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Discovery of pathway‑independent 
protein signatures associated 
with clinical outcome in human 
cancer cohorts
Mariam M. Konaté*, Ming‑Chung Li, Lisa M. McShane & Yingdong Zhao

Proteomic data provide a direct readout of protein function, thus constituting an information‑
rich resource for prognostic and predictive modeling. However, protein array data may not fully 
capture pathway activity due to the limited number of molecules and incomplete pathway coverage 
compared to other high‑throughput technologies. For the present study, our aim was to improve 
clinical outcome prediction compared to published pathway‑dependent prognostic signatures for 
The Cancer Genome Atlas (TCGA) cohorts using the least absolute shrinkage and selection operator 
(LASSO). RPPA data is particularly well‑suited to the LASSO due to the relatively low number of 
predictors compared to larger genomic data matrices. Our approach selected predictors regardless 
of their pathway membership and optimally combined their RPPA measurements into a weighted 
risk score. Performance was assessed and compared to that of the published signatures using two 
unbiased approaches: 1) 10 iterations of threefold cross‑validation for unbiased estimation of hazard 
ratio and difference in 5‑year survival (by Kaplan–Meier method) between predictor‑defined high and 
low risk groups; and 2) a permutation test to evaluate the statistical significance of the cross‑validated 
log‑rank statistic. Here, we demonstrate strong stratification of 445 renal clear cell carcinoma tumors 
from The Cancer Genome Atlas (TCGA) into high and low risk groups using LASSO regression on RPPA 
data. Median cross‑validated difference in 5‑year overall survival was 32.8%, compared to 25.2% 
using a published receptor tyrosine kinase (RTK) prognostic signature (median hazard ratios of 3.3 
and 2.4, respectively). Applicability and performance of our approach was demonstrated in three 
additional TCGA cohorts: ovarian serous cystadenocarcinoma (OVCA), sarcoma (SARC), and cutaneous 
melanoma (SKCM). The data‑driven LASSO‑based approach is versatile and well‑suited for discovery 
of new protein/disease associations.

Large-scale omics data characterizing human tumors can be leveraged to develop a deeper understanding of bio-
logical processes and predict clinical outcomes. For instance, one can develop prognostic molecular signatures to 
stratify patients into risk groups for disease progression or  metastasis1–3. Multiple studies have demonstrated that 
molecular characterization of tumors may provide a more accurate and granular picture of a patient’s prognosis 
than the traditional pathological staging system, thus informing therapeutic and disease surveillance  strategies4–6.

The Cancer Genome Atlas (TCGA) program has generated molecular profiles for thousands of human tumors 
spanning over thirty different tissue  types7. Detailed genomic analyses using these data have identified novel 
cancer driver genes and biomarkers of  disease8–11. To complement the genomic, epigenetic and transcript level 
data of TCGA, a more recent project by Akbani et al. has generated proteomic data from reverse-phase protein 
arrays (RPPA)12. RPPA is a high-throughput and cost-effective antibody-based method that provides a more 
direct assessment of cellular activity compared to DNA and RNA sequencing, which generate data that do not 
always correlate with protein  expression13. Protein levels and post-translational modifications, such as phospho-
rylation and acetylation, are thought to better represent active pathway signaling.

Multiple studies have demonstrated the prognostic value of RPPA  data12,14–17. Some of these studies have used 
pathway-driven approaches, relying on prior knowledge from the literature to group proteins into biological 
pathways, to develop prognostic signatures or predictors of treatment response. For instance, in the paper by 
Akbani et al. that introduced The Cancer Proteome Atlas (TCPA), proteins analyzed by RPPA were assigned to 
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ten cancer-related pathways on the basis of a literature search of review articles on these  pathways12. For a given 
pathway, positive regulatory elements of the pathway were assigned a coefficient of + 1. Correspondingly, the 
coefficient of negative regulatory elements of the pathway were set to − 1. Effectively, the pathway activity score 
was defined as the sum of positive regulators minus the sum of negative regulators of the pathway. This approach 
did yield pathway activity scores with prognostic value in some cancer  types12. However, this approach may not 
be generally applicable as for many cancer types, involved pathways and regulator genes are not well  defined18. 
We therefore hypothesized that a statistical approach specifically geared toward outcome prediction may yield 
scores with improved prognostic ability.

Using normalized RPPA data for up to 258 total, cleaved, acetylated, or phosphorylated proteins from 
 TCPA19,20, we demonstrate the capability of a statistical approach, LASSO  regression21, to derive weighted risk 
scores that achieve strong prognostic stratification without requiring a priori biological knowledge. Unbiased 
statistical resampling methods were applied to proteomic data from four TCGA cancer studies to demonstrate 
that performance of our LASSO-based prognostic scores is equivalent or superior to that of predefined pathway-
driven RPPA signatures.

Results
Three‑fold cross‑validation model assessment. The number of samples in the KIRC dataset was com-
parable between the version of TCPA that we downloaded for our analysis, and the version used in the original 
study by Akbani et  al.(Table 1)12. We first repeated the Kaplan–Meier analysis of the KIRC dataset with the 
modifications noted in the methods and illustrated in Fig. 1A: for ten iterations, we split the dataset into three 
folds and assigned tumors to a training set (2/3) and a testing set (1/3). The training set median and s.d. were 
used to adjust RPPA values in all 445 tumors. Subsequently, the unweighted RTK signature score was computed 

Table 1.  Data summary. Number of tumor samples included in the original  analysis12 compared to the 
number of samples in the present study and downloaded from MD Anderson Cancer Center’s The Cancer 
Proteome Atlas  TCPA19,20.

TCGA tissue code Tissue Samples in Akbani et al.12 Samples in TCPA 07/18/18 release Difference

BLCA Bladder cancer 127 344  + 217

BRCA Breast cancer 747 874  + 127

COADREAD Colorectal 464 487  + 23

GBM Glioblastoma 215 205 − 10

HNSC Head & neck cancer 212 346  + 134

KIRC Kidney clear cell carcinoma 454 445 − 9

LUAD Lung adenocarcinoma 237 362  + 125

LUSC Lung squamous cell carcinoma 195 325  + 130

OVCA Ovarian serous cystadenocarci-
noma 412 411 − 1

SARC Sarcoma 0 216  + 216

SKCM Skin cutaneous melanoma 0 315  + 315

UCEC Endometroid cancer 404 404 0

Figure 1.  Schematic representations of the unbiased model evaluation approaches. (A) Ten iterations of 
threefold cross-validation. (B) Permutation test with 1000 permutations.
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for all tumors, and testing set tumors were assigned into high and low risk group based on median RTK score in 
the training set. The resulting thirty pairs of high risk and low risk Kaplan–Meier curves are displayed in Sup-
plementary Fig. S1. Then, Cox regression weighted RTK pathway scores and LASSO-regression derived protein 
signature scores were evaluated following the same procedure. The resulting Kaplan–Meier curves are shown in 
Supplementary Fig. S2 and Supplementary Fig. S3, respectively.

Re-assigning weights to the 7 RTK proteins based on Cox regression did not improve model performance 
compared to the original, unweighted RTK score; however, deriving a new, pathway-independent LASSO-driven 
score improved the stratification of patients into high and low risk groups. Median difference in overall survival 
probability at 5 years based on the LASSO-derived risk score was 32.8%, compared to 25.2% when using the 
7-protein unweighted RTK score (Fig. 2A). Median hazard ratio (HR) between high and low risk groups across 
the held-out folds in the CV based on the 7-protein RTK score was 2.4, compared to 3.3 when using the risk 
score derived by LASSO applied to the training data folds (Fig. 2B). Time-dependent ROC curves for overall 
survival probability at 5 years for all three prognostic models are shown in Supplementary Fig. S4A–C. Boxplots 
of risk scores stratified by pathologic stage for all three types of risk scores in KIRC revealed a weak linear trend 
in association between risk score and stage (Supplementary Fig. S5A–C).

Permutation test for the evaluation of the cross‑validated log‑rank statistic. As described in 
the Methods and schematized in Fig. 1B, for each of the three prognostic models (unweighted RTK pathway 
score, Cox regression weighted RTK score, and LASSO-derived protein signature score), the statistical signifi-
cance of the cross-validated log-rank statistic was evaluated with a 1000 permutation  test22. Tumor stratifica-
tion based on the original RTK score or on the pathway-independent LASSO-derived score obtained the best 
possible permutation test p value after 1000 permutations (i.e. permutation test p = 5e − 04); however, the split 
between high and low risk groups was more pronounced with the LASSO-derived pathway-independent score 
(Fig. 3A,C). The Cox regression weighted RTK pathway score method resulted in a somewhat larger, but still 
statistically significant, permutation test p value = 1.5e − 03 (Fig. 3B).

Stage-separated and sex-separated Kaplan–Meier curves for the three types of risk scores (original RTK score, 
Cox-modified RTK score, and LASSO-derived score) in KIRC were also generated (Supplementary Fig. S6). 
A visual examination reveals that the performance of the risk scores is independent of sex, and even at lower 
pathologic stages, the LASSO-derived risk score effectively stratified patients into better and worse prognoses 
(Supplementary Fig. S6C). In contrast, the 7 protein RTK score from Akbani et al. whether in its original form 
or modified with Cox regression coefficients, performed worse for the stratification of low stage tumors (Sup-
plementary Fig. S6A–B).

The top 20 proteins most frequently selected by the LASSO are listed in Table 2. Multiple proteins have 
previously been implicated in kidney  cancer14,23–26, and interestingly, 13 of these 20 proteins were not assigned 
to any of the ten cancer-related pathways in the original paper by Akbani et al.12. The remaining 7 proteins 
were annotated as belonging to different pathways (TSC_mTOR, Hormone_b, Cell_cycle, Ras_MAPK, and 
DNA_damage_response), none of which were the RTK pathway (Supplementary Table S1). Furthermore, except 
for MAPK_pT202_Y204, the expression of the top 20 proteins did not strongly correlate to that of the 7 RTK 
proteins from the original prognostic signature (Supplementary Table S2). These results provide support for the 
use of a pathway-independent method to optimize the selection of prognostic protein markers from the RPPA 
data matrix.

LASSO‑derived RPPA scores have prognostic value in other tumor types represented in TCGA 
. To assess whether our proposed LASSO-derived approach yields scores with prognostic value in other 
human tumor datasets, we compared the performance of ten literature-driven pathway scores to that of the 
purely statistical LASSO-derived protein signature score in 3 additional datasets from TCGA: 353 skin cutane-

Figure 2.  Probability density distribution of (A) difference in overall survival probability at 5 years, and (B) 
hazard ratio for high vs. low risk TCGA-KIRC groups stratified according to the original RTK score, LASSO-
modified RTK score, Cox regression-modified RTK score, or pathway independent LASSO-derived signature 
score.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19283  | https://doi.org/10.1038/s41598-022-23693-w

www.nature.com/scientificreports/

ous melanomas (SKCM), 221 sarcomas (SARC), and 411 ovarian serous cystadenocarcinoma (OVCA). Clinical 
characteristics of the datasets are detailed in Table 3.

Representative plots of the cross-validated optimization of the regularization parameter λ on the three data-
sets and non-zero coefficients assigned by the LASSO are shown in Supplementary Fig. S7. Boxplots of LASSO-
derived risk scores stratified by pathologic stage presented in Supplementary Fig. S5D–E demonstrate that in the 
OVCA and SKCM datasets, there is little to no association between risk score and tumor stage.

The performance of the different scoring methods was evaluated with a 1000 permutation test, as for KIRC. 
The resulting cross-validated Kaplan–Meier curves for high and low LASSO-derived risk scores for these three 

Figure 3.  Kaplan–Meier overall survival analysis of KIRC samples stratified according to different signature 
scores. Kaplan–Meier curves demonstrating the stratification of TCGA-KIRC tumors according to (A) the 
original 7-protein RTK score, (B) the COX regression weighted 7-protein RTK score, and (C) the pathway-
independent LASSO-derived prognostic signature score. The high and low risk group curves are in purple and 
green, respectively.

Table 2.  Top 20 proteins most frequently selected by the LASSO and pathway assignment from  reference12 
(Supplementary Table S1). Literature references associating these proteins with patient prognosis in renal clear 
cell carcinoma (RCC) are also listed.

Protein marker ID Gene Name Pathway assignment References in RCC 

4EBP1_pT37_T46 EIF4EBP1 Eukaryotic translation initiation factor 
4E-binding protein 1 TSC_mTOR 23,24

ACC1 ACACA Acetyl-CoA carboxylase 1 NA 14,25

AMPK-alpha_pT172 PRKAA1 5′-AMP-activated protein kinase catalytic 
subunit alpha-1 NA 26

AR AR Androgen receptor Hormone_b 27

A-Raf_pS299 ARAF Serine/threonine-protein kinase A-Raf Ras_MAPK

B-Raf_pS445 BRAF Serine/threonine-protein kinase B-raf NA

Caveolin-1 CAV1 Caveolin-1 NA 28

CDK1 CDK1 Cyclin-dependent kinase 1 Cell_cycle 29

c-Myc MYC Myc proto-oncogene protein NA 30

Gab2 GAB2 GRB2-associated-binding protein 2 NA

IGFBP2 IGFBP2 Insulin-like growth factor-binding protein 2 NA

MAPK_pT202_Y204 MAPK1, MAPK3 Mitogen-activated protein kinase 1/3 Ras_MAPK

MIG6 ERRFI1 ERBB receptor feedback inhibitor 1 NA

p70-S6K_pT389 RPS6KB1 Ribosomal protein S6 kinase beta-1 TSC_mTOR 31

PEA-15 PEA15 Astrocytic phosphoprotein PEA-15 NA 32

Rad51 RAD51 DNA repair protein RAD51 homolog 1 DNA_damage_response 14,33

SCD1 SCD Stearoyl-CoA desaturase NA 34

SF2 SRSF1 Serine/arginine-rich splicing factor 1 NA 35

Stat3_pY705 STAT3 Signal transducer and activator of tran-
scription 3 NA 36

Syk SYK Tyrosine-protein kinase SYK NA
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datasets demonstrate the statistically significant stratification of the tumors into high and low risk groups 
(Fig. 4A–C).

Stage separated Kaplan–Meier curves were plotted for OVCA and SKCM, and sex separated curves were 
plotted for SKCM and SARC (Supplementary Fig. S8). The SARC dataset in TCGA did not have any pathologic 
stage nor tumor grade information and the OVCA dataset only contains female patients. In OVCA, the vast 
majority of tumors are stage III (78%, see Table 3), hence the visible difference in survival probability between 
high and low score stage III tumors (Supplementary Fig. S8A). The very low sample size and low number of 
events in the lower stages (stage I and II tumors together account for ~ 8% of the dataset) make the correspond-
ing Kaplan–Meier curves less compelling. In SKCM, high and low score effectively align with patient survival 
(Supplementary Fig. S8B). In these datasets as well, performance of risk scores was independent of sex (Sup-
plementary Fig. S8B–C).

Furthermore, permutation test p values for pathway-12 or LASSO-driven protein signature in the three TCGA 
studies are listed in Table 4. In SKCM and SARC, our LASSO-based approach performed consistently well and 
yielded smaller p-values than all ten literature-curated unweighted pathway scores (p = 5e − 04). In OVCA, the 
p-value for the LASSO-derived protein signature score was only matched by that of the Ras-MAPK pathway score 
(p = 2.5e − 03). For SKCM and SARC, the LASSO-derived signatures mostly contained proteins that did not have 
a pre-defined pathway assignment in the original  study12 (Supplementary Fig. S7A–B). Moreover, for OVCA, 
the LASSO-derived signature was composed of 13 proteins that did not belong to any of the ten pre-defined 
pathways from Akbani et al. and nine proteins belonging to eight of the pre-defined pathways (Supplemental 
Fig. S7C). Taken together, these results suggest that more than one pathway may inform prognosis, thus placing 
pathway-specific approaches at a disadvantage for prognostic modeling.

Discussion
Assessing the functional proteome via the analysis of RPPA data may yield important insights into patient 
prognosis and therapy options. We used two unbiased statistical approaches to compare the performance of our 
pathway-independent LASSO-derived method to that of a predefined pathway-driven risk score (Fig. 1A,B). 
We found our LASSO-derived method for the selection of a data-driven prognostic signature to be effective 
for the stratification of patient samples into high and low survival risk groups (Supplementary Fig. S3 and Sup-
plementary Fig. S4C). Our LASSO-based approach to derive a prognostic signature performed as well or better 
than a biology-driven prognostic signature for the TCGA kidney clear cell carcinoma dataset according to both 
unbiased evaluation approaches (Figs. 2A,B, 3A–C, and Supplementary Fig. 4A–C). Our method was successfully 
applied to three other TCGA cancer studies in which it performed as well or better than predefined pathway-
driven RPPA signatures (Fig. 4A–C).

Pathway-based approaches have limitations and are susceptible to biases depending on which molecules are 
included from a given pathway. They require prior knowledge of pathways and regulators of the cancer type 
under study. Mubeen et al. justly noted that different pathway databases contain different representations of 

Table 3.  Clinical and protein characteristics of the TCGA datasets evaluated in the permutation test. NA not 
applicable or unknown, KIRC kidney clear cell carcinoma, OVCA ovarian serous cystadenocarcinoma, SARC  
sarcoma, SKCM skin cutaneous melanoma.

TCGA cohort KIRC OVCA SARC SKCM

Number of patients 445 406 216 315

Sex, n (%)

Female 148 (33.3%) 406 (100%) 113 (52.3%) 127 (40.3%)

Male 297 (66.7%) 0 (0%) 103 (47.7%) 188 (59.7%)

Pathologic stage, n (%)

Stage I 216 (48.5%) 13 (3.2%) NA 49 (15.6%)

Stage II 44 (9.9%) 21 (5.2%) NA 78 (24.8%)

Stage III 108 (24.3%) 317 (78.1%) NA 128 (40.6%)

Stage IV 76 (17.1%) 52 (12.8%) NA 20 (6.3%)

Stage X (i.e. NA) 1 (0.2%) 3 (0.7%) NA 40 (12.7%)

Overall survival status, n (%)

Living 288 (64.7%) 161 (39.7%) 134 (62.0%) 165 (52.4%)

Deceased 157 (35.3%) 245 (60.3%) 82 (38.0%) 150 (47.6%)

Follow-up (months) 0.1–149.1 0.3–180.1 0.5–171.1 0.2–369.9

Age (years)

Range 26–90 26–89 20–90 15–90

Median 61 58 62 57

LASSO regression

Number of proteins measured 233 211 217 216

Number of non-zero coefficients 25 22 15 20
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the same biological  pathway37. Correspondingly, they found that the choice of pathway database for statistical 
enrichment analysis or predictive modeling had a profound impact on results. Another recent study by Chen et al. 
came to the same  conclusion38. Moreover, cancer is an extremely complex disease often involving the concerted 
dysregulation of multiple  pathways39. Therefore, using a single literature-defined pathway for prognostic predic-
tion runs the risk of overlooking informative molecules assigned to a different pathway. Indeed, in the TCGA 
datasets examined for the present study, the majority of proteins most frequently selected by the LASSO were 
not assigned to any of the 10 cancer-associated pathways curated by Akbani et al. (Table 2 and Supplementary 
Fig. S7)12. For KIRC, only 7 out of the top 20 most frequently selected proteins overlapped with one or more of 
the 10 predefined pathways from Akbani et al. The analysis of SKCM, SARC, and OVCA also revealed that the 

Figure 4.  Kaplan–Meier curves demonstrating the stratification of tumors from TCGA according to the 
pathway-independent LASSO-derived prognostic signature score for multiple tumor types: (A) skin melanoma, 
(B) sarcoma, and (C) ovarian carcinoma. Permutation test p values are shown. The high and low risk group 
curves are in purple and green, respectively. Published pathway-specific unweighted signatures introduced by 
Akbani et al.12 were also evaluated for comparison (see Table 4).

Table 4.  Permutation test p values for pathway-12 or LASSO-driven protein signature in TCGA studies. Scores 
were computed as described above: unweighted sums of pathway member proteins for pre-defined signatures 
from Akbani et al. and weighted sum of LASSO-selected proteins. Most significant permutation test p values 
in the pathway-derived approach are indicated for each dataset with red highlights to facilitate the comparison 
with the performance of the LASSO method (gray highlight). In each column, the most significant p value is in 
bold font. KIRC kidney clear cell carcinoma, OVCA ovarian serous cystadenocarcinoma, SARC sarcoma, SKCM 
skin cutaneous melanoma.
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majority of LASSO-selected predictors were not in the pathways defined by Akbani et al. despite being assigned 
strong weights by the LASSO, and belong to a wide variety of cancer-associated pathways such as the Hippo 
pathway (e.g. YAP, TAZ) and inflammatory immune response (e.g. PDL1, NFKBP65_pS536) (Supplementary 
Fig. S7), consistent with the widespread dysregulation that is typical of  cancer40.

In our study, LASSO regression on the KIRC RPPA dataset consistently yielded signatures including proteins 
which have previously been linked to survival in kidney cancer specimens (Table 2). For instance, AMPK is a 
sensor of cellular energy and negative regulator of the mTOR signaling pathway 26. Foersch et al. demonstrated 
the significant association between androgen receptor (AR) and prognosis in patients with renal clear cell car-
cinoma (RCC)27. Cytoplasmic CAV1 protein expression measured by immunohistochemistry (IHC) was found 
to correlate with clinical prognosis is RCC 28. CDK1 and CDK2 activity was linked to poor prognosis and RCC 
 recurrence29. Bellut et al. showed that c-MYC protein expression had prognostic value in a subtype of RCC 30. The 
phosphorylation of ribosomal protein S6 kinase beta-1 (p70S6K) is a downstream target of mTOR and confirmed 
prognostic marker in RCC 31. SF2, a novel oncoprotein in RCC, was significantly associated with poor survival in 
a large cohort of patients with RCC 35. High SCD1 expression was prognostic of overall survival in patients with 
RCC 34. Nuclear expression of p-STAT3 was significantly associated with RCC subtypes with greater malignant 
 potential36. 4E-BP1, a regulator of mRNA translation initiation, is activated by mTORC1 signaling in response 
to extracellular stimuli and metabolic stress  conditions41. A recent study by Naito et al. revealed an association 
between 4EBP1 phosphorylation and poor prognosis in a non-metastatic cohort of renal clear cell carcinoma 
(RCC)23. Correspondingly, Campbell et al. had demonstrated that the combined expression of p4E-BP1 and eIF4E 
was associated with significantly worse disease-free survival in patients with RCC 24. Furthermore, acetyl-CoA 
carboxylase (ACC1) was also systematically selected by the LASSO (Table 2). A defining feature of KIRC is the 
presence of lipid and glycogen-rich cytoplasmic deposits 25. Du et al. identified hypoxia-inducible factor (HIF) 
control of fatty acid metabolism as being essential for KIRC tumorigenesis. ACC1 carries out a major step of fatty 
acid synthesis for membrane synthesis, production of energy stores and signaling  molecules42. Interestingly, the 
expression of lipogenic enzymes including FASN, ACC1, and ACLY is also downstream of mTORC1  signaling43. 
Han et al. also reported the prognostic utility of ACC1 protein expression in KIRC, as well as FASN, Cyclin B1 
and Rad51, which was also frequently selected by the LASSO in our study (Table 2)14.

The 258 proteins included in the RPPA for TCPA were selected on the basis of their functional role in cancer-
related pathways such as proliferation, DNA damage, EMT, and  apoptosis12. This focused approach confers an 
advantage for LASSO feature selection over the use of whole genome RNA-seq datasets which contain tens 
of thousands of genes, thus making the feature selection process highly susceptible to noise. Kim and Bredel 
reported similar findings in their 2013  publication44. The authors used gene expression profiles from 300 can-
cer pathway genes obtained from the Molecular Signature Database (MSigDb) and the Kyoto Encyclopedia of 
Genes and Genomes dataset (KEGG) as an input for LASSO optimization. They demonstrated that the gene pre-
selection increased the average correlation coefficient between observed survival days and relate risks compared 
to the same analysis conducted on whole genome gene expression  profiles44.

The data-driven nature of our LASSO-based approach makes it versatile and particularly well-suited for the 
discovery of unexplored protein/disease associations that could aid in therapeutic discovery.

Methods
Data acquisition. Level 4, batch-corrected proteomic data generated by reverse phase protein array (RPPA) 
for up to 258 total, cleaved, acetylated, or phosphorylated proteins across 7694 patient tumors were obtained 
from The Cancer Proteome Atlas (TCPA) data portal (https:// tcpap ortal. org/ tcpa/) version 4.2 (release date: 
07/18/2018)19,20. The tumors included 445 kidney clear cell carcinomas (KIRC), 353 skin cutaneous melanomas 
(SKCM), 221 sarcomas (SARC), and 411 ovarian serous cystadenocarcinoma (OVCA). Survival data, sex, and 
pathologic stage information for the patient tumors were downloaded from the Broad Institute’s cBioPortal for 
Cancer  Genomics45,46, and were matched to the proteomic data by specimen ID. Table 1 summarizes the differ-
ent tissue datasets downloaded from TCPA and compares the number of samples in our study to the number of 
samples used in the paper by Akbani et al.12.

For cross-validation steps described below, level 4 RPPA values downloaded from TCPA were median-
centered and standard deviation (s.d.) normalized across tumors using the median protein expression and s.d. 
from each training set to yield relative protein expression levels in the testing set as described previously by 
Akbani et al.12.

Unweighted RTK pathway score. The starting point of our study was a published RPPA-based seven-
protein signature of receptor tyrosine kinase (RTK) pathway activity in the form of an unweighted sum of 
seven protein measurements: EGFR-pY1068, EGFR-pY1173, HER2-pY1248, HER3-pY1289, SHC-pY317, 
SRC-pY416, and SRC-pY52712. The prognostic value of this signature had been demonstrated by Akbani et al. 
in a 445-patient renal clear cell carcinoma cohort (TCGA-KIRC) 12. When computing the literature-driven, 
unweighted pathway score from Akbani et al. the protein weights w were assigned the value of + 1 or − 1. The 
pre-defined pathway members and weights are listed in Supplemental Table S1.

Weighted RTK pathway score with Cox regression weights. Subsequently, we modified the original 
RTK score using Cox regression to derive new protein weights w for the seven proteins of the original RTK sig-
nature using R package survival (version 3.3-1)47. Cox regression was run on each training set within the cross-
validation procedure, as described below, to optimize protein weights w for the seven proteins members of the 
RTK pathway according to the literature search conducted by Akbani et al.12. Subsequently, the protein signature 
score for each tumor was computed using the following equation:

https://tcpaportal.org/tcpa/
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where n is the number of proteins with measurements, w is the vector of protein weights, and Y is the median-
centered, SD-scaled protein expression matrix.

LASSO‑derived protein signature score. Finally, we derived a pathway independent protein signa-
ture score using LASSO regression with  L1-penalty to select an unrestricted number of elements from the 233 
proteins with RPPA measurements in this dataset, and optimally combine their RPPA measurements into a 
weighted risk score for the 445 KIRC tumors. LASSO regression was performed on each training set within the 
cross-validation procedure, as described below, to determine protein weights w corresponding to the optimal 
value of the tuning parameter λ using R package glmnet (version 4.1-4)48. Protein signature score was computed 
for all tumors using Eq. (1) as described above.

Method performance evaluation. Because model building from a large number of candidate variables 
is prone to overfitting, we utilized two unbiased approaches for evaluation of method performance: (1) ten 
iterations of threefold cross-validation for unbiased estimation of hazard ratio and difference in 5-year survival 
(by Kaplan–Meier method) between high and low risk groups defined based on application of a median cut to 
the risk score; and (2) a permutation test to evaluate the statistical significance of the cross-validated log-rank 
statistic.

Cross‑validation. The prognostic scores developed using the Cox regression and LASSO approaches, and 
corresponding low and high risk groups defined by median cut, were first evaluated with ten iterations of three-
fold cross-validation. R package caret (version 6.0-93) was used to split the dataset into folds for the cross-valida-
tion49. In order to test model stability, we used a different random seed for each of the ten iterations. The evalua-
tion approach is illustrated in Fig. 1A. For each of the ten iterations, the dataset of 233 RPPA measurements for 
445 KIRC tumors was randomly split into a training set (2/3 of the tumors) and a testing set (remaining 1/3 of 
the tumors) for three rounds of cross-validation (CV). At each CV round, the pathway score was computed on 
the training set and applied to all tumors as described above. Then, the median pathway score for the tumors of 
the training set was used as a stratification cutoff for high and low risk groups in the testing set. We then per-
formed a log-rank test comparing testing set high and low risk groups using R package survival47 and recorded 
the log-rank test statistic. Hazard ratios and difference in overall survival probabilities at five years between high 
and low risk groups in the cross-validation testing set by Kaplan–Meier method were also documented. Time-
dependent receiver operating characteristic (ROC) analysis was conducted using R package survivalROC (ver-
sion 1.0.3) which implements the cumulative case/dynamic control  ROC50. ROC for overall survival at 5 years 
(i.e. 60 months) was evaluated because in this dataset, > 70% of events had occurred by that time point.

Assessment of model performance with the permutation test. As schematized in Fig.  1B, the 
dataset of 233 RPPA measurements for 445 KIRC tumors was randomly split into ten evenly-sized folds using 
R package caret49. For ten rounds, nine tenths of the data served as the training set, while the remaining tenth 
was assigned to the testing set. The resulting ten partitions were found to have similar pathologic stage and sex 
proportions to the complete dataset. For the unweighted RTK signature all seven protein weights were assigned 
the value of + 1. For the Cox regression weighted RTK signature and the LASSO-derived protein signature score, 
protein weights w were derived from the training set as described above. Protein signature scores were computed 
for all 445 tumors using Eq. (1). The median pathway or protein signature score in the training set was used as 
the threshold to assign the testing set tumors to high and low risk score groups. After the tenth round, with all 
445 tumors having been assigned a high or low risk label, we drew the overall cross-validated Kaplan–Meier 
curves and recorded the log-rank test statistic for the original data. Then, for 1000 permutations, we randomly 
permuted the correspondence of phenotype (i.e. survival time and status) and protein expression, repeated the 
tenfold cross-validation, and computed the log-rank statistic. The permutation test p value was computed using 
the following equation described by Royston and  Parmar51:

where N is the number of permutations for which log-rank test statistic was greater than or equal to the real 
dataset log-rank test statistic, M is the number of permutation (i.e. 1000), and 0.5 corresponds to the continuity 
correction constant. With 1000 permutations, the best possible permutation test p value = 5e − 04.

Application to other TCGA cohorts. To test the broader applicability of our LASSO-based signature 
development approach, we selected three other TCGA studies—skin cutaneous melanomas (SKCM), sarcomas 
(SARC), and ovarian serous cystadenocarcinoma (OVCA)—and compared the resulting log-rank statistic for the 
LASSO-based patient stratification to that based on published unweighted pathway-driven protein  signatures12. 
For each of the three datasets, we computed unweighted pathway scores for the 10 literature-curated pathways 
listed in Supplementary Table S1 and evaluated the model performances using the permutation test with 1000 
permutations as was done for KIRC. LASSO-derived protein signature scores were derived as described for 
KIRC and were evaluated using the 1000-permutation test.

(1)Protein signature score =

n∑

i=1

wiYi ,

(2)Permutation test p =
N + 0.5

M + 1
,



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19283  | https://doi.org/10.1038/s41598-022-23693-w

www.nature.com/scientificreports/

Data availability
R codes are available upon request. The datasets used for analysis are publicly available from TCGA Research 
Network (http:// cance rgeno me. nih. gov/) and TCPA (https:// tcpap ortal. org/ tcpa/ downl oad. html).
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