
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19480  | https://doi.org/10.1038/s41598-022-23753-1

www.nature.com/scientificreports

Spatial–temporal contrast 
sensitivity of the eye alignment 
reflex
Deepa Dhungel * & Scott B. Stevenson 

The binocular alignment of the eyes involves both voluntary and reflexive mechanisms, but little 
is known about the visual input and neurological pathway of the reflex component. Our studies 
examined the role of spatiotemporal frequency and contrast in the control of reflex eye alignment, 
and compared the contrast sensitivity of the alignment reflex with psychophysical contrast sensitivity. 
We measured the contrast sensitivity of vertical disparity-driven vergence eye movements in response 
to bandwidth filtered static or 6 Hz counterphase flickering noise and measured psychophysical 
detection sensitivity for the same stimuli. Contrast thresholds for producing a detectable vertical 
alignment change (measured with nonius lines) were determined using a staircase method for 7 spatial 
frequencies [0.25–16 cycles per degree] and 3 vertical disparities [5, 10, and 30 arcmin] in 7 adults with 
normal or corrected to normal vision. The main findings of this study are, (1) the vertical alignment 
reflex had overall relatively high contrast sensitivity, comparable to but somewhat less than visual 
detection thresholds, (2) the most effective stimulus spatial frequency scaled in inverse proportion to 
the disparity being stimulated, and (3) unlike psychophysical contrast sensitivity, the eye alignment 
reflex contrast sensitivity was not improved by flickering low spatial frequencies.

Proper eye alignment is an important factor in maintaining comfortable binocular vision. Disparity vergence is 
a visually-driven disjunctive eye movement that corrects misalignments of the eyes in horizontal, vertical, and 
torsional  directions1,2. While horizontal vergence has been studied extensively, vertical vergence has not been 
studied in detail. Our studies examined the role of contrast in the control of vertical eye alignment, and how the 
vergence contrast sensitivity compares with psychophysical contrast sensitivity. Because the pathway for vertical 
alignment control is uncertain, it is interesting to know if visual responses in the two cases are similar. Vertical 
vergence is a small, slow, disjunctive, reflexive eye movement made in response to vertical image misalignment 
(retinal disparity)3. The typical maximum response is about 1.5◦–3◦ (3–5 Prism Diopters) of eye  rotation4, and 
most responses are considerably smaller. Measurement of vertical vergence is accomplished with a sensitive eye 
tracker or with nonius alignment judgments.

Experiments with sensitive eye tracking systems have shown that vertical eye alignment has relatively low 
variability during fixation (rms 2–3 arcmin)5,6, and is maintained even across large eye  movements7. A small 
vertical disparity change produces a realignment of the eyes with an onset latency as low as 100  ms8, but responses 
to larger disparities can take a second or more to  complete9. Vertical vergence exhibits characteristics of a visu-
ally driven reflex. The effort to make, or to resist a change in eye alignment under imposed vertical disparity 
has little or no effect on the  response9. Likewise targets that are intentionally tracked vs ignored produce similar 
responses to added vertical disparity  jitter8, provided they have similar eccentricity. In our experience, unlike 
horizontal vergence, vertical vergence cannot be produced voluntarily, with no stimulus. The visual inputs to the 
alignment reflex have received relatively little attention. Responses to dynamic, random dot stimuli underscore 
the truly binocular nature of the response: vergence movements occur even in the absence of any monocular 
information that might drive independent monocular  tracking10. Comparison of targets in the periphery vs fovea 
found they were equally effective if the target area was scaled for cortical  magnification10. In recent experiments 
with a sensitive  dPi11 eye  tracker12,13, we found that the vertical vergence response was robust (though small) 
even down to near-threshold contrast for mid-ranged spatial frequencies. Here we extend those investigations 
with a nonius offset discrimination task. It is relatively low tech and inexpensive but comparable to a dPi eye 
tracker in precision. The subject judges the relative perceived position of two lines, one in each eye, similar to 
a vernier alignment  task14. However, the lines are presented dichoptically so that the signals originate from dif-
ferent eyes and vertical misalignment of the eyes produces a perceived offset in the nonius lines. Whatever the 
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amount of stimulating disparity, if the eyes realign by even a few arcmin, the subject can detect it as a nonius 
offset and identify the direction of disparity. The purpose of the first in the series of five experiments was to 
establish that nonius offset discrimination task can be used for measuring vertical eye alignment in our subjects 
and to determine the sensitivity of the technique to small offsets. We measured the nonius offset discrimination 
threshold by presenting various physical offsets between the nonius lines randomly while the vertical disparity 
of the background remained zero.

Contrast sensitivity functions (CSFs) has a dependence on luminance flicker. Steady or slowly changing 
grating targets produce a bandpass CSF, with a roll off at both high and low spatial frequencies relative to the 
peak around 2–4  cpd15. Counterphase flickering gratings produce a low pass CSF, with a high frequency roll 
off but no low frequency roll off. In our second and third experiments we measured the contrast sensitivity of 
vertical eye alignment with a nonius offset discrimination task across various spatial frequencies in response 
to steady (Exp 2) and to 6 Hz counterphase (Exp 3) noise patterns. To find out if the response of vertical eye 
alignment is similar to the perceptual responses, we measured the psychophysical CSFs in our fourth and fifth 
experiments using the steady and counterphase flicker noise patterns, respectively. We found that psychophysical 
CSF changed as expected, increasing for low spatial frequency stimuli with the addition of counterphase flicker. 
Vertical vergence CSF, in comparison, showed no change with counterphase flicker, being bandpass with both 
steady and counterphase flickering targets. Disparity sensitivity in visual mechanisms has a close relationship to 
spatial frequency  tuning16, and responses to 5, 15 and 30 arcmin stimuli showed that the most effective spatial 
frequency shifted lower for larger disparity.

Results
Nonius offset discrimination. To estimate the precision of the nonius method, we added small offsets to 
one of the lines and asked subjects to report which appeared shifted upward. We found that some subjects can 
reliably detect offsets as small as 1 arcmin. The results from this experiment are shown in Fig. 1. The plot shows 
curves in different colors representing the nonius offset discrimination performance for each subject. The per-
centage of “right” responses, meaning the right hand line was perceived to be higher than the left line, is plotted 
against disparity, the shift of the image in one eye relative to the other. Fitted cumulative normal curves are plot-
ted in solid lines, along with the individual responses in dotted lines with symbols. The Standard Deviation (SD) 
values of the fit listed on the bottom right of the plot can be used as an estimate of the precision of this method 
for detecting shifts in eye alignment. The nonius discrimination threshold ranged from less than 1 to around 3 
arcmin, and the average for 7 subjects was 1.8 arcmin.

Figure 1.  Nonius offset discrimination curves for seven subjects. Positive values of offset on the horizontal axis 
indicate that the right nonius line was shifted up relative to the left line, negative values indicate that the left 
line was shifted up. The vertical axis shows the probability that subjects indicated that the right line appeared 
higher. The precision of the nonius alignment judgments is indicated by the standard deviation of the best fitting 
cumulative normal curve, and these values are shown in the legend for each subject. Raw data (circles and thin 
lines) are shown along with fitted cumulative Gaussian functions (solid lines). Subjects could reliably detect 
offsets of 3 arc minutes or less. Subjects 999 and 585 are the authors.
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The lateral shifts in the individual curves indicate a constant error or nonius bias, and these were also quite 
small. From these results we are confident that subjects are able to report relatively small shifts in eye alignment 
with this method, and that its precision is on par with the best available eye trackers.

Vertical vergence CSFs for steady vs 6 Hz flicker noise. Contrast sensitivity for vertical vergence 
was measured using the nonius method to find the lowest contrast that would produce a detectable shift of the 
eyes, allowing the subject to identify the direction of disparity based on the direction of the offset. Stimuli were 
spatially filtered noise patterns (Fig. 6) with a narrow (one octave) band of spatial frequencies and one of three 
disparities (± 5, 15, and 30 arcmin ). In separate experiments with the same subjects, we measured sensitivity 
with steady or 6 Hz counterphase flickering noise patterns. Results are plotted in Fig. 2 for 7 subjects. Contrast 
sensitivity is plotted separately for each subject, with the subject average shown in the bottom right panel. The 
disparity condition is color coded. The CSFs for flickering and steady noise were similar in most cases for a given 
disparity. The sensitivity at the three disparities was similar for low spatial frequencies, but there was a loss of 
higher spatial frequency sensitivity as the disparity got larger. CSFs of the smallest disparity condition (5 arcmin) 
included responses at a wider range of spatial frequencies than the higher disparities. It is interesting to note that 
the peak of the CSFs shifted systematically towards the left as the disparity increased. The CSF for 5 arcmin peaks 
at around 3 cpd, 15 arcmin at around 1 cpd, and 30 arcmin at around 0.50 cpd.

Psychophysical CSFs for steady vs 6 Hz flicker noise. For comparison to the vertical vergence data, 
we also measured our subjects’ ability to detect the steady and flickering filtered noise patterns. The disparity was 
5 arcmin. The blue solid and dashed curves in Fig. 3 show the Psychophysical CSFs for steady noise and the 6 Hz 
flicker noise respectively, and the vergence data for 5 arcmin are replotted in red for comparison. As expected, 
the effect of flicker was strong on the contrast sensitivity at low spatial frequencies in the psychophysical CSFs. 
The addition of flicker changes the bandpass shape of the CSF into a low pass shape, consistent with previous 
 work15. This change did not occur for the vergence CSF.

Vertical vergence CSFs vs psychophysical CSFs. For the steady noise condition, the shape of the ver-
gence CSF was similar to the psychophysical CSF, but with overall lower sensitivity (Fig. 3). Most subjects did 
not respond to 16 cpd even at 100% contrast in the vergence experiments. Flicker showed minimal or no effect 
at low spatial frequencies in the vergence data whereas the effect of flicker on psychophysical data was strong. 
Comparing the two types of response, a spatial frequency of 2 cpd showed the least difference in sensitivity 
between the two methods, and results across subjects showed a good correlation between them. Figure 4 is the 
scatter plot of the vertical vergence contrast sensitivities of each subject represented by different colors, plotted 
against psychophysical contrast sensitivities. We found that there was a strong correlation of Psychophysical con-

Figure 2.  Vertical vergence CSFs for static vs 6 Hz flickering spatially filtered noise. The noise had a bandwidth 
of 1 octave and included all orientations. The Spatial Frequency values in the plot indicate the center of each 
noise band. Larger disparities showed a loss of response at high spatial frequencies, but similar responses at 
low. The CSFs for flickering and static noise are similar in shape for a given disparity. Responses at 16 cpd and 
above were absent or unreliable. For the most effective stimulus, a 2 cpd pattern at 5 arcmin, the peak sensitivity 
represents a contrast threshold of around 3%. The magenta circles around the data points indicate that our 
bootstrap method did not produce error bars because the beta values of the Weibull fit were too steep.
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trast sensitivity and vertical vergence contrast sensitivity for both steady noise (r = 0.82) and 6 Hz noise(r = 0.80) 
data. Most subjects show a similar change on both measures when going from steady to flicker. The contrast 
sensitivity of vertical vergence is therefore a reasonably good predictor of psychophysical contrast sensitivity at 
2 cpd spatial frequency.

Figure 3.  Comparison of vertical vergence CSFs (red) vs psychophysical CSFs (blue) at 5 arcmin disparity. 
The shape of the vergence CSF was similar to the psychophysical CSF, but with overall lower sensitivity. Flicker 
showed a strong effect at low spatial frequencies in the psychophysical data (blue dashed curves), but not in the 
vergence data (red dashed curves).

Figure 4.  Scatter plot showing peak vergence contrast sensitivity vs psychophysical contrast sensitivity at 2 
cpd. Circle color represents the subjects, there are two circles for each subject, one that is for steady and one 
for flicker noise, red slanted line represents regression line for steady noise and blue line represents 6 Hz noise 
regression line, the solid dark slanted line represents a 1:1 line.
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Discussion
The measurements we report here rely on the nonius technique for measurement of small vergence changes. 
Nonius, or dichoptic Vernier lines, are the method used by clinicians to measure small binocular errors in fixa-
tion, termed fixation  disparity17. This test presents a binocular fusion target along with monocularly seen left 
eye and right eye nonius lines. Small changes in vergence produce noticeable shifts in the relative location of the 
left and right eye lines, even while the binocular target remains fused.

Experiments by Duwaer and Van Den  Brink18 showed that observers could detect nonius offsets for vertical 
vergence responses as small as 1 arcmin, well below the diplopia detection threshold of 10–20 arc min. Experi-
ments by McKee and  Levi14 found that monocular vernier thresholds were much better than dichoptic vernier 
thresholds. They estimated that the difference could be accounted for by fluctuations in horizontal vergence 
during fixation. Some experiments have called into question whether nonius line judgements might be influ-
enced by a change in retinal correspondence, such that the perceived offset may not be due only to vergence 
 changes19,20 (but see  also21,22). In our study, nonius judgements are likely limited by the fluctuations of vertical 
eye alignment that occur during fixation. Over a period of several seconds, a fixating observer will typically have 
vertical vergence fluctuations of about 2 arc min  RMS5. Our subjects typically did this well or better at detecting 
small offsets in the nonius lines Fig. 1. If binocular correspondence shifted in the direction of the background 
disparity and changed the apparent nonius offset, then our method may underestimate the amount of vergence 
occurring and the contrast threshold for initiating vergence. We consider this unlikely.

The results from our experiments also show that the contrast sensitivity of the vertical eye alignment reflex 
can be readily measured with the nonius offset task. The measured contrast sensitivity parallels the contrast sen-
sitivity measured psychophysically with steady noise patterns, but with slightly lower sensitivity. Some subjects 
showed a small bias in their nonius offset judgments, which might have elevated thresholds slightly. Although we 
measured this nonius bias in our first experiment, we did not correct for it in the subsequent experiments because 
it was less than 3 arc minutes. While small offsets (less than 2 arcmin) might have been missed by subjects, it is 
unlikely that this significantly reduced the measured contrast thresholds. It is possible that with a more sensitive 
technique, such as a binocular Tracking Laser  Ophthalmoscope5, eye alignment responses to even lower contrasts 
or to higher spatial frequencies might be detectable.

A second main finding from our experiments was that adding flicker to our stimuli did not improve the 
low spatial frequency response in the vertical eye alignment system. In psychophysical measures of contrast 
sensitivity, there is a pronounced improvement in sensitivity to low spatial frequencies when the stimulus is 
flickered, particularly for frequencies around 6–8  Hz15,23,24. Research into the basis of this effects suggests that the 
human CSF is determined by a large number of spatial frequency  channels25and a smaller number of temporal 
frequency channels, sometimes described as sustained vs transient  mechanisms26. Our findings suggest that the 
control of vertical eye alignment may have different inputs compared to the pathway leading to perception, or 
that only a subset of visual mechanisms (e.g. sustained but not transient) in a common pathway are driving the 
motor response. It should be noted, however, that the vertical vergence response requires localization as well 
as detection. It would be interesting to make a comparison of contrast thresholds for localization vs. detection 
in a different task, such as vernier acuity. Except for this lack of flicker effect, the response of the eye alignment 
system at medium and high spatial frequency showed sensitivity similar to that measured psychophysically for 
grating detection, and the two systems showed the same CSF shape when tested with non flickering targets.

A third main finding from our experiments concerns the interaction of disparity and spatial frequency. 
Previous  experiments27 and  models16 have proposed a correlation between the optimum disparity for response 
and the spatial frequency tuning of disparity detectors. So called disparity energy  models28,29 in which responses 
from the left and right eye detectors are multiplied, predict a maximum response when the disparity is 1/4 of a 
cycle (90 degrees phase) of the peak spatial frequency. These models were proposed to account for stereoscopic 
depth perception from horizontal disparity, but the original Marr and  Poggio16 model also proposed a course 
to fine control of horizontal convergence eye movements that assumed a size-disparity correlation in disparity 
processing. Some counter evidence to the proposed encoding scheme was reported by Badcock and Schor, who 
showed that the disparity discrimination performance was best for high spatial frequencies, even if the discrimi-
nated targets both had relatively large standing  disparity30. Similarly, Yang and  Blake31, measured monocular 
noise masking of a stereo target in various spatial frequency combinations of target and mask, and found a lack 
of support for a strict correlation of size and disparity. Given that the vertical eye alignment system lacks the 
perceptual and volitional characteristics of horizontal eye alignment control, we were interested to see if a size-
disparity correlation would also occur for vertical disparity detection. We used three different fixed disparities 
in our vertical alignment experiments and we noticed a systematic shift in the most effective spatial frequency 
(defined as the lowest contrast needed to move the eyes, at the peak of the CSF). We found that as the dispari-
ties got smaller, peak contrast sensitivity shifted to higher spatial frequencies. The size-disparity correlation we 
found is similar to that found by Smallman and  Mcleod27 for psychophysical detection of low contrast sine 
gratings with horizontal disparity. These results suggest that a model similar to Marr and Poggio’s course-to-
fine approach may account for disparity processing in the reflexive control of eye alignment, even if it is not a 
complete explanation for the perception of depth from disparity.

When we compare the CSFs of vertical eye alignments and psychophysical detection CSFs (blue vs red curves 
in Fig. 3), the eye alignment response has lower sensitivity but a similar shape. As a result, high spatial frequencies 
that were perceptually above threshold did not produce detectable offsets in the nonius lines, and it is unclear 
if these spatial frequencies are used for eye alignment or not. The staircase functions in these conditions often 
hit the maximum of 100% contrast, and fitted Weibull functions to the responses produced threshold estimates 
beyond 100% that were therefore unreliable. Figure 5 shows an example each of a good and a bad Weibull fit 
and the corresponding staircases.
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In summary, the CSF of vertical eye alignment control showed a shape similar to the psychophysical CSF, 
with comparable overall sensitivity. The most significant difference occurred with flickering targets at low spatial 
frequency, where flicker had no effect on the sensitivity of the eye alignment response. Small disparities pro-
duced responses over a larger range of spatial frequency than large disparities, with support for a size disparity 
correlation in the mechanisms producing the response. Finally, we have established that a simple, easily acces-
sible, low-tech nonius task can be used to measure binocular contrast sensitivity of vertical eye alignment with 
high precision and sensitivity. It may be useful in some cases as the basis for a quick screening tool for assessing 
binocular vision and contrast sensitivity simultaneously.

Methods
Subjects. Seven subjects (including 2 authors), with normal or corrected to normal visual acuity and bin-
ocular vision were enrolled in the study. Best-corrected distance visual acuity of 20/25 or better in each eye, 
assessed using MAR visual acuity chart, and presence of coarse stereo acuity using a TNO stereo acuity test 
were the inclusion criteria. Subjects with presence of amblyopia, constant strabismus, and previous history of 
ocular surgeries were excluded from the study. All the experimental protocols were approved by the Institutional 
Review Board at the University of Houston. The research was carried out in accordance with the Tenets of the 
Declaration of Helsinki. Written consent was obtained from each subject after explaining the experimental pro-
cedures. Subjects were compensated for their time.

Stimuli and testing apparatus. Stimuli were spatially-filtered noise patterns, presented steadily or with 
6 Hz counter-phase flicker (Fig. 6). The filter was one-octave wide rectangular bandpass and spatial frequencies 

Figure 5.  Examples of the staircases in the top row and their corresponding Weibull fits in the bottom row, 
a good weibull fit (a,c) and a poor fit (b,d). The different colored curves in the plots a and b represent five 
staircases from one subject for the same spatial frequency and disparity condition. Response data from trials 
in all five staircases were combined into a single psychometric function and fit with a  Weibull32 to estimate the 
alpha value, corresponding to 82% correct performance. The red curves on the plot in the bottom row show 
the Weibull fit to the raw data, shown with the grey curves and circular symbols. The green asterisks are the 
alphas of the fits and were used as threshold estimates. The alpha in the poor fitting staircase corresponds to 
a contrast greater than 100%. Cases where a fit was unreliable are marked in the plots of Figs. 2 and 3 as open 
magenta circles.
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were the middle of the range. Unlike a repeating pattern stimulus such as a sine wave grating, a bandpass filtered 
noise pattern includes a small range of spatial frequencies and multiple orientations, thus greatly reducing the 
probability of matching ambiguity. Contrast thresholds were determined for 7 spatial frequencies [0.25, 0.50, 
1, 2, 4, 8, and 16 cpd] and 3 disparities [5,15 and 30 arcmin] using a staircase method. A MATLAB program 
was used to generate the stimulus, display it on the screen, and store the responses. The stimuli were presented 
dichoptically on a gamma-corrected screen with a mean luminance of 130 cd/m2 and a resolution of 60 pixels 
per degree. A schematic diagram of the experimental setup is shown in Fig. 7(a), Fig. 7(b) shows a subject per-
forming the task. We used 8 bit grayscale with dithering to produce contrast levels as low as 0.4%. Stimuli con-
sisted of a stereo pair of 512 × 512 pixel images on a dark background, presented side by side on a single screen 
and viewed through a four mirror haploscope. Each image had a 32-pixel gray strip running vertically through 
its center, with a 2 pixel dark vertical line in the middle. The central vertical line served as a target to maintain a 
clear focus and steady horizontal fixation. A horizontal arrow 16 × 2 pixel at the center of the image towards the 
left on the left eye image and towards the right on the right eye image served as a nonius line to give feedback to 
the subject about the eye alignment. Vertical disparity was introduced into the noise pattern by shifting the right 
eye noise either up or down, while leaving the frame and nonius lines in place. When fusing the stereogram, 
the relative perceived position of the horizontal arrows along the vertical direction is referred to as the nonius 
offset, and it indicates the relative alignment of the eyes. When subjects perceive the right eye nonius as higher, it 
means that the right eye’s pointing direction is slightly lower than the left eye, indicating that the eye alignment 
has changed. If the shift in eye alignment reliably matches the disparity direction presented, it indicates that the 
pattern is effective in controlling eye alignment.

Experimental procedures. Experiment 1: nonius offset discrimination experiment. Subjects were seated 
on a chair with a headrest to minimize head movement, with the haploscope in front of them supported by a 
stand off to one side. A standard keypad was used to record the responses. The experiments were carried out in 
a dark room with the computer screens being the primary source of light. At the beginning of the experiment, a 

Figure 6.  Examples of the stimuli, a high contrast (top) and a low contrast (bottom) one octave bandwidth 
noise pattern. The arrow heads on each sides of the central vertical lines are the nonius lines. Free fusing the two 
images makes it possible to appreciate the nonius offset.
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practice block was run which helped the subjects to get familiar with the task and determine their nonius offset 
detection performance. Rather than shift the disparity of the noise, the noise disparity was kept at zero and the 
nonius target itself was redrawn with an offset [± 0, ± 1, ± 2, ± 4, ± 8, ± 16, ± 32 arcmin]. The sign of the offset 
indicates if the right or left eye target was higher. The trial sequence and timing used were the same as for the 
following experiment, except that the contrast of the noise background was set to zero for the 2 s period before 
the nonius appeared and the offset judgement was made. The frame of the display and vertical line served as 
the only fusible contours during this period. The subjects responded to which of the nonius appeared higher by 
pressing “1” if the left nonius line was higher or “2” if the right was higher. A cumulative Gaussian was fit to the 
psychometric functions, with the SD of the underlying Gaussian serving as an estimate of offset detection preci-
sion. All subjects show precision of 3 arc minutes or better, with 1 arc minute being typical.

Experiment 2: steady noise nonius discrimination experiment. After the completion of the nonius judgement 
trials, we proceeded to measure contrast thresholds for producing an alignment change using noise patterns with 
vertical disparity. The nonius lines were always drawn at the center of the image, so any perceived offset would 
reflect a change in eye alignment. A two alternative forced choice (2AFC) simple staircase (1 up, 2 down) was run 
for every combination of the 7 spatial frequency and 3 disparity conditions, with five repetitions. Each staircase 
started at a high contrast level, the contrast dropped with two correct responses in a row, and increased with 
each incorrect response until 30 presentations. Contrast reduced by a factor of 4 until the first error, then by a 
factor of square root of 2. As in the first experiment, every trial started with a nonius alignment presentation with 
noise patterns at 10% contrast and zero disparity. When the nonius lines appeared aligned, the subject pressed 
a ‘0’ to initiate the trial. The noise pattern with disparity was shown for 2 s, after which nonius lines appeared. 
The subject indicated the direction of nonius offset with a keystroke. Subjects got audio feedback, indicating 
correct or incorrect responses. Figure 8 summarizes the sequence of events in a trial in the static noise nonius 
discrimination experiment.

Experiment 3: 6 Hz flicker noise nonius discrimination experiment. The experimental setup and the procedures 
were similar to the previous setup, except the noise patterns were counter-phase flickered at 6 Hz. The frame and 
nonius lines did not flicker. Experimental conditions were otherwise the same as Experiment 2.

Experiment 4: psychophysical steady noise contrast detection experiment. For comparison to the eye alignment 
results, we measured psychophysical detection thresholds for the same stimuli, keeping all conditions the same 
as far as possible. We used a temporal, 2 interval forced choice procedure for the subject to identify if the first or 
the second interval contained a noise pattern in a 200 ms exposure time for each interval. In both nonius method 
and psychophysical method, increasing duration might increase the sensitivity. If the stimulus was presented for 
too long in the psychophysical task, it could allow the eyes to make vergence movement and thus change the 

Figure 7.  (a) Schematic diagram of the experimental setup, figure is not drawn to scale. (b) Subject viewing 
stimuli through the haploscope on a monitor screen with the head positioned on the head rest. The convergence 
angle of the eyes was adjusted to match the optical distance to the targets for comfortable fusion. Trials were run 
in dim room light and the subject’s view was masked off to ensure that each eye saw just one image with a dark 
surround.
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retinal disparity. If the vertical vergence threshold was lower than the psychophysical threshold, having a longer 
duration would allow the detection of the nonius shift and thus provide a cue for detecting the pattern rather 
than contrast. We chose a duration that we thought was long enough to be longer than the temporal integration 
time for contrast detection but still shorter than the typical vertical vergence reaction time.

Sequence of events in a trial in the psychophysical contrast detection experiment is shown in Fig. 9. Contrast 
thresholds were measured with the same staircase rule as in the previous experiments, and for the same values 
of spatial frequency. Vertical disparity was fixed at 5 arcmin.

Experiment 5: psychophysical 6 Hz flicker noise contrast detection experiment. The experimental setup and the 
procedures were same as in the psychophysical static noise contrast detection experiment except the stimuli were 
6 HZ flicker-noise patterns, as used in Experiment 3.

Statistical analysis. Staircase data were analyzed using custom software written in MATLAB 2019b. The 
performance across five staircase runs was tallied to find the proportion correct for each contrast. These psycho-
metric functions, representing 150 trials altogether, were fit with a  Weibull32 function in order to estimate the 

Figure 8.  Sequence of events in a trial in the steady noise nonius discrimination experiment. After visually 
confirming that the nonius marks were aligned , subjects hit a key and viewed the disparate stimulus without 
nonius lines for 2 s to allow the eyes time to respond. The nonius marks then reappeared and the subject 
responded with another keystroke to indicate the perceived offset.

Figure 9.  Sequence of events in a trial in the psychophysical steady noise contrast detection experiment. 
Stimuli were presented with fixed vertical disparity, and subjects indicated which of the two intervals had the 
stimulus. Presentation was brief to prevent a vergence response so that retinal disparity was consistent from trial 
to trial.
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contrast that produced 82% correct performance. Confidence intervals were determined with a bootstrapping 
method.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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