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Machine learning‑based 
assessment of storm surge 
in the New York metropolitan area
Mahmoud Ayyad *, Muhammad R. Hajj & Reza Marsooli

Storm surge generated from low‑probability high‑consequence tropical cyclones is a major flood 
hazard to the New York metropolitan area and its assessment requires a large number of storm 
scenarios. High‑fidelity hydrodynamic numerical simulations can predict surge levels from storm 
scenarios. However, an accurate prediction requires a relatively fine computational grid, which 
is computationally expensive, especially when including wave effects. Towards alleviating the 
computational burden, Machine Learning models are developed to determine long‑term average 
recurrence of flood levels induced by tropical cyclones in the New York metropolitan area. The models 
are trained and verified using a data set generated from physics‑based hydrodynamic simulations to 
predict peak storm surge height, defined as the maximum induced water level due to wind stresses on 
the water surface and wave setup, at four coastal sites. In the generated data set, the number of low 
probability high‑level storm surges was much smaller than the number of high probability low‑level 
storm surges. This resulted in an imbalanced data set, a challenge that is addressed and resolved in 
this study. The results show that return period curves generated based on storm surge predictions 
from machine learning models are in good agreement with curves generated from high‑fidelity 
hydrodynamic simulations, with the advantage that the machine learning model results are obtained 
in a fraction of the computational time required to run the simulations.

The New York metropolitan area, including New York City (NYC), Long Island, and the east coast of New Jersey 
(NJ), covers a region of narrow rivers, estuaries, islands, and sand barriers. Most of the region has an elevation 
that is less than 5 m above mean sea  level1 which makes it vulnerable to storm surge flooding due to Tropical 
Cyclones (TCs). In the past 10 years, TCs Sandy in 2012 and Isaias in 2020 killed tens of people and damaged 
thousands of  houses2–4. The damage to infrastructure caused interruptions to supplies of clean water, electricity, 
and transportation. These risks and damages are expected to become more pronounced in the future due to the 
expected increase in the intensity of TC, shift in their track, and potential change in their frequency in relation 
to climate  change5–19.

Long-term mitigation and adaptation strategies to storm surge require quantifiable predictions of flood haz-
ards under different scenarios while taking into consideration coastal development. These predictions are often 
presented in terms of a range of N-year return periods of a peak storm surge height defined as the height with 
1/N percent chance of exceedance in any given year. In many coastal cities, a 10-year return period is used to 
assess impact of moderate storm surge scenarios that would cause temporary disruptions and minor damage to 
buildings. A 100-year return periods is used to assess the impact of extreme storm surge causing more significant 
damage over a broader coastal region. In countries and cities that are more prone to flooding, larger return peri-
ods are used to determine the design water level. In the Netherlands, 4000- and 10,000-year return periods are 
used for coastal flood defense  works20. Because the peak storm surge increases with the return period, the higher 
return periods (low probability) correspond to higher storm surge (high-consequence event) while low return 
periods (high probability) correspond to lower storm surge (low-consequence event). For a reliable estimate of 
the N-year flood level one should consider 10× N × f  storm  scenarios21 where f represents the annual storm 
frequency. Ayyad et al.22 estimated that 600,000 storm scenarios will be required to reliably predict 1000-year 
return period when taking uncertainties associated with climate change into consideration.

Because the number of historical storms is limited and could not account for future changes, numerical model 
simulations of synthetic storms are usually used to determine storm surge levels. The most used hydrodynamic 
models include Sea, Lake, and Overland Surges from Hurricanes (SLOSH)23 and the coupled Simulating WAves 
Nearshore and ADvanced  CIRCulation24 (ADCIRC + SWAN)  models25,26. The high computational cost, which 
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is significantly increased for high-resolution (street-level) hydrodynamic simulations, hinders the ability to 
perform the number of simulations required to predict low-probability high-consequence events. Alternatively, 
data-driven surrogate models, trained with physics-based simulations, can be used to effectively reduce this 
computational cost. Ayyad et al.22 demonstrated that the Artificial Neural Network (ANN) technique can be 
effectively combined with physics-based simulations to reliably predict storm surge on an ideal coast that did not 
consider variations in coastal features or how resolution requirements can impact their generalized approach. 
Richardson et al.27, and Das et al.28 developed regression and data-based algorithms to predict storm surge height 
by calculating a similarity index from the TC parameters and match it with an existing TC database. Ruckert 
et al.18 discussed different examples of probabilistic projections of sea level  rise29–32. Others used shallow ANN 
models to predict surge levels due to synthetic or historical Typhoon  data33–37. Hashemi et al.38 and Lee et al.39 
used ANN models to respectively predict maximum water elevation and storm surge height time series on the 
basis of synthetic TCs. Tiggeloven et al.40 used different ANN model architectures to predict hourly surge time 
series prediction of the global tide and surge model forced using atmospheric variables. Other studies used 
kriging methods to predict storm surge height time  series41–43. Yousefi et al.44 used machine learning models to 
predict snow avalanches, and floods using climatic, topographic, and morphological factors as the input variables. 
The aforementioned surrogate models have few limitations. In most of these studies, the storm parameters were 
defined at their time of landfall or were assumed to remain constant as the TC tracks, which is not the case in a 
real-life application. Also, the models mostly used small data sets, less than 1100 storms, for training, validating 
and testing the surrogate models, which impacts the accurate prediction of low probability events that are of 
high consequence.

In this study, we demonstrate the use of Machine Learning (ML) models to predict low-probability peak storm 
surge height due to TCs. We perform different feature selection techniques to generate a perfect ML model. We 
avoid all the aforementioned limitations and address the challenge of modeling low-probability high-consequence 
events. A large data set of more than 10,000 synthetic TCs is used without the need to assume that the TC param-
eters remain constant along its track. The peak storm surge height is calculated from synthetic TCs using the 
coupled ADCIRC + SWAN models. Also, TC parameters at the time of landfall and 6 h before and after landfall 
are used as the ML input features. Implementing this approach to four study sites in the NY metropolitan area 
allows for identification of differences in model predictions associated with specific coastal features.

Methods
Data set generation. Hydrodynamic model. The coupled ADCIRC + SWAN model is used to simulate 
storm surge height including the effects of wave-current interactions and variations in water depth. ADCIRC24,45 
is a finite-element hydrodynamic model used to simulate free surface circulation and transport problems. In this 
study we used the two-dimensional depth-integrated version, referred as ADCIRC-2DDI. It solves the general-
ized wave-continuity and vertically-integrated momentum equation to calculate the free water surface elevation 
and depth-averaged velocities, respectively. In the current simulations, ADCIRC’s Holland hurricane  model46,47 
is used to calculate the wind and pressure fields. SWAN25 is a finite difference model used to simulate the gen-
eration, propagation, and dissipation of surface gravity waves in deep ocean and coastal waters. SWAN solves 
the wave action balance spectrum equation to calculate the phase-averaged wave characteristics, e.g., significant 
wave height. The source term in the governing equation includes input energy from wind, dissipation by bottom 
friction, wave breaking, and nonlinear wave-wave  interactions48. ADCIRC + SWAN49 is a coupled model that 
is widely used by academia, industry, and state/federal government agencies (e.g., Dietrich et al.49, Xie et al.50, 
Marsooli and  Lin51). The Federal Emergency Management Agency (FEMA) used the model to update the coastal 
inundation  maps52. The U.S. Army Corps of Engineers (USACE) utilizes the model in its high profile  projects53. 
The model is also used in state-of-the-art flood forecasting systems, e.g., the Coastal Emergency Risks Assess-
ment (CERA) system, which is developed to forecast hurricane flooding along the U.S. East and Gulf Coasts 
(https:// coast alrisk. live/). In the coupled approach, ADCIRC and SWAN share the same unstructured finite 
element mesh. ADCIRC interpolates the wind field over the computational vertices spatially and temporally to 
calculate water levels and currents. Using ADCIRC’s wind field, water level, and currents data, SWAN calculates 
wind-generated water wave spectrum. The radiation stress due to breaking waves is then passed to ADCIRC to 
predict water levels and currents.

Figure 1 shows the two dimensional computational mesh developed by a study from FEMA’s Region II 
 office52. The mesh covers the Western North Atlantic ocean with longitudes between 98◦ and 60◦ W, and latitudes 
between 8◦ and 46◦  N. The spatial resolution in the shallow nearshore zone (depth less than 8 m) is about 80 m 
and gradually increases to eight kilometers at depth 80 m. In deep water, the spatial resolution reaches 100 km. 
The computational time step and horizontal eddy viscosity are set to 3 s and 50 m 2s−1 , respectively. ADCIRC-
2DDI accounts for the Coriolis force in the momentum equation to approximate the effect of planetary rotation 
on the storm surge. The bed roughness values (Manning’s n) coefficient varies spatially based on the land cover 
 data54. The same roughness values are used in the wave model. The wind drag coefficient used in SWAN model is 
calculated using the method of Powel et al.55 with a cap of 0.0025. The computational time step in SWAN model 
is set to 15 min, which is also the coupling interval to the hydrodynamic model.

FEMA calibrated and validated the 2D ADCIRC + SWAN model output, i.e. maximum water elevation, 
using six historical tropical and extratropical events on the Northeast  Coast54. The modeled peak water levels 
were compared against 218 high water mark readings from the six storms provided by the U.S. Army Corps 
of Engineers, and the NY Sea Grant publication Storm  Surge56. The ADCIRC + SWAN model performance is 
considered to be acceptable if at least 70% of the comparisons for each storm shows a difference between the 
modeled and measured peak water levels less than 0.46 m. The validation results show that more than 75% of the 
comparisons for four storms, and more than 60% of the comparisons of the other two storms have peak water 
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level differences that are less than 0.46 m. Also, the validation shows that the absolute average difference ranges 
between 0.25 and 0.39 m with an average value of 0.32 m. Given the uncertainties in hindcasting the storms 
including, data collection, and meteorological and topographic data, FEMA considers the model as capable to 
simulate both tropical and extratropical storm events. The mesh was also used by the New York City Panel on 
Climate Change (NPCC2) for modeling NYC coastal  flooding57, and in other  studies58–61.

In this study, we focus on four study sites, namely Battery, and Montauk in New York (NY), which respectively 
cover the New York Harbor (NYH) and the entrance of long island sound, and Atlantic City and Beach Haven 
West in New Jersey (NJ), which respectively represent the open coast and back bay of NJ shoreline. The locations 
of the four stations are noted in the inset of Fig. 1.

Storm scenarios. The synthetic TCs used in this study are based on the TC data sets from Marsooli et al.62. 
Each data set contains thousands of TCs generated by the statistical/deterministic TC model of Emanuel et al.63 
for the Atlantic basin. The TC model generates synthetic TCs for specific large-scale atmospheric and oceanic 
conditions based on observations or climate models. The chosen data sets included 27,800 synthetic TCs. Of 
these, 23,  412 impacted the geographical area covered in this study. To determine the low-probability high-
consequence (impactful storm surge) at an acceptable computational cost, we firstly simulated all 23, 412 TCs 
using ADCIRC only with relatively low spatial and temporal resolutions. From these simulations, we identified 
1300 TCs as low-probability events that caused peak storm surge heights more than 0.5 m at the considered 
study sites. To complete the training data set, we randomly selected another 9000 TCs and added them to the 
1300 TCs. High-fidelity ADCIRC + SWAN simulations of the 10,300 TCs were then performed to determine 
the peak storm surge height. The generated data set from these simulations was then used to train, validate and 
test the ML models.

Measuring the TC impact at a study site requires a definition of its intensity which is represented by its maxi-
mum sustained wind speed ( Vmax ). Because this speed varies as the TC tracks along a specific path, we define 
the TC intensity by its maximum sustained wind speed when it is closest to a study site. Based on this definition, 
histogram of the maximum sustained wind speed for the Battery station, based on the 10, 300 TCs, is presented in 
Fig. 2b. The plot shows that the maximum sustained wind speed follows a normal distribution with a mean value 
of 60 Knots. Figure 2a shows the histogram of the minimum distance between the TC eye and the Battery ( dmin ) 
of the whole data set. The plot shows that the minimum distance is uniformly distributed between 0 and 350 km. 
The histogram of the corresponding peak storm surge height calculated by ADCIRC + SWAN is presented in 

Figure 1.  Computational mesh of the ADCIRC + SWAN model used in the present study. The study sites 
considered in this study are noted in the inset of the figure. The figure was generated using the AQUAVEO-SMS 
13.1 software (https:// www. aquav eo. com/ softw are/ sms- surfa ce- water- model ing- system- intro ducti on).

https://www.aquaveo.com/software/sms-surface-water-modeling-system-introduction
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Fig. 2c. The plot shows that the peak storm surge height follows a right skewed distribution with a mean value 
of 0.26 m and a median value of 0.17 m. Only 1500 TCs, i.e. about 15% of the simulated TCs, generated a peak 
storm surge height more than 0.5 m. Clearly, the data set is imbalanced and biased more to the smaller peak 
storm surge heights, which biases the trained ML model when considered as one set. The bias can be reduced by 
splitting the data set into smaller ones that are less biased. We used dmin to split the data set as it has the highest 
impact on the peak storm surge height, as shown in the following section. Figure 3 shows a scatter plot between 
the minimum distance and corresponding peak storm surge height, which is used to choose the threshold value 
of dmin . As shown in the plots, the peak storm surge height decreases as dmin increases to approach an asymptote 
with a value less than 0.5 m beyond dmin = 100 km. Also, the plots show that for dmin more than 100 km, the 
peak storm surge height dropped to less than 1 m at the Battery and Montauk, and 0.5 m in Atlantic City and 
Beach Haven. This also can be seen from the histograms of peak storm surge height for TCs that pass within 

Figure 2.  Histograms of the (a) minimum distance between TC eye and the study site, (b) sustained maximum 
wind speed when the TC is closest to the study site for the full data set, peak storm surge height for (c) the full 
data set, (d) TCs that pass within 100 km (DS-1), and (e) TCs that pass outside the 100 km region (DS-2). All 
histograms are for the Battery station.

Figure 3.  Scatter plots between the peak storm surge height calculated using the high-fidelity 
ADCIRC + SWAN simulations and the minimum distance between the TC eye and the study sites.
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and outside a radius of 100 km from the Battery station as shown in Fig. 2d,e, respectively. The 3650 TCs that 
pass within a radius of 100 km have a maximum peak storm surge height of 2.14 m, while the 6650 TCs that 
pass outside a radius of 100 km have a maximum peak storm surge height of 0.89 m. The histogram plot Fig. 2d 
also shows that almost 50% of the TCs that pass within the 100 km radius generate a storm surge peak larger 
than 0.5 m. Based on these histograms, we divide the data set into two smaller ones, namely DS-1 and DS-2 that 
respectively include TCs that pass within and outside a radius of 100 km from the study site to realize balanced 
data sets for training the ML models.

Data analysis and pre‑processing. TC parameters. Different linear and nonlinear ML models are im-
plemented to predict the peak storm surge height from the TC parameters, including intensity and track. In 
the following, the subscript i = 6, 0, and −6 , is used to denote the values of these parameters respectively at 6-h 
post, 0-, and 6-h prior to the time of the closest TC location to the study site. Six parameters are used to describe 
the TC at each time step. Its intensity is represented by the maximum sustained wind speed ( Vmaxi ), its size is 
represented by the radius of maximum wind ( Rmaxi ), and its track is represented by four values, namely the 
upper ( latupper i ) and lower ( latlower i ) latitudinal distance, and the right ( lonright i ) and left ( lonleft i ) longitudinal 
distances. If the eye of the TC is on the right side (above) the point of interest, then the left longitudinal (lower 
latitudinal) distance is zero and the right longitudinal (upper latitudinal) distance is equal to the distance with 
a negative sign. If the TC’s eye is on the left side (below) the point of interest, then the right longitudinal (upper 
latitudinal) distance is zero and the left longitudinal (lower latitudinal) distance is equal to the distance with 
positive sign. An additional parameter is used to identify the TC track which is the minimum absolute distance 
between the TC eye and the study site ( dmin ). Thus, a total of 19 features ( = six TC parameters × three time steps 
+  the minimum distance) are used as the ML models features.

Feature selection. Feature selection is conducted by calculating the correlation and degree of dependence of the 
peak storm surge height ( ηTC ) on the 19 features ( Xi ) using the correlation coefficient (R) and mutual informa-
tion (MI)  values64 that are respectively defined as:

where, cov(., .) and σ. are, respectively, the covariance and standard deviation, DKL is the Kullback-Leibler distance 
between two probability distributions, P(ηTC ,Xi) is the joint distribution of the peak storm surge height and 
each TC parameter, and P(ηTC) and P(Xi) are the corresponding marginal distributions. The linear correlation 
between peak storm surge height and TC parameters R has either a positive or negative value depending on 
whether they are positively or negatively correlated, respectively. The MI shows the nonlinear correlation, which 
is always positive and ranges from 0 to 1 signifying no and high dependence on the TC parameter, respectively.

The correlation coefficient and relative mutual information values between the peak storm surge height (cal-
culated by ADCIRC + SWAN) and the 19 features for the two data sets are presented in Fig. 4. The color bars 
show the correlation coefficient and the bar plots shows the mutual information values. In both data sets, the 
maximum correlation of the peak surge height is dmin . Figure 3 shows the high dependence of peak storm surge 
height to dmin where the surge decreases as dmin increases. Nearly the same level of correlation is noted between 
the peak storm surge height and Vmaxi in data set DS-1. The highest level of mutual information in data set DS-1 
is noted to be between the peak surge height and dmin . In data set DS-2, high values of mutual information are 
noted between the peak surge height and dmin , latupper i , latlower i , lonright i , and lonleft i . The effect of Vmax on the 
peak storm surge height decreases as dmin   increases65, which explains the high degree of dependence of this 
peak on the TC track. Therefore, stronger but farther hurricanes are less effective than weaker and closer ones.

In addition to identifying the parameters having the highest correlation with the peak storm surge height, the 
above two coefficients are used to remove features based on low correlation values. For that, we firstly neglected 
the features that have lowest R and MI. Then, we tested the different ML models using different combinations of 
TC parameters. We ended up with a total of 13 different features for each of the two data sets. The three Rmax , 
lonleft−6

 and latupper−6
 features were removed from both sets, while latlower6 and lonright0 were removed from the 

features of DS-1 and DS-2, respectively.

ML models and quantification. ML algorithms build a model based on training data set in order to 
make predictions without being explicitly programmed to do so. The algorithms are categorized as supervised 
when the training data set has labeled input and output data, and unsupervised when the data set is not labeled. 
In this study we adopt supervised algorithms only as the data set is labeled. Seven linear and non-linear ML 
models are implemented and tested. The used ML models are Ridge Regression (RR), Support Vector Regressor 
(SVR), Decision Tree Regressor (DTR), Random Forest Regressor (RFR), Extra Trees Regressor (ETR), Gradient 
Boosted Decision Tree Regressor (GBDTR) and Adaptive Boost (AdaBoost) Regressor. Each of these algorithms 
has its own hyperparameters that should be optimized.

Ridge regression is a variation of the ordinary least squares (OLS) method which expects that the target value 
is a linear combination of the features. The OLS aims to minimize objective function function

(1)R =
cov(ηTC ,Xi)

σηTCσXi

(2)MI =DKL[P(ηTC ,Xi)||P(ηTC)P(Xi)]

(3)min
w

||Xw − y||22
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where X is the input feature, y is the target, and w is the weight of the linear combination. Highly correlated 
features (collinearity) make the OLS more sensitive to random errors. The RR addresses this issue by imposing 
a penalty on the weight values by adding L2-norm of the weights multiplied by the penalty parameter ( α ) to 
the loss function.

The penalty parameter controls the amount of shrinkage of the weights. The larger the value of α , the smaller 
the weights are and thus more robust to collinearity. The hyperparameters that will be tuned to get the best results 
are α , the solver to use in computational routines, and the stopping criteria defined by the tolerance of error.

Support vector regressor main objective is to minimize L2-norm of the coefficient vector. The optimization 
problem, Eq. (5), is constrained such that the absolute error between the predicted and true values is less than 
or equal to a specified margin ( ε > 0).

This constrained optimization problem does not account for the data points outside the margin ε . Thus, an 
L −1 penalized term is added to the objective function to include extra points, equation 6.

where C > 0 is the penalty term, and ζ is a slack variable defined as the deviation of data point from the margin. 
As C increases, the tolerance for points outside the interval ε increases. Thus, the hyperparameters that will be 
tuned to get the best results are C, and ε

Decision tree regressor is a non-parameteric supervised learning method. They are generated in a recursive 
process. A decision tree is composed of root nodes, internal nodes, and leaf nodes where the nodes are connected 

(4)min
w

||Xw − y||22 + α||w||22

(5)
min
w

||w||22

s.t. |y − wX| ≤ ε

(6)
min
w

||w||22 + C

n
∑

i=1

ζi

s.t. |y − wX| ≤ ε + |ζ |

Figure 4.  Correlation coefficients (color bar) and relative mutual information values (bar plot) between the 
peak storm surge height and the 19 features of the two data sets.
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by branches. The root node is the topmost node that has the complete data set, each internal node denotes a test, 
each branch represents a test attribute, and each leaf node corresponds to a result. The path from the root node 
to each leaf node corresponds to a sequence of test judgments which is based on the Gini index. The hyperpa-
rameters that will be tuned to get the best results are the maximum depth of the tree (max depth) and minimum 
number of samples required on a leaf node (min samples leaf).

Random forest and extra trees regressors are parallel ensemble methods of the decision trees. They are 
based on training multiples of weak learners, then the outputs are averaged to obtain the final predicted output. 
The main differences between the random forest and extra trees are that the RFR subsamples the input data with 
replacement (bootstrap) while the ETR uses the whole data set. Also, the test judgements in RFR is based on 
optimum split while it is random in ETR . The hyperparameters that will be tuned to get the best results are the 
maximum depth of the tree (max depth), the minimum number of samples required on a leaf node (min samples 
leaf), and the number of weak learners (n estimators).

Adaptive boost and gradient boosted decision tree regressors are based on a boosting technique, i.e. a 
sequential ensemble method. Initially, a weak learner (base estimator) is trained using the whole training data 
set. This data set is then adjusted based on the prediction of the weak learner, so that it gives more attention to 
the incorrectly predicted samples by the previous weak learner. This cycle is repeated until it reaches the specified 
number of weak learners (n estimator). Finally, all weak learners are weighted and combined. AdaBoost assigns 
weights to every data point in the data set. The weights of wrongly predicted values in the first weak learner will 
increase in the following ones. The base estimator in the AdaBoost can be any ML algorithm. On the other hand, 
the GBDTR uses regression decision trees as their base estimators. It uses the residual of the current regression 
tree as the input to the consecutive tree. Thus, each regression tree learns the conclusions and residuals of all 
previous trees, and fits a current residual regression tree. Both AdaBoost and GBDTR use the weighted sum of 
the weak learners to get the final result. The hyperparameters of the AdaBoost are the base estimator, learning 
rate (LR), the number of weak learners (n estimators), and the loss function, while those of the GBDTR are the 
learning rate (LR), number of weak learners (n estimators), and maximum depth of the tree (max depth).

Performance metrics. The performance of the different models was evaluated by comparing the peak storm 
surge height as predicted from the ML models ( ηp ) to those calculated from ADCIRC + SWAN models ( ηa ). 
Different metrics have been used in the literature to evaluate the performance of ML models with respect to true 
data. Here, we adopt the correlation coefficient (R), Eq. (1), and coefficient of determination (R2) defined as

where N is the size of the data set, and ηa is the average value of ηa . The absolute values of R and R2 range between 
zero and one respectively signifying no and perfect match. We also use Relative Absolute Error and Mean Relative 
Absolute Error (RAE, MRAE) defined respectively as

to measure the performance of the ML models. Zero values of these errors indicate the perfect match. Lastly, we 
use the Root Mean Square Error (RMSE) defined as

with a zero value indicating perfect matching.

Hyper‑parameters tuning. In developing these models, 60% of the DS-1 and DS-2 data sets were used for train-
ing while 20% were used for validation. The rest were used for testing the models’ performance. The training was 
performed using scikit-learn library on  Python66. The used hyper-parameters of each ML model, presented in 
Table 1, were tuned using the cross-validation grid search method, by trying all possible combinations between 
the hyper-parameters and by getting the best performing configuration for training.

Results
ML results. The performance metrics, as defined above, of the seven models are presented in Table 2 using 
the test data sets. Decision Tree models are extremely sensitive to small changes in data, easy to overfit, and are 
not able to deal with collinearity, i.e. when two variables represent the same thing. The Ridge Regression model 
trades variance for bias, i.e. the output has a low variance but is biased, which causes large errors in the case of 
small number of features with respect to the number of samples. Thus, based on the numbers in Table 2, the 
Ridge Regression and Decision Tree models have consistently lower correlation and determination coefficients 
and higher MRAE and RMSE values. On the other hand, the SVR is robust to outliers, does not suffer from 

(7)R2 = 1−

∑N
i=1(ηai − ηpi)

2

∑N
i=1(ηai − ηai)

2

(8)RAE =

∣

∣

∣

∣

ηa − ηp

ηa

∣

∣

∣

∣

∗ 100%

(9)MRAE =
1

N

N
∑

i=1

RAEi

(10)RMSE =

√

√

√

√

1

N

N
∑

i=1

(

ηai − ηpi

)2
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overfitting, and is not affected by small changes in the data. The AdaBoost model is less prone to overfitting, and 
utilizes the weighted average of multiple weak learners using a base estimator to yield a robust result. Thus, by 
using SVR as the base estimator for AdaBoost, we combine the advantages of the two models. Therefore, SVR 
and AdaBoost models yield the highest correlation and determination coefficients and lowest MRAE and RMSE 
values. For the same model, slight differences in the performance metrics are noted among the different loca-
tions for the two data sets.

Figure 5 shows the scatter plots of the peak storm surge heights calculated using ADCIRC + SWAN models 
with those predicted from the ML models of the test data set of the (DS-1, and DS-2) data sets combined. Ideally, 
the scatter points should be close to the regressed diagonal line that represents a perfect fit. The linear fit of the 
scattered points should also coincide with the perfect fit line with slope 1. The slopes of the linear fit of the test 
data at Battery, Montauk, Atlantic City, and Beach Haven West are 0.98, 1, 0.98, and 1, respectively. This indicates 

Table 1.  Tuned hyper-parameters of the ML models used to train the two data sets, DS-1 and DS-2.

RR SVR DTR RFR

Parameters DS-1 DS-2 Parameters DS-1 DS-2 Parameters DS-1 DS-2 Parameters DS-1 DS-2

α solver tolerance 0.1 lsqr 1e-4 0.1 lsqr 1e–3 C ε 75
0.2

65
0.03

Max depth min 
samples leaf

24
7

13
11

Max depth min 
samples leaf n 
estimators

20
2
180

35
2
250

ETR GBDTR AdaBoost regressor

Parameters DS-1 DS-2 Parameters DS-1 DS-2 Parameters DS-1 DS-2

Max depth min 
samples leaf n 
estimators

21
2
130

18
2
70

n estimators LR 
max depth

200
0.1 5

270
0.1 6

Base estimator LR 
loss function n 
estimator

SVR (C = 90, epsilon 
= 0.09) 0.09 expo-
nential 15

SVR (C = 65, epsilon = 0.03) 0.05 
exponential 50

Table 2.  Performance metrics of the seven ML models at the four study sites using the test data set.

Machine 
learning 
models Data set

Battery Montauk Atlantic City Beach Haven

R R2
MRAE 
(%)

RMSE 
(cm) R R2

MRAE 
(%)

RMSE 
(cm) R R2

MRAE 
(%)

RMSE 
(cm) R R2

MRAE 
(%)

RMSE 
(cm)

Ridge 
regression

DS-1 0.82 0.68 28.7 15.1 0.86 0.74 30.1 10.2 0.79 0.62 43.8 17 0.83 0.69 71.2 10.9

DS-2 0.74 0.55 44.3 5.7 0.73 0.54 82.3 6.9 0.65 0.43 64.8 5.6 0.68 0.46 68.8 4.7

SVR
DS-1 0.94 0.88 17 9.1 0.95 0.91 15.9 6.1 0.96 0.91 19.3 8.2 0.97 0.93 28.2 5

DS-2 0.89 0.79 25 3.9 0.96 0.92 24.4 2.8 0.92 0.85 24.7 2.9 0.93 0.87 25.2 2.3

Decision 
tree

DS-1 0.88 0.77 23.6 12.6 0.9 0.82 18.8 8.6 0.85 0.72 25 14.7 0.94 0.88 25.8 6.8

DS-2 0.82 0.66 32.9 5 0.92 0.84 28.8 3.9 0.85 0.73 30.1 3.8 0.89 0.79 28.7 3

Random 
forest

DS-1 0.92 0.85 19.4 10.4 0.94 0.88 15.3 6.9 0.92 0.85 20.3 10.6 0.96 0.92 21.1 5.4

DS-2 0.89 0.79 26.5 3.9 0.95 0.91 24.1 3 0.91 0.83 25.7 3 0.93 0.85 25.3 2.5

Extra tree
DS-1 0.93 0.87 18.2 9.7 0.94 0.89 15.4 6.7 0.94 0.88 19.4 9.6 0.96 0.93 21.1 5.2

DS-2 0.9 0.8 26.2 3.8 0.96 0.92 23.9 2.8 0.92 0.85 25.7 2.9 0.93 0.87 26.4 2.3

Gradient 
boost

DS-1 0.93 0.87 17.4 9.5 0.94 0.88 15.1 6.9 0.94 0.88 18.6 9.5 0.96 0.93 22.1 5.2

DS-2 0.88 0.77 27.4 4 0.96 0.94 22.9 2.7 0.92 0.84 25.7 2.9 0.92 0.85 24.8 2.5

Adaptive 
boost

DS-1 0.94 0.89 16.4 9 0.95 0.91 14.4 6.1 0.95 0.92 17.8 8 0.97 0.94 20.3 4.8

DS-2 0.89 0.8 25.2 3.8 0.96 0.92 24.3 2.8 0.92 0.85 25.1 2.8 0.93 0.87 25.7 2.3

Figure 5.  Scatter plots between the peak storm surge height calculated using the high-fidelity 
ADCIRC + SWAN simulations and those predicted from ML models at the four study sites.
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a high level of agreement between the ADCIRC + SWAN results and ML models predictions. Further evidence of 
the goodness of the ML models predictions is noted from the histograms and corresponding normal distribution 
fits of the error, defined by the difference between the storm surge height calculated using ADCIRC + SWAN 
and predicted from ML models for the two test data sets, which are presented in Fig. 6. The mean, and standard 
deviation of the error at the four stations are about 0 and 5 cm, respectively. The reference lines, represented by 
dashed lines, in Fig. 5 indicates the 95-th and 99-th percentiles calculated from the normal distribution fits of 
the errors in Fig. 6, on average 64 out of 2072 storms are outside the 99-th percentile range and 108 are outside 
the 95-th percentile range. These results show that, to great extent, the peak storm surge heights predicted from 
the ML models match those simulated by ADCIRC + SWAN model.

Probabilistic flood hazard assessment. Statistical model. The probabilistic flood hazard assessment 
is presented in terms of peak storm surge height at the four selected study sites. Assuming that the TC’s arrival 
is distributed as a stationary Poisson process, the return period (T) of peak storm surge height ( ηTC ) exceeding 
a given threshold (h) is given  by67

where F is the TC annual frequency, and P[ηTC ≤ h] is the cumulative probability distribution (CDF). The 
distribution of the peak storm surge heights due to TCs is characterized by long tail which is modeled using the 
Generalized Pareto Distribution (GPD)68

where H(y) = P[y > u] is the CDF of the GPD, and u is the GPD threshold value which is selected by try and 
error so that the modeled CDF well represents the data points. The parameters σu and ζ are the controlling param-
eters of the scale and shape of the GPD distribution, respectively. Both parameters are statistically estimated 
using the Maximum Likelihood method.

Return periods results. Figure 7 shows the empirical and Pareto distribution fits of the peak storm surge heights 
return period along with the 90-th percentile confidence interval for the four study sites. Using the test data 
set, plots from both ADCIRC + SWAN simulated and ML predicted results are presented. A frequency of 0.52 
storm per year is assumed for both ADCIRC + SWAN and ML results. The used Pareto threshold values, and 
the RAE between the predicted 10-, 100-, 1000-, and 4000-year return periods using ADCIRC + SWAN and 
ML results are presented in Table 3. The maximum RAE is less than 0.7% for the 10-year return period, 5% for 
the 100- and 1000-year return periods, and 7% for the 4000-year return period. Also, the RMSE between the 
Pareto distribution fits using ADCIRC + SWAN and ML results for the four study sites is less than 7.5 cm. These 
results indicate that return period curves generated from ML predictions match very well those generated from 
ADCIRC + SWAN simulations but at a fraction of the computational time and resources. 

Conclusions

We demonstrated the usefulness of artificial intelligence in reducing the computational burden of predicting 
high-consequence low-probability (up to 4000-year return period) storm surge from tropical storms. Given the 
geographic boundaries of TC development in terms of their track and variations in their strength, it was neces-
sary to take into consideration the impact of these variations on model training. Seven linear and non-linear ML 
models were implemented and tested. Their hyperparameters were optimized. Model was trained using simula-
tions performed with the coupled ADvanced CIRCulation and Simulating WAves Nearshore (ADCIRC + SWAN) 
models of peak storm surge heights in the metropolitan New York area. The input to the ML models are TC 
parameters that included maximum sustained wind speed, upper and lower latitudinal, right and left longitudinal 

(11)T =
1

F(1− P[ηTC ≤ h])

(12)H(y) = 1−

[

1+
ζ ∗ (y − u)

σu

]−1/ζ

Figure 6.  Histograms of the error between peak storm surge heights determined by the high-fidelity 
ADCIRC + SWAN simulations and those predicted from ML models at the four study sites.
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distances, and minimum distance between our point of interest and the TC eye, at three time steps, namely the 
moment of minimum distance and 6 h before and after this moment. The analysis showed the need to divide the 
data set to overcome an imbalance problem in the total data set. Evaluation of performance metrics showed that 
Support Vector Regression and Adaptive Boosting models performed better than others in terms of predicting 
peak surge heights because they are robust to outliers, less prone to overfitting, and not affected by small changes 
in the data. These predictions yield return period curves that matched very well those generated from high-
fidelity but computationally expensive ADCIRC + SWAN simulations. The results demonstrated the efficiency 
of surrogate models in predicting return periods when compared with ADCIRC + SWAN simulations.

Data availability
The data that support the findings of this study are available from the corresponding author, M.A., upon reason-
able request.
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