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Nonlinear model of infection wavy 
oscillation of COVID‑19 in Japan 
based on diffusion kinetics
Tatsuaki Tsuruyama

The infectious propagation of SARS‑CoV‑2 is continuing worldwide, and specifically, Japan is facing 
severe circumstances. Medical resource maintenance and action limitations remain the central 
measures. An analysis of long‑term follow‑up reports in Japan shows that the infection number 
follows a unique wavy oscillation, increasing and decreasing over time. However, only a few studies 
explain the infection wavy oscillation. This study introduces a novel nonlinear mathematical model of 
the new infection wavy oscillation by applying the macromolecule diffusion theory. In this model, the 
diffusion coefficient that depends on population density gives nonlinearity in infection propagation. 
As a result, our model accurately simulated infection wavy oscillations, and the infection wavy 
oscillation frequency and amplitude were closely linked with the recovery rate of infected individuals. 
In conclusion, our model provides a novel nonlinear contact infection analysis framework.

Accurate predictions of new SARS-CoV-2 infections are essential to public health responses, such as restric-
tions on behaviour, isolation of the infectious individual, and effective allocation of medical resources. In Japan, 
the  number of new cases of infection has been reported, with the observation of infection wavy oscillation curves 
at least six times in the past 2  years1. Several models of infection transmission have been identified, including 
the SEIR  model2,3. These models consist of three or four types of individuals: (1) Susceptible (S), an individual 
without immunity; (2) Exposed (E), the infectious individual during the incubation period; (3) Infectious (I); and 
(4) Recovered (R)(immunity acquirer)4. The simplest mathematical model of infectious disease transmission is 
the SIR model, which does not consider the Exposed  group5–7. The SEIR model is easily understood by consid-
ering the population transition process using differential  equations1,8,9. Its plot can predict chaotic oscillations 
of the population  number10,11. However, the observed oscillation in these models is highly complicated, and it 
is difficult to produce the long-term oscillation of the number of infected people, which regularly increases and 
decreases in Japan.

In this study, we designed a nonlinear model explaining the infection wavy oscillation curve in reference to 
the SEIR model. We aimed to predict the infection number data to plan prevention measures against disease 
propagation. We applied the macromolecular diffusion theory to model infection transmission. Macromolecules 
modify or are modified by each other during diffusion by interaction with other macromolecules in the reac-
tion system, and the diffusion process is a rate-limiting step. Analysis of the macromolecule diffusion requires 
physicochemical and hydrodynamic  theory2,3. In the previously reported SIR/SEIR model, the kinetic equation 
includes f(Xi; S, I, R, (E)) that consists of products of population densities Xi = S, E, I, or R, and diffusion item of 
the individuals, commonly written based on the macromolecule dynamics  as10,12,13:

Equation (1) is a standard SEIR model, if diffusion terms are not considered. DXi represents the diffusion 
coefficients of Xi. We hypothesised that the diffusion process was a rate-limiting step. In this case, as described 
later, the diffusion coefficient, DXiXj , depends on the population  density2,4,14–16.

(1)
dXi

dt
= f (Xi ,XiXj;Xi ,Xj = S,E, I ,R)+ DXi∇

2Xi
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where kXiXj , kXi , and kXj represent kinetic coefficients. We noted this diffusion dependency on the population 
density and performed numerical calculations to simulate infectious wavy oscillations. Subsequently, we per-
formed numerical calculations using the kinetic model equations (Eq. 2) to simulate infectious wavy oscillations.

Results
Exposed, cluster, and infectious model. A three-individual model was considered with an exposed 
individual (X = E), an individual in the cluster (W), and infectious individual (Z = I) coexisting. Because the sum 
of the individuals, E + W + I, remained constant, the kinetics are attributed to a two-parametric analysis. In the 
present study, we summarised the infection transmission process as follows:

(1) Individuals achieve an active infectious state by exposure to coronaviruses or by interaction with the 
exposed or infectious individual by contagion.

(2) Individuals recover through therapeutic interventions supplied continuously and externally.
(3) Individuals diffuse by the density gradient following an interaction with an exposed or infectious individual.

Individual diffusion was a rate-limit process because of the slow  rate2,4,16 and calculated vXW, using the inter-
action rate of an X to the cluster of infectious individuals, W, and the flux per unit area of the cluster, J. The 
interaction area can be determined by the "cluster size" R (Fig. 1). The interaction rate is given by:

When Fick’s first law holds, the flux J is given R, and DX, the diffusion coefficient of X:

By substitution of (3) into (4), the rate of contagion vX is given as

Accordingly, the global flow of all X to W is 4πRDX XW. Similarly, the flow of all W to X is  4πRDWWX where 
DW denotes the diffusion coefficient of W. Further, using the sum of the diffusion coefficients of X and W, the 
average diffusion coefficient can be written as DXW = (DX + DW)/2. The addition rate vXW of X to W is given using 
an arbitrary coefficient kXW :

where

Similarly, Z leaves the cluster to freely diffuse and becomes active for the infection; the kinetic rate is given 
using DWZ, the diffusion coefficient:

(2)
dXi

dt
= kXiXjDXiXj (Xj = S,E, I ,R)XiXj + kXiXi + kXjXj ,

(3)vXW = 4πR2J

(4)J = DX

(

dX

dr

)

r=R

= DX
X

R

(5)vX =

∫ R

0
4πR2JdR = 4πRDXX

(6)vXW = 4πRDXWXW = kXWDXWXW

(7)kXW = 4πR

(8)vWZ = kWZDWZW

Figure 1.  Scheme of infection transmission. Individual globules represent an “Exposed” X, an “Infectious” Z, 
and “Cluster” W. The recovery factor P supply is kept constant, and  Z is released continuously from W. The 
differential equations are given in Eqs. (20)–(22). R indicates the cluster size. kXW, kZ, kWZ, kXX, and kXZ represents 
the kinetic coefficients in Eqs. (20)–(22).
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DWZ = (DW + DZ)/2. In addition, the interaction (contagion) rates between X and X, and X and Z are denoted 
by vXX and vXZ, respectively. Using their kinetic coefficients, kXX and kXZ, the kinetic rates are given by vXX = kXX 
DXX X2 and vXZ = kXZ DXZ XZ = kXZ (DX + DZ)/2 XZ, respectively.

When the infectious population density is sufficiently small, individuals may diffuse freely within a sufficiently 
large space, and the diffusion coefficient can be regarded as a constant. Here, the fluctuation of the population 
density is set as

Xst and Zst denote the exposed and infectious population density at the steady state, respectively. x = x(t), 
w = w(t), and z = z(t) denote the population density change from the steady state.

The diffusion coefficient DXi of the i-th individual, Xi, is given using coefficients ai representing a dependency 
on the density fluctuation of the individual, xi (x1 = x, x2 = w, x3 = z)2,17,18:

DXi
st is the diffusion coefficient when the contribution of xi is negligible at the steady state. A negative sign 

indicates that the diffusion coefficient decreases with increasing polymer concentration. The signs of ai can be either 
positive or negative. Below, we applied the diffusion theory for modelling the infection transmission by replacing the 
macromolecule concentration with the population  density2,14,15,17,19. According to Eq. (12), the diffusion coefficients of 
X and Z are given by applying the above formula to a mix of two individuals, X and Z, when these are sufficiently low:

Because the cluster W diffusion rate is small, w and DW were neglected above. DX
st and DZ

st denote the diffu-
sion coefficients of individuals X and Z at steady state, respectively, and are constants.

Kinetic equation of infection model. First, X can irreversibly be in contact with the cluster, a part of 
which can be a member of the cluster:

Subsequently, Z leaves the cluster to be free:

Furthermore, Z is treated to recover to X:

P represents the recovery factor. In addition, the X interaction is promoted to be infectious:

Furthermore, X contagion with Z is promoted to be Z:

The contagion scheme is shown in Fig. 1. Summarising Eqs. (15)–(19), the kinetic equations of X, W, and Z 
are written as follows:

Further, for simplicity, Eqs. (20) and (22) are given by replacing the kinetic coefficients with arbitrary 
coefficients:

(9)X = Xst
+ x,

(10)W = Wst
+ w,

(11)Z = Zst
+ z.

(12)DXi = DXi
st(1−

3
∑

i=1

aixi)

(13)DX = DX
st(1− aXx − aZz)

(14)DZ = DZ
st(1− bXx − bZz)

(15)X +W ↔ W : kXW

(16)W → Z : kWZ

(17)Z + P → X : kZ

(18)X + X → X + Z : kXX

(19)X + Z → 2Z : kXZ

(20)
dX

dt
= −kXWDXWWX + kZPZ − kXXDXXX

2
− kXZDXZXZ

(21)
dW

dt
= kXWDXWWX − kWZDWW

(22)
dZ

dt
= kWDWZW − kZPZ + kXXDXXX

2
+ kXZDXZXZ

(23)
dX

dt
= −h1WX + pZ − h4X

2
− h5XZ
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Here, kXWDXW = h1, kWZW =  h2, kXXDXX = h4, kXZDXZ = h5, and p = kZ P. In the following, p will be called a recov-
ery rate factor in the following. Accordingly, the kinetic coefficients h2, h4 and h5 are proportional to the diffusion 
coefficients that depend on the population density. Setting the right-hand sides of Eq. (23) and (24) equal to zero, 
we have the concentration of X and Z at a steady state, Xst and Zst.

Substitution of Eqs. (9), (10), and (11) into Eqs. (23) and (24), respectively, and altering h1, h4, and h5 to 
h1 − ax + bz, h4 − cx + dz, and h5 − ex + fz, respectively, we have

where the coefficients a, b, c, d, e, and f (>0) represent the dependence of the diffusion process on the population 
density shown in aX and aZ in Eqs. (13) and (14), and h1, h4, and h5 are proportional to the diffusion coefficient, 
DXW, DXX, and DXZ.

Numerical simulation using the data of infection numbers in Japan. In Japan, the numbers of 
new cases of infection have been reported daily in each prefecture (Supplement Data). The daily reporting  has 
been initiated since February 2020. Two hundred days after the onset of the infection, waves are observed, and 
the amplitude of the oscillations has become greater over time. Analysing this data is valuable in deciding on 
infection control measures. We applied a model shown in Eqs. (26) and (27) for the Kansai region based on 
metapopulation  model7,12,20,21. The network of the Kansai region (population of 18 million, the second largest 
area in Japan) in the current simulation, consisting of nodes representing Osaka, Kyoto, Hyogo, and Nara pre-
fectures, was assumed. Kansai region  forms a metropolitan economic zone around Osaka, and the number 
of infected people was expected to be synchronized. There is a movement to Osaka prefectures from Hyogo, 
Nara, and Kyoto prefectures, while there is little movement between Hyogo, Nara, and Kyoto (Fig. 2a). Herein, 
infection propagation during transport was not considered. We estimated a daily net transfer term to Eqs. (26) 
and (27), in which g1 x1, g2 x2, and g3 x3 represent the transport number of exposed population in Kyoto, Nara, 
and  Hyogo, respectively, where the transfer coefficients are given by g1 (= 5.0 ×  10–5), g2 (= 1.0 ×  10–4), and g3 
(= 1.0 ×  10–4), respectively. The differential equations for newly infected population were the same over the whole 
Kansai region. The kinetic equations of Xi and Zi (i = 1, 2, 3, 4: Kyoto, Nara, Hyogo, Osaka) are written as follows:

(24)
dZ

dt
= h2W − pZ + h4X

2
+ h5XZ

(25)Xst
=

h2

h1
,Zst

=
h2(h2h4 + h1

2W)

h1(h1p− h2k5)

(26)

dx

dt
= −

{

W
(

h1 − aXst
)

+ 2h4X
st
+ h5Z

st
}

x +
(

Wa− h4 + 2cXst
+ eZst

)

x2

+

(

p− bXst
− h5X

st
− dXst2

− fZst
)

z −
(

h5 +Wb− eXst
+ fZst

)

xz − fXstz2,

(27)

dz

dt
=

{

2h4X
st
+ h5Z

st
− cXst2

− eXstZst
}

x +
(

h4 − 2cXst
− eZst

)

x2 +
(

−p+ h5X
st
+ dXst2

+ fZstXst
)

z

+
(

h5 + 2dXst
− eXst

+ fZst
)

xz + fXstz2,

(28)

dx1

dt
= −

{

W
(

h1 − aXst
)

+ 2h4X
st
+ h5Z

st
}

x1 +
(

Wa− h4 + 2cXst
+ eZst

)

x1
2

+

(

p− bXst
− h5X

st
− dXst2

− fZst
)

z1 −
(

h5 +Wb− eXst
+ fZst

)

x1z1 − fXstz1
2
− g1x1,

(29)

dx2

dt
= −

{

W
(

h1 − aXst
)

+ 2h4X
st
+ h5Z

st
}

x2 +
(

Wa− h4 + 2cXst
+ eZst

)

x2
2

+

(

p− bXst
− h5X

st
− dXst2

− fZst
)

z2 −
(

h5 +Wb− eXst
+ fZst

)

x2z2 − fXstz2−g2x2,

(30)

dx3

dt
= −

{

W
(

h1 − aXst
)

+ 2h4X
st
+ h5Z

st
}

x3 +
(

Wa− h4 + 2cXst
+ eZst

)

x3
2

+

(

p− bXst
− h5X

st
− dXst2

− fZst
)

z3 −
(

h5 +Wb− eXst
+ fZst

)

x3z3 − fXstz3
2
−g3x3,

(31)

dx4

dt
= −

{

W
(

h1 − aXst
)

+ 2h4X
st
+ h5Z

st
}

x4 +
(

Wa− h4 + 2cXst
+ eZst

)

x4
2

+

(

p− bXst
− h5X

st
− dXst2

− fZst
)

z4 −
(

h5 +Wb− eXst
+ fZst

)

x4z4

− fXstz4
2
+g1x1+g2x2+g3x3,
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Figure 2.  Numerical simulation of the new infection. (a) The maps of Japan and the Kansai  region are open 
resources provided freely (https:// frame- illust. com/?p= 10227; https:// image navi. jp/ search/ detail. asp? id= 31596 
606). (b) Simulation of the newly infected population. The blue circle plot shows the infection number in the 
Kansai region in Japan (from January 2020 to July 2022). The horizontal axis represents the date from the 
200th date of the infection report, and the vertical axis represents the new infection number, respectively. The 
theoretical plot was fit to the actual maximum and minimal infection number of the plot. W = 1.0 and p = 1.0 
for Kyoto (pink), Nara (red), Hyogo(green), and Osaka(black). The simulation calculation was performed using 
the Mathematica cord (See method, Mathematica was ver 12), shown in the Kansai region. (c) The marged 
four theoretical simulated curves. The horizontal axis represents the date from the 200th date of the infection 
report. (d) The simulated infectious wave oscillation in all of Japan. W = 0.9 and p = 1.0 were used. The line 
colours are light blue. The blue circle plot shows the new infection number. (e) The peak of infected number in 
each prefecture. The vertical axis represents the new infection number, and the horizontal axis represents the 
number of the peak.

https://frame-illust.com/?p=10227
https://imagenavi.jp/search/detail.asp?id=31596606
https://imagenavi.jp/search/detail.asp?id=31596606
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(32)

dz1

dt
=

{

2h4X
st
+ h5Z

st
− cXst2

− eXstZst
}

x1 +
(

h4 − 2cXst
− eZst

)

x1
2
+

(

−p+ h5X
st
+ dXst2

+ fXstZst
)

z1

+
(

h5 + 2dXst
− eXst

+ fZst
)

x1z1 + fXstz1
2,

(33)

dz2

dt
=

{

2h4X
st
+ h5Z

st
− cXst2

− eXstZst
}

x2 +
(

h4 − 2cXst
− eZst

)

x2
2

+

(

−p+ h5X
st
+ dXst2

+ fXstZst
)

z2 +
(

h5 + 2dXst
− eXst

+ fZst
)

x2z2 + fXstz2
2
,

(34)

dz3

dt
=

{

2h4X
st
+ h5Z

st
− cXst2

− eXstZst
}

x3 +
(

h4 − 2cXst
− eZst

)

x3
2

+

(

−p+ h5X
st
+ dXst2

+ fZstXst
)

z3 +
(

h5 + 2dXst
− eXst

+ fZst
)

xz + fXstz3
2
,

Figure 2.  (continued)
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The least value, 5.0 ×  10–5, was assigned to g1, because the transport from Kyoto to Osaka is less than that 
of other prefectures to Osaka (https:// www2. city. kyoto. lg. jp/ sogo/ toukei/ Popul ation/ Dotai/). The numerical 
calculation was performed over a sufficiently long period to evaluate the trend in system behaviour using a 

(35)

dz4

dt
=

{

2h4X
st
+ h5Z

st
− cXst2

− eXstZst
}

x4 +
(

h4 − 2cXst
− eZst

)

x4
2

+

(

−p+ h5X
st
+ dXst2

+ fXstZst
)

z4 +
(

h5 + 2dXst
− eXst

+ fZst
)

x4z4 + fXstz4
2
,

Table 1.  Parameters for simulation.

Notation Kansai except Kyoto Kyoto All Japan

h1 Proportional to diffusion coefficient of X 0.12 0.12 0.14

h2 Proportional to diffusion coefficient of W 0.004 0.004 0.004

a Proportional to ∂h1 /∂x 1000 1000 1000

b Proportional to ∂h1 /∂z 1000 1000 1000

c Proportional to ∂h4 /∂x 105 105 105

d Proportional to ∂h4 /∂z 105 105 105

e Proportional to ∂h5 /∂x 10 10 10

f Proportional to ∂h5 /∂z 10 10 10

DXX Interaction kinetic coefficient of X and X 155 155 155

DXZ Interaction kinetic coefficient of X and Z 155 155 155

W Cluster size 1.0 1.0 0.9

p Recovery rate 1.0 1.0 1.0

g1 Movement rate from Kyoto to Osaka 0.00005

g2 Movement rate from Nara to Osaka 0.0001

g3 Movement rate from Hyogo to Osaka 0.0001

Figure 3.  Recovery rate factor and infectious wave. The recovery rate coefficient p is the first order term of z1 in 
the right-hand side in Eq. (32). The simulation plots show the relative value corresponding to the new infection 
number in Kyoto when (a) p = 0.5, (b) pc = 0.52, (c) 0.7, and (d) 1.0. (a) shows the infection explosion. (c) and 
(d) show the simulated infection wave. (d) shows that the amplitude approaches a plateau, as indicated by the 
dotted line. Scales at the horizontal axes represent the relative value, and one scale interval represents 30 days. 
Scales at the vertical axes represent the relative value corresponding to the infection number when the initial 
value was set to  10–4 for the simulation (see method, “Numerical simulation”).

https://www2.city.kyoto.lg.jp/sogo/toukei/Population/Dotai/
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Mathematica cord, and the newly infectious number wavy oscillation was well simulated (Fig. 2b). The kinetic 
parameters are shown in Table 1.

According to the new infection report, the date showing the peak of the newly infected numbers in Osaka 
tended to lag behind the dates showing the peaks in other prefectures. The model predicted the lag in the 
infection numbers (Fig. 2c). Additionally, although the total infection number in Japan was well simulated by 
altering W from 1.0 to 0.9, the Eqs. (26) and (27) simulated the wavey oscillation in the same manner (Fig. 2d). 
Besides, the peak of the infection number in each wavy oscillation is approximated by an exponential function 
of which the exponent of the Napier number is nearly 0.67; then, each function is proportional to 1.95t, showing 
an increase of approximately 2.0 (~  e0.67) times at each infectious wave (Fig. 2e).

Recovery rate factor as a critical order parameter. Subsequently, we varied the recovery rate fac-
tor p and simulated the infection wavy oscillation (Fig. 3). For simplification, we simulated using the kinetic 
Eqs. (26) and (27) without the transport term gi xi. We set h1 = 0.12 (Table 1). The vertical axes represent relative 
value corresponding to the new infection number in Kyoto prefecture. Particularly, at the threshold pc = 0.52, the 
recovery rate coefficient changes from positive to negative. Correspondingly, at p < 0.52, a significant increase in 
the infection number occurs; as the plot in Fig. 3a shows, the relative values peaked rapidly; however, when the 
threshold of the recovery factor pc is exceeded, the infection explosion is suppressed, and the infection number 
shows a wavy oscillation as shown in Fig. 3d. This  simulation result indicates that an explosion of infections can 
quickly occur when a sufficient recovery rate cannot be ensured due to the collapse of the medical system. Sub-
sequently, the oscillation frequency was calculated using the wave number per 30 days. Table 1 shows the coef-
ficients used in the simulation. In this plot in Fig. 3d, the wavy oscillation approaches a plateau as shown by a 
dotted line, indicating that infection is controlled. Subsequently, the relation between Δp = p − pc and the wavy 
oscillation period was analysed. When p exceeded the critical value (pc = 0.52), a wavy oscillation was simulated, 
and the period increased. The reciprocal of the wave number per 30 days in the obtained plot was taken as the 
frequency. The plot data indicates a relationship between the   mean wavy  frequency of the simulated wavy 
oscillation of the infection number and Δp. As a result, the frequency was observed as a logarithmic function 
of Δp (Fig. 4):

We found that when the recovery rate increases in this way, the period of the infection number wavy oscil-
lation becomes longer. Thus, it is necessary to enhance the medical care system for the recovery of the infected 
people.

Diffusion coefficient as a critical order parameter. The amplitude of the infection wavy curve reached 
a plateau nearly (t > 300th date in Fig. 3d). The amplitude at the plateau regarding diffusion coefficient h1,  was 
plotted  as a sigmoid-like curve (Fig.  5). At h1 < h1c = 0.078, the new  infectious wave was  not observed.  At 
h1 > h1c, the wavy oscillation was observed, and the amplitude value approaches the plateau, when h1 was near 
0.12 (Table 1). Thus, individual diffusion suppression of the infected individual is critical for the  infection con-
trol.

(36)f = 1.8 log�p+ 5.3.
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Figure 4.  Plot of the mean frequency of the simulated infectious wave for Δp . The fitting line is the result 
of regression analysis on the logarithmic function. The correlation coefficient was > 0.95. The vertical y-axis 
represents the wavy frequency given by the relative value, and the horizontal axis represents the recovery rate 
difference Δp = p − pc. The vertical axis represents the frequency per the time unit (30 days) in the horizontal axis 
in Fig. 3.
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Discussion
The infectious wavy oscillation is a unique phenomenon in Japan that has been observed for 2 to 3 years. To 
explain this phenomenon, we assumed that the diffusion of individuals, exposed and infectious, is proportional 
to their density gradient and that their diffusion coefficient is density-dependent. Our results are summarised 
as follows: (i) The nonlinear kinetic equations simulated the infection wavy oscillation; (ii) The recovery rates 
are critical for predicting whether the infection wave can be observed and whether the infection may explode; 
(iii) the diffusion suppression is critical for infection control. In particular, the simulation in Fig. 3 demonstrated 
that securing and supporting medical resources for the infectious individual’s recovery is  critical22, because a 
minimal decrease in the resources triggers a rapid increase in the infection number.

Infection numbers in each prefecture within the Kansai metropolitan region and all of Japan were well 
simulated by changing only the cluster number and diffusion coefficient. In this way, the necessary change in 
the simulation was minimal, suggesting that the current model is available for other area in Japan. Because daily 
transportation is possible between the prefectures in the Kansai region, there was coordination among public 
policies, such as restraining the flow of individuals through communication between governors in local govern-
ments in an integrated manner within this  area7,12,22.

In the current study, we considered new infectious number fluctuations over longer time scales where tran-
sient movement can be neglected. The change in the number of people by the transfer can be represented by 
the difference between those moving to and from the node (prefecture), mainly moving to and from Osaka (the 
central node of the Kansai network). Because migration is limited to daily travelling for business, the difference 
can be nearly equal to zero and the transfer coefficient gi is sufficiently small. For these reasons, we omitted the 
new infection during the transmission during daily transportation.

Moreover, the infected number in all of Japan was simulated using a cluster value of W = 0.9. Therefore, the 
cooperation of the four prefectures in the Kasai region is unique (W = 1.0) and relatively independent of the 
kinetics in all of Japan. Because Japan is an island country, there are restrictions on the flow of people. We may 
see independent kinetics like the Kansai region unfold in each region. Hence, it may be challenging to construct 
a simulation model common to all of Japan. However, the oscillatory phenomena reported here have been 
observed nationwide and similar mdelling will be possible for the infection number simulation in each region.

In conclusion, the new infection number model based on nonlinear diffusion kinetics can well predict the  
wavy oscillation of the number of infected people. This modelling may provide essential insights into similar 
transmissions in the future.

Methods
New infection number database. The number of new infections in Japan is according to a database 
published by https:// www. mhlw. go. jp/ stf/ seisa kunit suite/ bunya/ 00001 21431_ 00086. html.

Numerical simulation. A simulation was performed using Mathematica® version 12 (Wolfram Research, 
Champaign, IL, USA). In the case that h1 = 0.12, h2 = 0.0004, a = 1000, b = 1000, c = 105, d = 105, e = 10, f = 10, 
p = 1.0, Dxx = 155, Dxz = 155, W = 0.9, X = 2/h1, Z = (2 (h1^2 W + Dxx 2))/(h1 (h1 p − Dxz 2)), g1 = 0.0005, Math-
ematica cord for plotting of infected persons in Kyoto is as follows:

h1 = 0.12, h2 = 0.0004, a = 1000, b = 1000, c = 105, d = 105, e = 10, f = 10, p = 1.0, Dxx = 155,
Dxz = 155, W = 1, X = 2/h1, Z = (2 (h1^2 W + Dxx 2))/(h1 (h1 p − Dxz 2)), g1 = 0.00005.
NDSolve[{x’[t] == − (W (h1 − a X) + 2 X Dxx + Dxz Z) x[t] + (W a − Dxx + 2 c X + e Z) x[t]^2 + (p − Dxz X − b 

X − d X^2 − f X Z) z[t] −  (Dxz + W b − e X + f Z) x[t] z[t] − (f X) z[t]^2- g1 × 1[t]

Figure 5.  Plot of the amplitude of the infection wavy oscillation. The wavy amplitude of the infection number is 
plotted in reference to the diffusion coefficient h1. The vertical scale represents the date from the first day of the 
infection report. The line is fitted to a sigmoid function to the plot using the fitting algorithm of Mathematica.

https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000121431_00086.html


10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19177  | https://doi.org/10.1038/s41598-022-23633-8

www.nature.com/scientificreports/

z’[t] == (2 X Dxx + Dxz Z − c X^2 − e X Z) x[t] + (Dxx − 2 c X − e Z) x[t]^2 + (Dxz + 2 X d − e X + f Z) x[t] 
z[t] + (Dxz X − p + d X^2 + f X Z) z[t], x[0] == 0.0001, z[0] == 0.0000}, {x, z}, {t, 0, 10,000}, MaxSteps→50000], 
g = Plot[{Z + z[t]}/. %%, {t, 0, 20}, PlotRange→All, PlotStyle→{RGBColor[0, 1, 1]}, PlotRange→All].

In the above, t = 10 corresponds to 400 days. For Nara, Hyogo, and Osaka. The extremum of the theoretical 
plot was fitted to match the extremum of the number of infectious individuals by producing 601 × 70, 220 × 46, 
1088 × 46, 3004 × 46 with z1, z2, z3, and z4 in (Fig. 2b). These 601, 220, 1088, and 3004 were the maximum number 
of the new infected. In addition, the dates of the maxima and minima values of the theoretical plot were adapted 
so that the infection number coincided with the dates on which the infection number took the local maxima 
and local minima.

The actual new infection numbers in Kyoto, Nara, Hyogo, and Osaka were calculated by producing 601 × 70, 
220 × 46, 1088 × 46, 3004 × 46 with the value of Z1, Z2, Z3, and Z4.

Data availability
The datasets generated and/or analysed during the current study (See Supplement data) are available as sup-
plemental data sets. In particular, the infection number is updated daily in the shown (https:// www. mhlw. go. jp/ 
stf/ seisa kunit suite/ bunya/ 00001 21431_ 00086. html.)
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