non-
repacked and benign samples, it achieves a remarkable detection accuracy (up to 98.2%). Therefore our experi-
ments address the RQ2 by proving that the malware samples sharing the same package names can be considered 
repacked malware. Furthermore, we consider the traditional 80/20 random train test split regardless of repacked 
malware in the datasets to compare the results with AndroMalPack. Table 10 shows the classification results 
obtained from classifiers based 80/20 train and test sets split with 10-fold cross-validation. Apart from the clas-
sification results from the Drebin dataset, the RF classifier outperforms all the other classifiers in terms of accu-
racy, recall, precision and F1 score. Compared to the classification results of AndroMalPack, the results obtained 

Figure 4.  ROC curves of classifiers trained on reduced train sets.

Table 8.  Hyper-parameters for RF proposed by NIAs.

n_estimators max_depth min_sample_split max_features

BA FA GWO BA FA GWO BA FA GWO BA FA GWO

Drebin 60 80 80 34 28 28 2 2 2 auto sqrt auto

AMD 60 80 80 36 38 38 2 2 2 sqrt sqrt sqrt

Androzoo 40 80 80 32 32 32 2 2 2 sqrt sqrt auto

Table 9.  Results of AndroMalPack.

Bat Algorithm Firefly Algorithm Grey Wolf Optimzer

Acc Recall Pre F1 Acc Recall Pre F1 Acc Recall Pre F1

Drebin 98.29 98.7 97.7 98.1 98.22 98.5 97.4 98 98.22 98.5 97.4 98

AMD 98.21 99.4 98.1 98.7 98.17 99.4 98.1 98.7 98.17 99.4 98.1 98.7

Androzoo 97.94 99.8 97.2 98.5 97.9 99.8 97.2 98.5 97.94 99.8 97.2 98.5
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by classifiers based on 80/20 random train test splits are subtle with a marginal difference. Consequently, these 
experiments address the RQ3 as we can conclude that removing repacked malware based on the same package 
names from training sets does not significantly affect the classification results of ML-based algorithms.

Discussion
To prove that malware samples sharing the same package names are repacked versions of known malware, 
AndroMalPack assigns all samples with reused package names to the test set in addition to benign apps and 
non-repacked malware. Interestingly, AndroMalPack achieves up to 98% accuracy with the train and test set 
distribution. The results reflect our claim that malware samples sharing the same package names are clones of 
existing malware. The analysis of the datasets (Drebin, AMD and Androzoo) reveals that numerous malware 
samples in these repositories are repacked (based on package name reusing). We emphasize that repacked mal-
ware should be of concern while performing Android malware analysis. Repacked malware creates an overhead 
in terms of time and computational expenses. Hence, removing the repacked malware can save a fair amount of 
time in the reverse engineering process to extract features from Android apps.

In order to present the effectiveness of removing repacked malware from the datasets, we profile the reverse 
engineering time to extract features based on two scenarios. In scenario 1, we consider reverse-engineering 
the full dataset regardless of repacked malware, whereas, in scenario 2, we remove the repacked malware and 
profile the reverse engineering time. As shown in Fig. 6, removing repacked apps in Drebin, AMD and Andro-
zoo datasets significantly reduced the processing time. It took, on average, 2.5 s to extract APIs, intents, and 
permissions-based features from an APK by employing the Androguard tool’s static analysis. On the other hand, 
dynamic analysis can take anywhere between 60 s and 10 min per APK to extract  features34–37.

Nevertheless, the evaluation results of AndroMalPack prove that removing the repacked malware from train-
ing sets does not significantly impact classification results. Furthermore, as discussed  in38  and39, the duplicates in 
datasets can cause adverse effects on ML models by producing biased results. Consequently, we encourage fellow 
researchers to consider repacked malware in Android malware datasets while performing ML-based malware 
detection to train classifiers on reduced yet diverse data. Moreover, in addition to automated analysis, malware 
analysts generally perform manual dissection of malicious apps to study the insights of malware. Since our 
experiments show that the malware samples sharing the same package names are repacked versions of known 
malware, industrial specialists can employ our technique as a first-order pruning mechanism for malware analysis 

Table 10.  Results of classifiers on Datasets using Random 80/20 Train and Test Splits.

SVM LR DT RF XGB AB KNN

Drebin

Accuracy 96.03 96.25 95.74 97.09 95.78 94.98 97.6

Recall 94.5 94.7 95.9 96.8 94.2 92.2 96.8

Precision 95.5 95.8 93.6 95.9 95.1 95.1 97.1

F-measure 95 95.3 94.7 96.4 94.7 93.6 97

AMD

Accuracy 97.71 97.81 97.59 98.27 97.56 95.86 98.04

Recall 98.6 98.7 98.5 99.5 99.1 97.3 99.3

Precision 98.4 98.3 98.3 98.2 97.7 97.2 98.1

F-measure 98.5 98.5 98.4 98.8 98.4 97.2 98.7

Androzoo

Accuracy 97.38 97.38 97.29 98.26 96.75 95.83 97.8

Recall 98.8 98.7 98.6 99.6 98.9 97.8 99.2

Precision 97.7 97.7 97.7 98.1 96.7 96.6 97.8

F-measure 98.2 98.2 98.2 98.8 97.8 97.2 98.5

Figure 5.  Running time comparison of NIAs.
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to save time and expense. Moreover, in this work, we have shown that signature-based techniques are vulnerable 
to detecting repacked malware. Since we published a dataset comprising 389,995 repacked Android apps which 
reuse existing package names, the industry can leverage it to develop novel and more robust signature generation 
techniques with the ability to detect repacked malware.

Related work
Android malware detection. Malware has seen significant development in recent years, making it more 
complex than ever. Malware has impacted domains as diverse as cloud services, smart grids, financial institu-
tions, and cryptocurrency  mining40–42. Due to the widespread usage of Android OS-based smart devices (70% 
market share in the mobile OS industry), they have become a prime target for malware developers. As a result, 
the research community has expressed a significant interest in securing Android devices against malicious 
 attacks43,44. Many researchers have demonstrated machine learning as the core element of Android malware 
detection.  Drebin14, one of the most cited works in the Android malware detection domain, employed a char-
acteristics-based method for Android malware detection. Drebin performed static analysis to extract multiple 
features from Android apps such as APIs, permissions, intents and hardware components to train a linear SVM 
model to classify malicious and benign apps. The evaluation results of Drebin report 94% malware detection 
accuracy with a meagre false positive rate.

Ali Feizollah et al.45 proposed Androdialysis, a technique to detect Android malware using intents-based 
features. The technique suggests that intents are semantically rich features to detect malware with more detec-
tion accuracy than permissions-based features. They evaluated the Androdialysis using the Drebin dataset 
(5560 malicious 1846 benign apps) and achieved up to 91% malware detection accuracy. Garcia et al. proposed 
 RevealDroid46, an Android malware detector based on a large spectrum of static feature space. RevealDroid claims 
to achieve detection accuracy up to 98% on a dataset comprising 54000 malicious and benign Android apps. 
Surendran et al.47 proposed GsDroid, a technique to represent Android apps as a directed graph of sequenced 
system calls and combined ML-based algorithms to learn from malicious patterns. GsDroid obtained up to 
99% malware detection accuracy on various Android malware datasets. Maryam et al. proposed  cHybriDroid48, 
an Android malware classifier based on the conjunction of static and dynamic features of Android apps. They 
employed tree-based pipeline optimization technique (TPOT)49 to formulate a malware detection model and 
achieved up to 96% malware detection accuracy on the Drebin dataset. Pye et al.50 proposed a framework to 
detect Android malware using ML-based techniques. They optimized various ML algorithms using nature-
inspired algorithms and achieved up to 99.6% malware detection accuracy.

Bai et al. proposed a siamese network-based learning technique to classify Android malware  families51. 
Apart from large malware families, Bai et al. significantly improved the detection accuracy of few shot malware 
families. Fan et al.52 employed a graph-based method to construct frequent sub-graphs based on API calls to 
identify common behaviour between the same Android malware families. Similarly, Frenklach et al.53 extracted 
application similarity graphs based on function calls and combined ML algorithms to detect Android malware. 
Consequently, they achieved up to 95.5% accuracy on various Android malware datasets. Hongyu and  Tang54 
considered the power consumption of Android applications as a feature to detect malware. They profiled the 
power consumption of different categories of apps, where each app was monitored for 5 minutes. Based on the 
profiled data, they were able to detect 79 out of 100 malicious Android apps in the test set. Although ML-based 
malware detection techniques have demonstrated high classification accuracy, however, these techniques are vul-
nerable to evasive malware. Malware is swiftly evolving to evade the current countermeasures which are proposed 
in literature and used in commercial antivirus  tools55. Therefore many recent Android malware techniques focus 
not just to accurately classify Android malware but also to counter evasion attacks. Rafiq et al.56 presented the 
fragility of Android malware classifiers in adversarial settings. They proposed a cumulative adversarial training 
scheme to counter the evasion attacks on ML-based Android malware classifiers and demonstrated a 99.46% 
detection of evasive Android malware. Salman et al.57 used GANs to harden the security of Android malware 

Figure 6.  Features extraction time comparison.
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detectors against evasion attacks through intents based features. Similarly, the authors  in58 claim that GAN based 
methods improve the evasion detection of Android malware up to 50%.

Android malware repackaging. Android malware repackaging has become a significant concern for secu-
rity analysts over the past few years. Currently, most antivirus systems rely on the signature-based  detection5,59,60. 
In contrast, application repackaging or creating clones of Android malware have become a common practice by 
attackers to evade such techniques. During the past few years, the research community have shown prevalent 
interest in the detection of repacked and cloned malware by employing alternative  techniques8. Zhou et al. pre-
sented one of the preliminary studies on repacked malware in the Android malware domain and claimed that 
more than 80% of the existing Android malware is  repacked6. Likewise,  DNADroid61 was proposed to detect 
potential clones of Android apps by using dependency graphs based on methods in the Android app. Zheng et al. 
proposed  DroidAnalytics62, an Android malware detector based on a multi-level signature generation technique 
with the ability to determine malware clones.  ImageStruct63 and a similar work  DroidEagle64 leverage the simi-
larity of images and UI layout to detect potential clones and repacked malware in Android apps.  DroidClone65 
rely on the structure and reusing of code segments to detect repackaged apps and clones of Android malware. 
Singh et al. employ a multi-view machine learning-based technique to detect repacked Android  malware66 and 
report up to 97.46% accuracy using 15,297 malware samples.

Glanz et al. proposed  CodeMatch67, a technique based on advanced library detection and fuzzy hashing to 
detect repacked Android apps. They applied the CodeMatch tool on various Android app stores and revealed 
that 15% of the apps in the commercial app stores are repacked versions of known apps. Ishii et al.68 proposed 
Appraiser to perform a large-scale analysis of cloned apps in Android app repositories. They evaluated 1.3 mil-
lion apps from various Android app stores and found that around 13% of the apps in third-party app stores are 
clones of existing apps. Furthermore, they revealed that up to 70% of the cloned apps in third-party app stores 
are repacked versions of known malware. Gaofeng et al.69 proposed a technique to detect repacked Android 
malware based on mobile edge computing. They employed the Density Peak Cluster method on network traffic 
data to find the similarities between Android apps. As a result, they detected up to 92% of the repacked apps in 
the dataset. Alam et al.70 proposed DroidClone to address the problem of clones in Android malware. DroidClone 
employs MAIL, a novel language to identify control flow patterns in the program. When evaluated on a dataset 
of 2050 malware and 2130 benign Android apps, DroidClone achieved a detection rate of up to 94.2%. A recent 
study by Roopak  Surendran71 investigated the impact of semantically similar Android malware apps on various 
ML models. Surendran employed an opcode subsequence-based clustering technique to identify malware clones 
in the Drebin dataset. The results show that the malware detection rate drops from 95% to 91% when malware 
clones are removed from the dataset.

This work focuses on a simple yet powerful strategy for repacked malware detection by using package name-
based similarity. We demonstrated that many apps in popular Android malware repositories share common 
package names. Our further analysis revealed that apps sharing the same package names are repackaged versions 
of existing malware. Similarly, most of the existing techniques focus on the detection of repacked and cloned 
malware using various techniques and report that plethora of malware is repacked instead of being  novel8. How-
ever, in the Android malware domain, apart from the study proposed by Zhao et al.39, no extensive study has 
been conducted on the impact of duplicates on ML classifiers. Zhao et al. considered duplicates based on three 
distinct features (.dex code similarity, op-code sequence and API calls). They evaluated them using four different 
datasets (Genome, Drebin, AMD and  RmvDroid72). Compared to Zhao et al., we considered a novel and more 
lightweight strategy (package names based on similarity). Interestingly, in the case of the Drebin dataset, pack-
age names-based similarity (52.3%) outperforms, .dex code similarity (35.9%) and op-code sequence (48.6%) 
 in39 to detect malware clones, whereas API based similarity is almost similar to our approach (52.4%). However, 
in the case of the AMD dataset, apart from .dex code similarity (21.8%), Op-code (47.6%) and API calls based 
similarity (52.2%) outperforms package based similarity (29.4%). Likewise, Irolla et al. use op-code similarity to 
quantify duplicates in Drebin  dataset73. Irolla et al. claim that 49.35% samples in the Drebin dataset are repack-
aged and question the biased results of existing ML classifiers trained on the Drebin dataset. As compared  to73, 
package name based repackaged malware detection is more lightweight and outperforms Irolla et al. technique 
by finding 52.3% repacked malware in the Drebin dataset.

Furthermore, we propose AndroMalPack, an Android malware classifier trained on clones free training sets 
and optimized using NIAs. The training sets of AndroMalPack exclude all the apps which share common package 
names and consequently reduce the size of training data yet preserve high classification results. Table 11 presents 
the detailed comparison of AndroMalPack with recent Android malware detection techniques in literature.

AndroMalPack dataset
In order to foster the research in the domain of repackaged Android malware analysis, we publish a cryptographic 
hash-based dataset of repacked Android apps having the same package names (Andro MalPa ck datas et). Andro-
MalPack dataset is distributed into three comma-separated (.csv) files where each file contains cryptographic 
hashes of repacked apps from Drebin, AMD and Androzoo datasets, respectively. Each file in the AndroMal-
Pack dataset contains two columns where the first column contains the hash of the app and the second column 
contains the corresponding package name. The files are sorted in descending order based on the number of 
frequently reused package names in each dataset. Since the access to Drebin, AMD and Androzoo are protected 
by the owners, we do not provide the APK files. Access to the datasets (Drebin, AMD and Androzoo) can be 
requested through an authorized source, and our dataset of hash values can be employed to churn out repack-
aged apps based on package name reusing. Drebin and Androzoo datasets label each app with a SHA256 hash, 
whereas AMD datasets label apps using MD5 hashes. Likewise, the AndroMalPack dataset uses SHA256 hashes 

https://github.com/hasnainrafique/AndroMalPack-Dataset
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for Drebin and Androzoo, whereas MD5 hashes for the AMD dataset to represent repackaged apps based on 
package name reusing.

Conclusion
Malware authors often repack existing malware to deceive antivirus systems, due to which numerous apps in 
popular Android malware datasets are clones of existing malware. This paper emphasizes the problem of repacked 
Android malware in benchmark Android malware repositories. To identify repacked malware, we employed a 
novel and lightweight strategy of matching the package names of malware samples with known malicious pack-
age names. As a result, we found that 52.3% malware samples in Drebin, 29.8% of malware samples in AMD 
and 42.3% malware samples in the Androzoo dataset reuse existing package names. Furthermore, we proposed 
AndroMalPack to support our claim that the apps sharing the same package names are clones of known malware. 
Contrary to the traditional 70/30 train and test set split, AndroMalPack assigns all samples with reused package 
names to the test set in addition to benign apps and non-repacked malware. Our experiment results present that 
although AndroMalPack is trained on reduced train sets, it preserves a remarkable malware detection accuracy 
of up to 98%. Furthermore, we demonstrated that the presence of malware clones in the datasets causes overhead 
in terms of time and resource expenses and does not significantly impact the results of ML-based malware classi-
fiers. Finally, we publish an AndroMalPack dataset to foster the research on repackaged Android malware based 
on package names reusing. AndroMalPack dataset contains 389,995 cryptographic hashes of samples sharing 
the same package names in the Drebin, AMD and Androzoo datasets.

Data availability
This study investigates Drebin, AMD and Androzoo datasets to quantify repacked Android malware. Since the 
access to these datasets is protected by the owners, we do not provide the APK files. Access to the datasets (Dre-
bin, AMD and Androzoo) can be requested through an authorized source, and AndroMalPack dataset of hash 
values can be employed to churn out repackaged apps based on package names reusing.
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