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Graph‑generative neural network 
for EEG‑based epileptic seizure 
detection via discovery of dynamic 
brain functional connectivity
Zhengdao Li1,2, Kai Hwang1,2*, Keqin Li3, Jie Wu4 & Tongkai Ji1,5

Dynamic complexity in brain functional connectivity has hindered the effective use of signal 
processing or machine learning methods to diagnose neurological disorders such as epilepsy. This 
paper proposed a new graph‑generative neural network (GGN) model for the dynamic discovery of 
brain functional connectivity via deep analysis of scalp electroencephalogram (EEG) signals recorded 
from various regions of a patient’s scalp. Brain functional connectivity graphs are generated for the 
extraction of spatial–temporal resolution of various onset epilepsy seizure patterns. Our supervised 
GGN model was substantiated by seizure detection and classification experiments. We train the GGN 
model using a clinically proven dataset of over 3047 epileptic seizure cases. The GGN model achieved 
a 91% accuracy in classifying seven types of epileptic seizure attacks, which outperformed the 65%, 
74%, and 82% accuracy in using the convolutional neural network (CNN), graph neural networks (GNN), 
and transformer models, respectively. We present the GGN model architecture and operational steps 
to assist neuroscientists or brain specialists in using dynamic functional connectivity information 
to detect neurological disorders. Furthermore, we suggest to merge our spatial–temporal graph 
generator design in upgrading the conventional CNN and GNN models with dynamic convolutional 
kernels for accuracy enhancement.

Neurological disorders are one of the leading causes of disability reported  globally1. This is a severe healthcare 
problem awaiting effective solutions and treatment plans. For example, epileptic seizures cause 50 million people 
to suffer periodically, Alzheimer’s disease (AD) affects 60 million patients facing dementia problems, and over 
25 million people are suffering from schizophrenia globally, affecting all works of life with emotional depres-
sion, physical disability, and death  threats2–4. These neurological disorders are related to complex functional 
connectivity and can be diagnosed by scalp electroencephalography (EEG)  signals5–9.

EEG signal is characterized by specific frequency bands in onset occurrence. It contains rich spatial–temporal 
information on brain activities for discovering dynamic functional connectivity among various brain regions, 
identifying patterns of brain disorders, and localizing lesions such as epileptic  foci10–15. In this paper, we focus 
on epileptic seizures, while our method can also be extended to other neurological disorders diagnosed by EEG.

Identifying EEG signals associated with different seizure attack types requires strenuous and time-consuming 
efforts by neurologists. It is highly desired to automate the process by ML methods. Moreover, due to the poor 
spatial resolution of scalp EEG recordings, it has been a challenge to identify abnormal regional or global 
connectivity by non-invasive scalp EEG procedure compared to intracranial electroencephalography (iEEG)16. 
Recent advance in machine learning has raised the hope that new models could help elevate the accuracy of scalp 
EEG-based diagnosis of neural circuit abnormalities, including  epilepsy17–21.

A vast number of signal processing methods have been proposed for feature extraction in time-domain, 
frequency domain, time–frequency domain, or  combinations22–31. Most of these methods require handcrafting 
hyperparameters, which is time-consuming and highly dependent on empirical experience. For example, the 
choice of channels, the number of levels in the flexible analytical wavelet transform (FAWT)31, tunable-Q wave-
let transform  TQWT26 or other wavelet transform-based methods, and the design of intrinsic mode functions 
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(IMFs) in empirical mode decomposition (EMD)30,32, etc. Moreover, the selection or ranking of features extracted 
by signal processing methods requires empirical tuning since the choice of classifiers is affected by  it33. Third, 
some signal processing methods are susceptible to variations across an increasing patient population or increas-
ing  channels34,35.

Deep learning methods can help to address those limitations by the highly non-linear universal approximation 
ability for automatic channel selection and feature extraction. The mainstream models such as fully connected 
neural networks (FCNN)18,36, recurrent neural networks (RNN)37, and convolutional neural networks (CNN)38–42 
have demonstrated a great potential for seizure detection and classification by taking EEG signals as time-series 
data or a multi-channel  image43. Liu, et al.44 proposed a hybrid model composed of CNN and RNN to extract 
spatial–temporal information. This model is enhanced with a bilinear pooling to exploit the second-order fea-
tures from CNN and RNN. Ahmedt-Aristizabal, et al.45 designed a NMNs model with trainable neural plasticity 
combined with RNNs to obtain a dynamic strategy to store long-term temporal information and capture temporal 
relationships. However, these pre-trained models are inadequate to extract dynamic spatial information of the 
EEG signals, which is crucial to characterize the transient nature of the brain functional connectivity issues hid-
den in different regions of the brain lobes. These methods require manually-designed time windows and feature 
engineering to capture the dynamic spatial information. This feature engineering is very time-consuming and 
unstable to handle large datasets.

Other neural network models have been suggested, including graph neural networks (GNNs) for extracting 
deep spatial features on seizure detection  tasks46–52. These GNN models are based on fixed neural connectivity 
topologies such as distance-based, which failed to capture the spatial dynamics associated with seizure attacks. 
The latest works utilizing transformer  models53 have achieved some success in detecting connectivity thanks to 
the attention mechanism. However, it is still limited to discover new connectivity at different times.

In addition to detection or classification tasks, brain functional connectivity has been a very hot research 
topic for many  years54. Revealing accurate connectivity within very small-time windows is critical to modeling 
the brain activity associated with neurological disorders. Although conventional methods such as functional 
magnetic resonance imaging (fMRI) can detect the changes of connectivity, the underlying dynamical mechanism 
of disruptive brain activity of the epileptic patient is still an open problem via scalp EEG. Discovering hidden 
non-linear mechanisms requires much more powerful machine learning or deep learning methods.

We developed a new class of graph-generative networks (GGN) to capture spatial and temporal features for 
high-resolution dynamic functional connectivity discovery that advances accurate seizure detection. We illustrate 
the new method with a clinically recorded epilepsy dataset provided by the Temple University  Hospital55. This 
dataset contains seven types, i.e., non-specific focal seizure (FN), generalized non-specific seizure (GN), simple 
partial seizure (SP), complex partial seizure (CP), absence seizure (AB), tonic seizure (TN), and tonic–clinic seizure 
(TC).

Our testing results complement other detection methods based on fMRI and clinical  factors54,56,57. The GGN 
approach helps brain specialists to detect early seizure attacks with more accurate results. Here, we report mainly 
the scientific results obtained from using four neural networks (CNN, GNN, GGN, and transformer) to detect 
epileptic seizure cases. We report relative performance and will elaborate on how to extend our GGN model to 
deal with other brain diseases in the “Discussions” section.

The main contributions of our works lie on three aspects. First, the hidden dynamic functional connectivity 
of the brain can be revealed by simply feeding scalp EEG signals into the proposed graph-generative model. 
This provides a powerful tool for analyzing the dynamic non-linearity of functional connectivity. Second, the 
GGN with the graph-generative technique yields higher automated detection accuracy and upgrades the medical 
efficiency in making personalized treatment plans for epilepsy patients. Finally, we developed a new adaptive 
and attentive graph convolution capability of GGN to amend the shortcomings or the low accuracy problem 
existing in CNN, GNN, and transformer models for seizure detection. This new capability of GGN outperforms 
the competing neural networks by a factor of 8.4–26.6% to reach a detection accuracy of 91%.

Results
First, we introduce the main idea of using deep learning neural network for solving the seizure detection prob-
lem. Then we specify the GGN detection/classification framework. Experimental results are presented over a 
clinical seizure dataset involving 3,047 patient cases. Performance metrics are defined, and numerical results 
are presented with association maps, connectivity graphs, confusion matrices, classification clusters, and AUC-
ROC curves. Then we illustrate the use of the generated functional connectivity graphs to achieve detection 
and classification purposes. We will discuss how to extend the work for connectivity discovery of other brain 
diseases based on scalp-EEG and elaborate on more methodological details of GGN model in the last sections.

Framework of the automated seizure classification system. Our deep learning epileptic seizure 
classification system is illustrated in Fig. 1. We show how the EEG brainwave data are collected from 22 elec-
trodes placed on the patient’s scalp. These electrodes record the EEG waveforms generated from different lobe 
regions of the human brain, i.e., frontal lobe, parietal lobe, occipital lobe, and temporal lobe. The electrode 
placement and the time-series recordings have rich information and non-linear spatial–temporal correlations 
among electrodes. Our GGN utilizes both spatial and temporal features for generating non-linear functional 
connectivity at different windows.

In general, the spatial features are extracted by the Euclidean distance of electrode placement or Pearson’s 
correlation among time-series signal from each electrode. The spatial features reflect the associations of each 
electrode and reveal the functional connectivity among the lobe regions. The edge connection strength represents 
the localized brain connectome. Figure 1 shows most local connections within the lobe regions. The connectivity 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18998  | https://doi.org/10.1038/s41598-022-23656-1

www.nature.com/scientificreports/

induced by correlation-based methods is computed by a long-term window and only reflects linear relations. 
Nevertheless, these two static methods cannot handle dynamic and non-linear functional connectivity.

In Fig. 1, the GGN generates functional connectivity of a Focal non-specific patient over several small-time 
windows during the resting-state and seizure onset. At the resting-state, almost no significant connection is 
observed. While in onset window 01 and window 02, there exist two different connection patterns mainly in the 
Frontal lobe respectively. These two connection patterns locate in different regions not only in the frontal lobe 
and parietal lobe as in the correlated connectivity. The connections are cross-lobe with non-linearly association 
which indicates the high dynamics of functional connectivity. GGN models the connectivity in a non-linear way 
by using multi-layer generative neural networks with a universal approximation expressiveness.

Spatial–temporal feature extraction. Our GGN detects dynamic functional connectivity among brain 
regions during seizure onset time. The connectivity graph generator learns the connectivity dynamics in the 
training process. These inter-lobe connectivity patterns are generated stochastically based on the learned distri-

Figure 1.  The key concept of scalp EEG-based framework for automated detection of dynamic functional 
connectivity during the onset of epileptic seizure attacks. The functional connectivity among lobe regions is 
indicated by the connection patterns among the electrodes. These connection patterns may vary all the time. 
The detection is based on generating connectivity graphs and onset attack classification. The newly introduced 
graph-generative neural network (GGN) plays a central role here. Details of GGN are given in Fig. 6 in the 
“Methods” section.
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bution by GGN to reflect the dynamics in the EEG waveforms. EEG signals are recorded by the electrodes con-
nected to the lobe position of the brain cerebrum. We need to measure both static and dynamic brain spatial fea-
tures. Time-series signals need to be transformed to the frequency domain for extracting temporal features. The 
complex correlation between spatial and temporal features needs to be extracted simultaneously. The purpose is 
to reveal the functional connectivity along the seizure onset. Usually, the time-domain signal is transformed to 
band-filtered frequencies. Figure 1 shows the gamma band frequency of the EEG recordings.

Abnormal connectivity and association maps. The association maps as the baseline are shown in 
the first two columns in Fig. 2, where each map is sorted by four main lobe regions. The FN attack is the most 
seizure attack type triggered by mainly local excitations. The GN seizure foci spread globally in various brain 
regions. Their functional connectivity graphs and association maps are shown in Fig. 2b and Fig. 2c. In Fig. 2, 
the pairwise associations are represented by mutual information coefficient (MIC)58 scores in the range {0,1} for 
20 × 20 = 400 squares. The association MIC scores are shown by variable colors from dark brown to light yellow. 
The larger score corresponds to a higher association between the node pair. There was no significant abnormal 
activity detected in the normal case. The FN attack causes more excitation signals locally within the same brain 
lobe or affects only some nearby lobes.

Clinically recorded seizure dataset. Our seizure dataset of EEG signals was recorded by Temple Uni-
versity  Hospital55. We use the corpus released in May 2020, which contains 3047 seizure sessions (cases) at a 
sampling rate of 250 Hz. More details of seizure dataset are summarized in Table 1. For each training and testing 
round, we randomly shuffled 2033 cases for model training and the remaining 1014 cases for testing. We have 
compared the GGN testing results with other baseline ML/DL detection methods, including  SVM59,60, CNNs 
based on Asif, et al.38, GNNs based on Tang, et al.50, and the transformer model by Yan, et al.53.

Functional connectivity graphs. We focus on functional connectivity discovery using non-invasive 
scalp-EEG signals. In Fig. 2, we present the detected abnormalities in functional connectivity within the same 
lobe or between different brain regions, and the association map generated by MIC. The normal and abnormal 

Figure 2.  Visualization of normal and abnormal functional connectivity among four brain lobes identified by 
different colors and connection edge widths in the association maps and connectivity graphs. The association 
maps of the resting state, FN onset, and GN onset are shown on the left diagrams for four different seizure 
patients. The corresponding functional connectivity graphs are shown on the right circular diagrams. (a). The 
resting state of patient 1 and patient 2 with no disruptions in connectivity graphs. (b). The FN onset attack on 
patient 1 and patient 2. (c). GN onset of patient 3 and patient 4.
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connectivity results are visualized by observing the changes in the edge connection patterns and signal strength 
on all connection edges among the frontal, temporal, occipital, and parietal brain lobes.

Brain activity is complex, involving a lot of transient events. It is impossible to playback or validate. The asso-
ciation map is widely used to reflect the brain region correlations in a long term. Compared to the association 
map, our connectivity graph has a much higher resolution in detecting the changes in very short time windows. 
The width of the connection line reflects the probability that the two nodes have an interactive relationship that 
is crucial for the identification of different seizure types. The connection probability pij between channel i and 
channel j is calculated by our GGNs. Each connection of a connectivity graph is generated by calculating the 
expectation of samples that are drawn from this pij. More details of this generation procedure can be found in 
“Methods” section. To visualize the functional connectivity, we define a connection strength based on this pij 
as follows:

where the ε and σ are two positive hyperparameters to control the strength range that is from the minimal value 
1 to the maximal value exp

(

exp(ε)−1
σ

)

 . This definition is designed to reflect the exponential chaoticity of the 
epileptic EEG signals. Note that, in Fig. 2 and Fig. 3, we only show the top 25 weighted connections. In Fig. 3, 
we only color the edges with the strength greater than a hyperparameter β that has a significant strength gap 
compared with the rest edges which are in gray. More settings of these hyperparameters can be found in the 
supplementary material.

Spatial–temporal connectivity. GGN can detect transitions in functional connectivity in different stages 
of seizure onset. This dynamic connectivity we call spatial–temporal connectivity. Compared to the association 
map such as Pearson correlation or MIC, which can only detect linear interaction relations in a fixed large time 
window, GGN can detect much more accurately by using a small-time window.

Figure 3 illustrates the spatial–temporal connectivity detected by GGN of one patient in an FN onset, where 
the onset started at 31s and ended at 128s. Figure 3b shows the dynamics of the frequencies in the gamma-band 
of 20 electrodes colored in four main lobes. We used a 5-s window to detect the connectivity shown in Fig. 3a. 
Links are colored if the connection strength exceeds a certain threshold.

The first connection pattern was generated before the seizure onset in the window scan from 10 to 15s. In this 
connection graph, only five connections are colored, which means most of the nodes are not associated with each 
other. The second connectivity graph was obtained at the beginning of the seizure onset at 31s. All signal curves 
are disturbed simultaneously, especially the frontal curves. The connectivity graph detected that fluctuation (a 
bold red link from the frontal lobe to the occipital lobe). The third connectivity graph was generated from using 
window 3 at 101s. Here, more colored links are observed.

There are two blue links from the temporal lobe to the frontal lobe, indicating a stronger correlation between 
the two lobe regions. The last connectivity graph was obtained after the seizure onset. Here, most edges are 
expressed by lightweight connections in gray color, similar to the connection pattern observed at the first window 
during the resting state. The two seizure strikes during windows 2 and 3 are contributed most by the waveform 
spikes at the frontal lobe.

Confusion matrices and detection results. Figure 4 shows the confusion matrices and corresponding 
learned representation maps of the four DL methods for the classification of seven types of seizure attack. The 
results are given in Parts (a), (b), (c), and (d) for using the CNN, GNN, transformer, and our GGN models, 
respectively. The ground truth is shown on the y-axis and the predicted results on the x-axis. The number inside 
the boxes shows the detection accuracy. The relative magnitudes of the accuracy results are shown by different 
colored boxes. They are ranked from darker (higher accuracy) to light (lower accuracy) cases. The clustered 
results shown on the right are based on testing over 1014 seizure attack cases. Confusion matrix and 2-D cluster-
ing results do match each other closely in the four seizure detection systems.

(1)Connection Strength(i, j) = exp

(

exp
(

ε∗pij
)

− 1

σ

)

Table 1.  Seizure dataset of 3047 epilepsy patient cases from Temple University  hospital55. (Note that we ignore 
the MY type due to the small number of cases).

Seizure types # Patients # Cases

Focal non-specific (FN) 150 1836

Generalized non-specific (GN) 81 583

Simple partial (SP) 3 52

Complex partial (CP) 41 367

Absence (AB) 12 99

Tonic (TN) 3 62

Tonic–clonic (TC) 14 48

Myoclonic (MY) 3 2
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In general, better detection accuracy is highlighted by the situation that most darker boxes appear in the 
principal diagonal (meaning no confusion at all) with zero or a few lighter boxes appearing in the off-diagonal 
entries. (meaning the existence of pairwise confusions). The reason why CNN did not perform well (Fig. 4a) is 
due to the fact that only static convolution kernels were used, which cannot capture the dynamic spatial features. 
The off-diagonal confusions reveal this weakness of CNN.

In Fig. 4b, we find that GNN performs equally worst as the CNN, due to the shortcomings of using fixed small 
filtering kernels. The transformer approach results in fewer confusions than CNN and GNN due to the attention 
mechanism and much higher feature dimensions, as shown in Fig. 4c. All AB attacks are well detected by four 
models without confusions. The FN, CP, and TN attack types have more confused results than the AB attack. 
The confusion mainly occurs in the first column. Other attack types could be misclassified as the FN type. The 
Transformer model has less confusion than that in CNNs and GNNs. Clearly, these detection results proved that 
the GGN outperforms all three seizure detection methods significantly.

The t‑SNE representation. To visualize the detection results, we use the t-SNE representation developed 
by Maaten and  Hinton61. This is a dimension reduction method to map the high-dimensional data into a two-
dimensional feature space. We introduce two dominating composite features: tSNE1 and tSNE2 in the 2D dia-
gram shown in Fig. 4. Different attack types detected are represented by different icons with different colors. The 
distance between two attack points implies their similarity, where the shorter distance means higher similarity.

The t-SNE dimension reduction method produces a 2D representation map to approximate the probability 
qij of the similarity between feature vectors of channel i and channel j. The right side of Fig. 4(a,b) shows heavy 
overlapping in sample locations on the 2D map. This implies many confusions exist in some seizure types. Both 
CNN and GNN are ineffective in separating the attack types FN, TN, and CP as they are heavily jammed in the 
same map areas. Compared to CNN, the GNN has less overlapped coverage in the jammed areas.

GNN has less equally bad as the CNN, due to using fixed filtering kernels. The transformer approach results in 
fewer confusions than CNN and GNN due to the attention mechanism and higher dimensions shown in Fig. 4c. 
The Transformer is not effective in detecting the FN and GN seizure attack types. However, the transformer shows 
perfect detection 100% on the AB attack. The GGN model has little confusions on the main diagonal in Fig. 4d.

The transformer-based method has resulted in even fewer overlapped coverages. Finally, we observe that the 
GGN model can separate different attack types almost perfectly in Fig. 4d. Almost all attack types are separable. 
In summary, these four seizure detection methods are ranked as GGN, transformer, GNN, and CNN from high 
to low in terms of detection accuracy. The testing of 1,014 validation cases has proved this relative performance 
ranking results.

Figure 3.  Spatial–temporal functional connectivity detected by GGN of an FN seizure patient onset. The light 
gray connection edges are measured at windows 1 and 4 before and after the seizure attack. Heavy colored 
edges in windows 2 and 4 are during the attack onset period. (a). The GGN captures connectivity changes in 
four stages by a 5s window from the resting state to the end of the seizure onset. The gray connection edge 
corresponds to connection strength below the measurement threshold. The colored edge connections are all 
exceeding the measured threshold with various excitation degrees. (b). Normalized brain waveforms in the 
gamma frequency band, where four observing windows were measured with a connectivity graph in (a). These 
observing windows cover 20 EEG electrodes from the seizure onset start to the onset ending in 150s.
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ROC performance of 4 competing seizure detection methods. The receiver operating characteristic 
curve (ROC) for the seven seizure attack types is shown in Fig. 5. The ROC curve considers the trade-off between 
true-positive rate and false-positive rate of the detection process. The area under the ROC curve (AUC) is the 
probability that a classifier can distinguish a positive and a negative correctly. The larger the area, the higher the 
detection accuracy. Using the SVM method in Fig. 5a, the FN, GN, and CP attacks have low performance. The 
CNN has the lowest detection performance in Fig. 5b. The TC attack experiences steady improvement as we 
switch from CNN to GNN, transformer, and GGN models in Fig. 5(b–d).

The AB attack type achieves the perfect score instantly at zero FNR. In the ideal case (a single red solid dot), 
the TPR stays at 100% with a zero FNR score. A random classifier follows the diagonal gray line. In fact, all seven 
seizure detection results have ROC curves between the ideal case and random classifier. Figure 5b shows that 
the CNN has a worse performance closer to the random classifier.

Figure 4.  Seizure detection results represented by confusion matrices on the left side. The seizure classification 
clusters are shown on the right-hand 2-dimensional tSNE diagram using four distinct neural network detection 
models. (a). CNN shows many misclassified cases with many confused results due to the static convolution 
kernels used. (b). The GNN performs equally worst as CNN due to static graphs applied. (c). The transformer 
approach results in fewer confusions than CNN and GNN due to some encoder and decoder applied. (d). The 
GGN shows very little confusions with high accuracy along the main diagonal.
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The GNN results shown in Fig. 5c improve to some extent by moving towards the ideal case. The transformer 
improves further, as seen in Fig. 5d. The GGN results surpass all other four detection models with a fast-
saturating range near the upper left corner of the ROC space. The number inside the boxes shows the detection 
accuracy. The relative magnitudes of the accuracy results are shown by different colored boxes. They are ranked 
from darker (higher accuracy) to light (lower accuracy) cases.

Compound performance metrics. Due to the severe imbalance of seizure types among K seizure types, 
we consider the following three metrics to obtain a comprehensive and fair comparison. Let TPi be the average 
true-positive rate, FPi be the average false-positive rate, and FNi be the average false negative rate. We apply the 
detection rate of type i seizure attack as follow:

Figure 5.  Classification results are expressed as AUC-ROC curves for seven seizure attack types. (a). Results of 
the SVM model. (b). Results by using the CNN model. (c). Results by using the GNN model. (d). Transformer 
detection results. (e). Results by the GGN model. (f). Accuracy scores of two compound performance metrics 
for five distinct machine learning and neural network models for the classification of epileptic seizure attack 
types.
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Now we are ready to show two compound performance metrics as follows: Macro F1 (Eq. 3) and Weighted F1 
(Eq. 4) scores for all K attack types. The Weighted F1 is under the proportion wi of the i-th seizure type. The F1 
score is applied to define the average or weighted harmonic mean of the precision and recall and represents the 
overall  performance60,62. In Fig. 5f. we compare the relative performance of the five seizure detection methods 
evaluated by the two above metrics on 1014 testing samples. Macro F1 and weighted F1 scores report the per-
formance of K = 7 seizure attack types. Our GGN can achieve an average or weighted detection rate (or the score 
label in Fig. 5f between 88 and 91%, which is rather impressive.

The transformer approach achieves an 83% performance. The GNN scheme ranked the third place. These 
three methods are in the same trend on both two metrics. In summary, the GGN scheme achieved a 91% detec-
tion score, compared with 65%, 74%, and 82% accuracy using CNN, GNN, and transformer models, respectively. 
For the weighted F1 performance, the CNN model achieves a low 66% accuracy. The Macro F1 performance is 
relatively poor (36%) due to the sharp disparity in the attack types. The SVM has a low 46% under both com-
pound performance measures. Based on these measured results, we recommend using the weighted F1 compound 
performance to amend the disparity situations in the data set applied.

The imbalanced class distribution usually downgrades the performance. A model extracting more aspects 
of features can alleviate this problem. The CNN-based models have been very successful in static image under-
standing applications. But CNN fails to extract global spatial information in the seizure detection problem. This 
is because CNN with fixed small convolution kernels that fails to capture the global connectivity.

Our GNN applies a wide and flexible range of kernels to enable the construction of more reliable connectivity 
graphs to make an accurate classification. Although the transformer models have achieved great success on NLP 
and even image tasks, they are still limited in detecting complex topological changes.

Discussions
In general, our DL method can assist brain specialists or neuroscientists with more concrete evidence to moni-
tor or assess patient conditions more accurately. Our GGN can be applied to detect not only epileptic seizure 
attacks, but also other neurological disorders driven by complex spatial–temporal scalp EEG waveform features. 
The extended work may include the detection of Alzheimer’s disease (AD) or the determination of the patient’s 
severity of schizophrenia symptoms, etc. Moreover, our graph-generative method provides a higher resolution 
and efficient tool for detecting the changes in brain functional connectivity via scalp EEG.

EEG analysis of AD is usually based on some statistical signal processing methods, such as phase leg index and 
minimum spanning trees. These methods assumed that the EEG signals could distinguish from other dementia 
diseases in several frequency bands and specific lobe  areas63. The functional connectivity of AD patients shows 
the presence of the small-world network features by graph  theory56. These features can be well detected by our 
GGN model, as an even smaller local abnormality of FN seizure has been well detected.

The functional connectivity of schizophrenia has shown strong correlations between the cortical oscillatory 
dynamics and schizophrenic syndrome by analysis of the band-filter EEG  signals64. The beta and gamma bands 
(> 20 Hz) have much higher correlations. The schizophrenia is similar to the GN epileptic seizure attack. To 
detect the long-range oscillatory dynamics, one needs to use a longer time window. The latent functional con-
nectivity depends on patient specificity. The connectivity generator in GGN can support researchers in detecting 
abnormal functional connectivity in EEG signals with higher spatial resolution without supervised connectivity 
labels. The larger public clinical datasets may demonstrate even higher performance in using the GGN model.

Compared with the CNN-based  model38 and the transformer-based  model53 in our experiments, our GGN 
model uses much shallower hidden layers. This implies that we use fewer learnable parameters and thus has lower 
computational complexity. The computational complexity of GNN-based  model50 is close to ours. Compared to 
other signal processing methods and most conventional ML methods such as SVM, PCA, etc.65, the GGN model 
takes longer time on training, while the prediction time of the pretrained model is usually very short depending 
on the computing server used. In this regard, our GGN model takes longer overhead time to yield satisfactory 
results than that of most signal processing methods.

In practice, the CNN can achieve a considerably high accuracy by additional preprocessing of raw data into 
images. For instance, Asif, et al.38 have pointed out that pre-processing the raw EEG signal by generating a set of 
saliency-encoded spectrogram maps with different scales can significantly improve the performance. This multi-
saliency information alleviates the limitation of the convolution kernels to some extent by involving more global 
information. Due to the fixed topology such as the correlation-based graph, conventional GNN-based models 
face the same problem. Thus, merging our connectivity generator design will be able to upgrade the performance 
in extracting dynamic spatial information. The connectivity graphs can be applied directly in GNN to alleviate 
the limitation of using a fixed topology.

(2)F1 =
2TPi

2TPi + FPi + FNi

(3)Macro F1 =
1

K

K
∑

k=1

F1k

(4)Weighted F1 =

K
∑

k=1

ωkF1k



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18998  | https://doi.org/10.1038/s41598-022-23656-1

www.nature.com/scientificreports/

The main limitations of our GGN model are identified in two aspects. The first weak point lies in the fact we 
handle a small fixed number of EEG channels during the training process. This will limit our pre-trained model 
to fixed EEG recording settings. Secondly, our sampling procedure requires repeated iterations in the prediction 
step, which may take longer time to yield higher accuracy. This procedure may affect the real-time applications 
when the iteration number is large. In the future, we will try to fix these two limitations to widen clinical applica-
tions in other neurological disorders based on EEG signal analysis.

Our contributions are identified in three scientific aspects: Firstly, we provide a machine learning framework 
for brain specialists to efficiently identify epileptic seizure attacks. This AI approach can reinforce neurological 
diagnosis to reach some unbiased method overcomes this difficulty with increased accuracy.

Secondly, our graph-generative neural network approach offers the first step to revealing the abnormality in 
brain functional connectivity. Our GGN work can cope with the dynamics involved in the spatial and temporal 
feature extraction process. We have amended the shortcomings in using the CNN, GNN, and transformer models 
in solving the seizure detection problem without well pre-selected features and channels.

Thirdly, our work can be applied by neuroscientists to study other neurological diseases in the brain func-
tional connectivity analysis, such as Alzheimer’s disease and schizophrenia, etc., because an accurate analysis is 
hindered by the low-resolution of non-invasive scalp EEG. The proposed graph-generative method facilitates 
the accurate discovery of functional connectivity with small observation windows.

Methods
Detecting brain connectivity is still a wide-open problem mostly studied in graph theory or statistical methods 
such as the correlations of time-series data. The new GGN model generates the connectivity graphs from scalp 
EEG waveform signals. We reveal the changes in brain functional connectivity within the same brain lobe or 
across multiple lobes by simply feeding the scalp EEG signals to the GGN. This plays a critical role in the detec-
tion and diagnosis of various seizure attack types. We present the holistic GGN model, and its key components, 
including connectivity graph generator and attentive convolution mechanisms to enable seizure detection and 
classification. Then we elaborate the procedure of the seizure classification and connectivity graph generation. 
Finally, we discuss the GGN model training settings and the cross-validation testing process.

The GGN architecture. Figure 6 illustrates the holistic architecture of GGN containing main functional 
modules in different colors for seizure classification and two detailed functional modules, i.e., connectivity graph 
generator and spatial decoder. To explore the functional connectivity that reflects how brain regions interact 
with each other when epileptic seizure attacks. The connectivity graph generator models the connectivity as a 
random variable that varies over time. Different seizures are related to specific seizure onset regions. This genera-
tor is trained during the process of classification training.

The temporal encoder learns the temporal features of EEG data. It takes the time-series data as a 3-D tensor 
in RN×Cin×T , where N is the number of electrodes, termed as channel size, Cin is the feature dimension, and T is 
the time step length.  Output feature dimension is denoted as Cout . The spatial encoder extracts spatial features 
and decodes the final seizure representation for classification. The output classifier is a two-layer fully-connected 
neural network with ReLU non-linear  function66. The fully-connected (FC) classifier maps the composite features 
to the probability of seizure attack type attached with a softmax function.

Connectivity graph generator and spatial decoder. Here, we elaborate on two key functional mod-
ules, i.e., connectivity graph generator in gray box and the spatial decoder in green box on the bottom side of 
Fig. 6.

The connectivity graph generator is composed of three sequentially stacked components as shown in Fig. 6 gray 
box, i.e., Para-Learner, Mix-Gaussian module, and Gumbel-Sampler. The Para-Learner contains three independ-
ent GNNs known as message-passing neural networks. It takes a raw topology and temporal features as input. Each 
independent GNN learns some parameters of a mixture Gaussian distribution  separately68. Since the epileptic 
networks vary over time, leading to disruptions in brain functional connectivity, modeling the connectivity from 
a probabilistic perspective can be more accurate than a deterministic approach. The Mix-Gaussian module gener-
ates the probabilistic distribution of each connection of two nodes. Consider two electrode nodes i and j. The pij 
denotes the probability of an edge connecting the node i and node j. The Gumbel-Sampler generates all edges 
of a graph based on the distribution from Mix-Gaussian. The parameters are updated via the stochastic gradient 
descent (SGD) scheme by using a Gumbel-softmax  trick67 which can make the sampling procedure differentiable.

The spatial decoder is a multi-layer structure that is composed of several attentive graph convolutions in each 
layer. The spatial decoder extracts spatial information and generates distinguished node-level representations 
that are fed into a pooling layer for classification. The attentive graph convolution is aligned with latent graphs 
from the graph generator, and is operated by a novel attention mechanism to refine the latent graphs. The output 
of the last spatial decoder layer L is all N nodes representations.

Objective function applied. The raw data set is collected from brainwave signals on 20 electrode EEG 
channels. The training dataset is represented by { X ,Y ,A(0) }, where the X  consists of N = 2,033 time-series sam-
ples, Y is the corresponding labels, and A(0) is the initial connection weights among the electrodes. Let s be the 
sample index in the training dataset. Let θ be the collective set of all learnable parameters in our  model. The 
likelihood function for the optimization goal of our GGN framework is defined below:
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Given the training dataset, our purpose is to determine the model parameters θ to yield the maximum likeli-
hood function L of the GGN detection outcomes. The difficulty lies in the fixed initial connectivity A(0) that 
did not exploit the spatial information. Thus, it cannot predict any dynamic connectivity. Therefore, we need to 
generate a series of M latent connectivity graphs {A(m)}Mm=1.

Attentive graph convolution. A novel attention mechanism refines the graphs ( Graph1 to GraphK ) from 
the connectivity graph generator to generate local and global spatial representations. These graphs have various 
neighboring ranges. For instance, the GraphK has more green nodes than Graph1 indicating a larger neighbor-
hood range. Therefore, the attention mechanism is to automatically learn the best neighboring range from these 
graphs according to the different seizure events. The refined graph (with red arrows) then is fed into the graph 
convolution which aggregates all neighboring node features and transforms into a new feature space. As shown 
in the spatial decoder layer 1, the attentive graph convolution on the target node i (in yellow) of the graph is to 
aggerate the features hi of its neighbors (in green) to update its representation. The result of the attentive graph 
convolution is then fed into a ReLU and is taken as the input of the next layer.

Procedure for seizure classification and connectivity generation. The onset attack classification is 
outlined in the following five steps, where the black arrow represents the data flow. Step 1 is to prepare the spatial 
and temporal input, i.e., the raw topology generated by distance-based and correlation-based connectivity and 
the frequency signals transformed from the time-domain signals. The temporal input is fed into the multi-layer 
temporal encoder (any invariants of RNNs) to extract temporal features in a 3-D tensor. These temporal features 
and the raw topology are fed into the connectivity graph generator to generate dynamic connectivity graphs 

(5)L
(

θ;
{

X ,Y ,A(0)
})

=
N
∏

s=1

M
∑

m=0
Pθ

(

Ys ,A
(m)|Xs ,A

(0)
)

Figure 6.  Major functional components in the graph-generative neural network (GGN). The connectivity 
graph generator at the top box; a multi-layer spatial decoder (green box) with attentive graph convolutional 
supported by attention mechanism; shallow CNNs (in orange color); fully connected classifier. Dynamic latent 
graph generation applies raw topology data measured by the EEG probes. The spatial decoder is built with 
attentive graph convolution layers in concatenation with the use of CNN hidden layers for the final classification 
of the seizure attack types. Steps 1 to 3 outline the major steps in discovering brain functional connectivity.
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shown in Step 3. The temporal features are also fed into the multi-layer spatial decoder and CNNs in Step 4. The 
multi-layer spatial decoder learns the node representations and fed into a pooling layer which sums all node 
representations as a graph-level 1D representation. The shallow CNNs takes the temporal features as 3D images, 
where the channel of temporal features is taken as the image channel. The output of the CNNs is also flattened 
to a 1D representation. The representations from the pooling layer and the CNNs are then concatenated into a 
composite representation for the classifier in Step 5. In our settings, we use a two-layer fully-connected neural 
network with ReLU as the classifier to predict the seizure attack types.

As shown in the gray box in Fig. 6, connectivity graph generator discovers dynamic functional connectivity. 
Below are the major steps of this connectivity graph generation process. First, we feed the raw topology and the 
temporal features of one patient from the temporal encoder into the Para-Learner, which generates K parameter 
sets of a mixture Gaussian distribution. Then we draw two samples from the mixture Gaussian for each pair 
of electrode nodes. These samples are used to generate the edge probability as shown in Step 2. The connec-
tion strength of the existing edge between node i and node j is recorded by pij . Then we draw a set of graphs by 
Gumbel-Sampler based the connection probabilities obtained in Step 3.

The expectation of these graphs is taken as the initial functional connectivity graphs. Due to the changes in 
connection dynamics, these graphs need to be updated in many layers. Finally, we feed the graphs from the Step 
3 into the attentive graph convolution module. We designed a novel attention mechanism to automatically learn 
the importance of each connectivity graph, and generate the most contributed graph for the classification. Details 
of the attention mechanism can be found in the supplementary. We take the connectivity graphs obtained in the 
last attentive convolution layer for classification purposes and are supposed to be the final functional connectivity.

Model training of the GGN. We use the evidence lower bound (ELBO)68 for the model training instead of 
the Eq. 5. Maximizing this lower bound is equivalent to minimizing the weighted cross-entropy (WCE)69 where 
the weights are the proportion of each type. We train our GGN using WCE as the loss function and apply the 
 Adam70 as the SGD optimizer. The lower bound we derived is as follows:

where the two learnable probabilities P(m,s)
θ

 and Q(m,s)
ω  are defined by P(m,s)

θ
= Probθ

(

Ys ,A
(m)|Xs,A

(0)
)

, and 
Q
(m,s)
ω = Probω

(

A(m)|Xs,A
(0)
)

 . Here, the ω and θ are the learnable neural network parameters of the GGN. 
Specifically, ω is attributed to the connectivity graph generator, and θ is attributed to other modules of the GGN.

We designed an alternative training scheme that is similar to the expectation–maximization (EM)  method68 
to optimize parameters θ and ω . The trained model is cross validated by testing the remaining 1014 sample data 
from the Temple University Hospital dataset. All experimental settings, training procedures, and derivation of 
the lower bound can be found in the supplementary materials on the posted website.

Data availability
The data used in this paper are released by the Temple University Hospital through the following website at. 
https:// isip. picon epress. com/ proje cts/ tuh_ eeg/. The size of the dataset could vary with the neurological disease 
types. We choose the typical size that can be managed efficiently in our local cloud servers.

Code availability
Users must seek permission to use the code for non-commercial use from the lead author: zhengdaoli@link.cuhk.
dedu.cn. Note that all brain images in Fig. 1 and Fig. 6 were created via the python package nilearn in version 
0.9.171. The source codes for our GGN and all re-implemented baseline models are available at the following 
web site at https:// github. com/ ICLab 4DL/ GGN. The official source code of the GNN-based method is avail-
able at https:// github. com/ tsy935/ eeg- gnn- ssl. The Transformer-based code is available at: https:// github. com/ 
xutia nyu540/ Trans former- netwo rk- with-a- three- tower- struc ture. The GAT model for GNN code is available 
at: https:// github. com/ Diego 999/ pyGAT.
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