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Autonomous driving using 
imitation learning with look 
ahead point for semi structured 
environments
Joonwoo Ahn 1, Minsoo Kim 1 & Jaeheung Park 1,2,3*

Semi-structured environments are difficult for autonomous driving because there are numerous 
unknown obstacles in drivable area without lanes, and its width and curvature considerably change. In 
such environments, searching for a path on a real-time is difficult, and localization data are inaccurate, 
reducing path tracking accuracy. Instead, alternative methods that reactively avoid obstacles in real-
time using candidate paths or an artificial potential field have been studied. However, these require 
heuristics to identify specific parameters for handling various environments and are vulnerable to 
inaccurate input data. To address these limitations, this study proposes a method in which a vehicle 
drives toward drivable area using vision and deep learning. The proposed imitation learning method 
learns the look-ahead point where the vehicle should reach on a vision-based occupancy grid map to 
obtain a safe policy with a clear state action pattern relationship. Furthermore, using this point, the 
data aggregation (DAgger) algorithm with weighted loss function is proposed, which imitates expert 
behavior more accurately, especially in unsafe or near-collision situations. Experimental results in 
actual semi-structured environments demonstrated the limitations of general model-based methods 
and the effectiveness of the proposed imitation learning method. Moreover, simulation experiments 
showed that DAgger with the weight obtains a safer policy than existing DAgger algorithms.

Autonomous driving technology for semi-structured environments such as parking lots and alleyways is impor-
tant for fully autonomous driving. Moreover, it is more difficult than driving in structured environments. In a 
structured environment, autonomous driving involves a global plan using a road network, and a vehicle keeps 
within a lane via lateral control and maintains a safe distance from vehicles in front while following a target 
speed through longitudinal control. Furthermore, in an semi-structured environment, the curvature can rapidly 
change, such as at right-angled corners, and the drivable area can be narrowed because of double-parking or 
illegal parking. Other obstacles include vehicles, humans, curbs, and bollards, which vary in shape, size, and 
location. Typically, such obstacles are unknown in advance. Navigating such a situation is difficult even in a static 
environment, and existing motion-planning algorithms are unable to handle such settings.

A representative approach for driving in semi-structured environments is to generate a global map on a 
global path to reach the destination. The vehicle tracks the path using localization data (i.e., the position and 
heading of the vehicle relative to the path). While tracking the global path, the vehicle checks for obstacles in 
its path. Object detection algorithms detect the position and shape of obstacles using camera or LiDAR sensors 
with pattern recognition or deep learning. If obstacles are detected near the global path, motion-planning is 
used to search a local path or waypoint that can reach the global path without collision. These motion-planning 
algorithms developed for robotics have been used in autonomous  vehicles1. These can be categorized according 
to the method and calculation time. An overview of motion-planning algorithms is shown in Fig. 1.

The path planning method using optimization theory, such as model predictive control (MPC)2 and convex 
 optimization3, uses a vehicle’s kinematic or dynamic model to predict its future trajectory. This method provides 
an optimal solution that satisfies the objective function and constraints. In driving situations, the objective 
function can be modeled as avoiding obstacles while reaching the global path and maintaining the target speed. 
Constraints can be the control capabilities and maintaining a safe distance from obstacles. The graph-search path 
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planning method builds a graph in the local area and then searches for a path. The Voronoi  diagram4, Visibility 
 graph5, and Probabilistic roadmap (PRM)6 algorithms can be used to build the graph. These algorithms discretize 
the configuration space into obstacles and free space, which are represented in the form of a graph. The graph 
is used to search for the minimum path length using the Dijkstra or A* graph search algorithm. The searched 
path is interpolated via spline algorithms to satisfy vehicle constraints and obtain a smooth path. An incremental 
search path planning method uses tree exploration algorithms, which iteratively expand a tree into free space 
at the end of the tree reaches a goal. Rapidly exploring random trees∗ (RRT ∗ )  algorithm7 extends the tree with 
samples randomly selected in the configuration space. The hybrid-A∗8 and anytime-D∗9 algorithms expand the 
tree in grid units. The shortest path is searched for to reach the goal pose while satisfying the non-holonomic 
constraints of the vehicle. The non-holonomic constraint refers to a motion that cannot move directly sideways, 
so a vehicle must drive forward or backward to rotate. However, these methods have three  problems10. First, if 
the local area is large or complex, a long computational time is required to generate the path, and the solution 
may not be found within a control loop (i.e., not real-time). Second, selecting a goal pose in the global path to 
search for the local path is heuristic. Third, when an algorithm is implemented, accurately recognizing whether 
an obstacle is close to the global path and tracking the path without collision is difficult because of inaccurate 
localization data. In semi-structured environments, various types of obstacles are complexly placed in the driv-
able area. Thus, obtaining accurate localization data at every point in semi-structured environments is difficult.

Rather than searching and tracking a path, alternative methods can be used that allow the vehicle to drive 
toward the global path while reactively avoiding obstacles. The candidate path selection and artificial field meth-
ods find a solution close to a vehicle that can be calculated in real-time. They select a candidate path or way-
point and calculate the control commands. The candidate path selection method generates candidate paths and 
selects one path that satisfies multiple objectives. These paths are smooth and are designed to account for the 
non-holonomic constraints of the vehicle. To select one path, the objective function is modeled to reach the 
global path, avoid obstacles, and keep the ride comfortable. Three algorithms have been used to achieve these: 
the dynamic window approach (DWA)11, the curvature velocity method (CVM)12, and  tentacle13 algorithms. 
The DWA algorithm designs a window according to the current state of the vehicle, and candidate paths are 
generated within the window. The CVM algorithm is similar to DWA, and it additionally considers vehicle 
accelerations. The tentacle algorithm mimics the antennas of a beetle as candidate paths to drive on narrow 
and variable-curvature roads more smoothly than DWA and CVM. The artificial field method uses a repulsive 
field against obstacles and an attractive field toward the global path. These fields are combined with different 
weights, and a vehicle is guided by the combined field’s vector. There are three algorithms available that differ in 
how they model the fields: namely, the virtual force field (VFF)14, the artificial potential field (APF)15, and the 
velocity vector field (VVF)16 algorithms. The VFF algorithm calculates the repulsive force as a vector from the 
obstacle to the vehicle and the attractive force as a vector from the vehicle to the target point. The APF algorithm 
creates a repulsive field with high potential energy for obstacles and an attractive field with high energy at the 
vehicle point and low energy at the goal point. The VVF algorithm considers the desired velocity and velocity 
of obstacles, in addition to the fields of the APF algorithm. However, the candidate path selection and artificial 
field methods have several limitations that make them difficult to be used in semi-structured environments. First, 
the parameters in the objective function or field model may differ to cope with the various complex situations 
of semi-structured environments. It is difficult to identify specific parameters that can handle all of these situ-
ations. Second, inaccurate localization data make it difficult in practice to know where exactly the global path 
is located in a local area. Third, if the local obstacle information is difficult to recognize accurately especially at 
road boundaries or shadowed areas (i.e., noisy state), the vehicle may not drive  smoothly17. Moreover, a vehicle 
may drive out of drivable area or toward an obstacle.

To address these limitations, this study proposes an imitation learning-based method for selecting the look-
ahead point to drive toward the drivable area while avoiding obstacles in real-time without the use of global 
information such as the global map and localization data. The proposed method segments vision data into the 
drivable area and non-drivable area using deep learning, and this is represented as an occupancy grid map; it 
does not recognize whether obstacles exist close to the global path and can ignore irrelevant information for 
driving, improving the generality of driving policy in untrained environments. Imitation learning obtains a safe 
driving policy by collecting expert driving data for various complicated situations that occur in semi-structured 

Figure 1.  Motion-planning algorithms and comparison between the characteristics.
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environments such as large changes in the curvature and width of the drivable area. Therefore, it is not neces-
sary to manually model the policy and tune parameters heuristically to handle such situations. The data include 
cases where the occupancy grid map is incorrectly recognized correctly or is noisy because of shadows, ensuring 
that the driving policy is robust in these situations. Even with a human-in-the-loop design, an imitation learn-
ing algorithm (DAgger) can obtain the policy faster than a reinforcement learning algorithm. This is because 
reinforcement learning requires trial-and-error and heuristic reward function  modeling18, but with imitation 
learning, the algorithm can directly use the collected expert data. Additionally, reinforcement learning can typi-
cally only be applied through a simulator (which enables trial-and-error learning).

The proposed imitation learning method trains the driving policy to select the look-ahead point on the occu-
pancy grid map. The look-ahead point is a target waypoint for a vehicle to reach, which is calculated from the 
pure pursuit  algorithm19 that is commonly used in autonomous driving. There are several advantages to using 
the look-ahead point. First, selecting the look-ahead point that can avoid obstacles while driving fast on the 
occupancy grid map has a clearer pattern relationship than a front-view image and steering-velocity relation-
ship which is common in imitation learning. The driving policy can properly train driving patterns and is safer. 
Second, the trained driving policy and expert behavior can be shared, allowing the data aggregation (DAgger) 
 algorithm20 to be applied to the autonomous vehicle. DAgger enhances the imitation learning performance, 
which retrains the policy by collecting additional data. Furthermore, a new DAgger training method, DAgger 
with the weighted loss function (WeightDAgger algorithm), is proposed to accurately imitate expert’s look-ahead 
point, particularly in unsafe or near-collision situations than existing DAgger algorithms. The weight values were 
calculated using the action discrepancy between the trained policy and expert look-ahead points obtained dur-
ing DAgger. These were paired with the additional data sampled by DAgger and the entire training dataset with 
a high state similarity. By using the weight, the policy is trained with a high learning rate for high-discrepancy 
data where the trained policy cannot cope well. The WeightDAgger algorithm is simple, but it is an meaningful 
finding to calculate the action discrepancy represented to a single scalar value by performing imitation learning 
with the look-ahead point.

Our contributions are summarized as follows:

• A method is proposed to drive with only vision data in semi-structured environments using imitation learn-
ing, which does not use high-cost HD-map and inaccurate localization data in a complex environment.

• Compared to other DAgger algorithms, DAgger trained with the look-ahead point have two advantages; 
applicable to autonomous driving without an additional joystick device; Even when the vehicle is controlled 
by the trained policy action (even in human-in-loop design), the expert can select the optimal action well.

• A new DAgger training method, DAgger with the weighted loss function (WeightDAgger), is proposed to 
accurately imitate the look-ahead point in unsafe or near-collision situations and to achieve the desired policy 
with fewer human effort and fewer DAgger iterations.

• Real-world experiments show the limitations of the model-based motion-planning algorithms and the effec-
tiveness of the proposed method, which is robust to sensor noise and does not require tuning model param-
eters to handle various and complex environments.

Methods
This section presents methods for obtaining the occupancy grid map from vision data and a safe driving policy 
in an semi-structured environment through imitation learning. The input for imitation learning is the occupancy 
grid map, and the output is the look-ahead point used to control the vehicle. This study assumes that the road 
has only static obstacles and no intersections. In order to navigate intersections based on the proposed method, 
a branch road detection  method21 can be referred.

Vision-based occupancy grid map. The occupancy grid map is a two-dimensional map that divides an 
area into a grid (see Fig. 2). Each grid in the map contains information on whether it is occupied (non-drivable) 
or unoccupied (drivable). It serves as the input for motion-planning algorithms, which have two advantages: 
First, the segmented image can ignore irrelevant information for driving, such as differences in the types of 
obstacles and sidewalks in the drivable area. Therefore, driving policies can achieve similar performance in 
untrained environments, which can enhance the generality of driving performance. Second, close and far dis-
tance information can be distinguished because the occupancy grid map is a 2D map (i.e., bird’s-eye-view). Thus, 
the vehicle can avoid nearby obstacles preferentially or consider distant obstacles in advance.

The front view camera image is corrected using intrinsic and extrinsic parameters and is transformed into 
a bird’s-eye-view image through the warp perspective function of the OpenCV library. The transformed image 
is segmented into drivable and non-drivable areas with a deep neural network through semantic segmentation. 
The drivable area is defined as the road, crosswalk, and road markings. The non-drivable area includes the road 
boundary lines, sidewalks, parking spaces with lines, pedestrians, and obstacles. The 200 × 200 segmented image 
is divided into 8 2 pixels per grid to obtain a 25 × 25 grid map. If all pixel values within a grid are drivable, the 
grid is considered non-occupied.

The perception network is similar to the segmentation task of  MultiNet22, which is based on the U-Net 
structure. The encoder is the same as that of the VGG  network23 except for the last layer, comprising five pairs of 
convolutional and max-pooling layers, which is used to extract several abstract features from the input image. 
Then, one 1 × 1 fully-connected layer is connected at the end. The encoder’s output is passed through a 3 × 
3 convolutional layer before being up-sampled with three transposed convolution layers. At this point, each 
convolutional layer of the encoder is combined with the decoder through the skip connections to extract high-
resolution features from the encoded low-resolution features.
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Imitation learning method for autonomous driving in semi-structured environment. Imita-
tion learning involves mimicking the behavior of an expert in a certain state. While an expert is driving, state 
action pairs of data are collected. The driving policy πnet (i.e., deep neural network) is trained with the data 
through a process known as behavior cloning, which is a single training step in imitation learning. To address 
the limitations of behavior cloning, DAgger20 is used to collect additional data by executing the trained behavior 
cloning policy and retraining πnet . This process is repeated until the best policy is obtained. Furthermore, the 
weighted loss function is used in the DAgger training process to increase the accuracy of data for unsafe or near-
collision situations.

Proposed imitation learning composition. The dataset comprises state and action pairs D = {(st , at)}t , where t 
is an index of the data. The state st is the occupancy grid map (25 × 25 grid ∈ {0 (black): drivable(unoccupied), 1 
(white): non-drivable(occupied)}), which is used for the input of the driving policy πnet . The action at is a com-
mand of an expert and the output of πnet . In this study, the look-ahead point was used as the action at ∈ { atx , aty }, 
which is the target waypoint for a vehicle to reach. Most autonomous driving studies based on imitation learning 
use the steering-accel/brake as the action, but the look-ahead point is more useful in executing the proposed 
DAgger algorithm. This reason is explained in detail in Section 10. The output of the policy for a state is expressed 
as follows: anet,t = πnet(st) , where anet,t ∈ { ̄anet,tx , ānet,ty , σ 2

anet,tx
 , σ 2

anet,ty
 } are the mean and variance of the look-

ahead point. The variance of the look-ahead point is calculated using Gaussian process (GP) to quantify the 
uncertainty or confidence of πnet24.

To collect training data, the expert selects the look-ahead point aexp,t ∈ { aexp,tx , aexp,ty }, and the vehicle is 
controlled in real-time to reach the selected look-ahead point. The pure pursuit  algorithm19 is used to calculate 
the steering angle command. The velocity command is proportional to the distance between this point and the 
vehicle. The dataset D = {(st , aexp,t)}t is stored for every period t as the vehicle is moving, and numerous data 
can be easily collected. This process is repeated continuously until the driving is completed. As shown in Fig. 3, 
the expert selects the look-ahead point aexp,t using a mouse pointer in the combined image xt instead of the 
occupancy grid map, st : aexp,t = πexp(xt) , where πexp indicates the behavior of the expert. The combined image 
xt is an image of transparently combining the information about the drivable area to the RGB image: xt ∈ {RGB 

Figure 2.  System architecture and deep neural network of the proposed methods.

Figure 3.  Dataset collection process of behavior cloning. The yellow look-ahead point is the action aexp,t 
selected by an expert. The expert selects aexp,t in the combined image xt . The yellow lines are the future 
trajectory that the vehicle will drive towards aexp,t along during a certain time.
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with green: drivable, RGB only: non-drivable}, which is because, if st is inaccurate (i.e., noisy), the expert may 
wrongly select the look-ahead point. This situation is shown in Figs. 3b and 4b.

The selection of the look-ahead point in the state (occupancy grid map st ) takes into account the distribution 
of obstacles and the drivable area. With this, the following three criteria can be proposed to driving in semi-
structured environments, which the expert can refer to and select the look-ahead point at : (i) The look-ahead 
point must be within the drivable area. (ii) The expert selects the look-ahead point where obstacle avoidance 
is possible by referring to future trajectories calculated on the basis of the kinematic bicycle model indicated 
in Figs. 3 and 4b. (iii) The look-ahead point is selected as far as possible while satisfying the first and second 
conditions so that the vehicle can move fast. Based on these criteria, it is not difficult for experts to label actions 
that allow the vehicle to avoid obstacles and drive toward the drivable area as fast as possible. For example, if an 
obstacle exists on the front and left side of a vehicle, the look-ahead point is selected to be on the right and near 
the front side of the vehicle in the drivable area (see Fig. 3a). At this point, a large steering angle and low-velocity 
command are calculated, and the vehicle can safely avoid obstacles. Conversely, if there are no obstacles, the 
look-ahead point is chosen as far as possible from the vehicle in the drivable area (see Fig. 3b). At this point, the 
vehicle can drive at high speed with a small steering angle difference.

Behavior cloning. The collected data can be used to train the policy πnet in a process similar to that of supervised 
learning. πnet is expressed as πnet(st; θ) parameterized by θ for the state st . The process of training πnet(st; θ) is the 
process of optimizing θ to minimize the loss function LGaut for st . This is expressed as LGaut (πnet(st; θ), aexp,t) , 
and its detailed expression is given in (1). A large number T of datasets D = {(st , aexp,t)}

N
t=1 is used to optimize θ:

where LGaut is the multivariate Gaussian log-likelihood loss function. Through LGaut , the policy infers the mean 
and variance of the look-ahead  point24:

where n is the dimension of the look-ahead point and j is the index of n, so j belongs to x and y, and n becomes 
two. Ltj in LGaut is the non-weighted loss function used to infer the look-ahead point:

where π̄net,a(st; θ)j is the mean of the policy output (look-ahead point) while training; aexp,tj is label of the look-
ahead point. σ 2

tj
 is the variance of the policy output:

where π̄net,σ (st; θ)j is the policy output while training; 0.0 is a labeled variance value that the network is trained 
to output a low variance. When this process is performed only once, the trained policy πnet is denoted as πBC . 
When a vehicle drives with πBC in an environment similar to the trained environment, πBC calculates a look-
ahead point similar to that of the expert.

However, if πBC encounters states that are not similar to dataset D or are noisy, πBC may output unsafe or 
unsafe actions. As shown in Fig. 4b, a noisy state is when the boundary of the drivable area or shadow area is not 
accurately recognized. Furthermore, the location and type of obstacles differ when the dataset for πBC is collected 
and executed. Here, the vehicle cannot sufficiently avoid obstacles; this is known as the data mismatch problem, 
which occurs when the data for unsafe or near-collision situations are included in the training dataset D less 

(1)min
θ

T
∑

t=1

LGaut (π(st; θ), aexp,t),

(2)LGaut =
1

n

∑

j

1

2

Ltj

σ 2
tj

+
1

2
log |σ 2

tj
|,

(3)Ltj = (aexp,tj − π̄net,a(st; θ)j)
2,

(4)σ 2
tj
= (0.0− π̄net,σ (st; θ)j)

2,

Figure 4.  Illustration of the data-sampling function of WeightDAgger: (a) Whether executing the network’s 
action ( ̄anet,t ) or the expert’s action ( aexp,t ). (b) Unsafe or near-collision situations and collecting the additional 
dataset. In this example, DAgger is in iteration i = 1, and the network πnet,i=1 has the behavior cloning policy, 
πBC . The yellow point is the newly labeled action aexp,t of the expert while πBC is being executed. The red point 
in the combined image xt is the mean of the output by πnet,i : the network’s action ānet,t . The blue circle is the 
threshold τ of τ̂t which is the difference between the actions ānet,t and aexp,t . The red lines centered at ānet,t 
represent the variance of the output of πnet,i : χ̂t . The blue dashed lines centered at ānet,t represent the threshold 
of χ̂t which is the variance of the output of the network πnet,i : χ.
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often than situations of driving in a relatively large drivable area or with no misrecognition problems. Thus, the 
policy πnet cannot reflect these situations in πBC well; this is known as the data imbalance problem. Moreover, 
when these problems occur in a driving situation, the error may magnify afterward because πBC has not learned 
recovery behavior; that is known as the compounding error problem.

DAgger algorithm. The DAgger algorithm can be used in imitation learning to address the problems of behavior 
cloning20. DAgger aggregates an additional dataset Di with the previously collected dataset D and trains the policy 
πnet again. This process is repeated until the desired policy is obtained.

Algorithm 1 represents the basic structure of DAgger. First, DAgger initializes the policy πnet,i=1 and dataset 
D as those obtained from behavior cloning. The DAgger iteration i and η̂i representing the performance of the 
trained policy πnet,i are initialized. When the iteration is started (i = 1), the additional dataset Di is collected by 
the data-sampling function as described in the next subsection (line 4 in Algorithm 1), which samples the only 
data for unsafe or near-collision situations. Following the driving via the data-sampling function, the additional 
dataset Di collected is aggregated to the existing dataset D (line 6). The aggregated dataset D is used to retrain the 
policy πnet with (1) (line 7). After training, a policy πnet,i+1 that causes fewer unsafe or near-collision situations 
than πnet,i can be obtained (line 9).

As more data from these problem situations are aggregated, πnet,i becomes more capable of dealing with the 
 situations20. DAgger repeats this process until the problem situations rarely happens (line 3). This can be judged 
by η̂i (line 15 of Algorithm 2) which is the ratio of executed network actions among the total executed actions. 
If η̂i is greater than the threshold η , DAgger is terminated. Finally, a policy πnet,i that does not cause unsafe or 
near-collision situations is obtained (line 8).

Data-sampling function in DAgger. 

The data-sampling function is based on EnsembleDAgger25. This function quantifies the similarity and con-
fidence for the output of the trained policy πnet,i to determine whether the driving situation of πnet,i is unsafe 
or near-collision. The outputs of πnet,i and the expert behavior πexp are obtained simultaneously (lines 4 and 5 
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in Algorithm 2) and compared before either is used to control the vehicle (lines 7-9). The discrepancy (error) 
between the actions of πnet,i and πexp is calculated (line 6), which is defined by the SafeDAgger  algorithm26. 
To quantify the confidence of πnet,i , the variance of πnet,i is obtained: χ̂t (line 7) used in the EnsembleDAgger 
 algorithm25.

By determining whether τ̂t or χ̂t is less than threshold values τ or χ , an unsafe or near-collision situation 
can be identified (line 8, see Fig. 4a). In all three situations (see Fig. 4b), τ̂t is greater than τ (blue circle). In the 
rightmost case, χ̂t (red lines) is greater than χ (blue lines). In these cases, if the vehicle follows the action of the 
network (red circle), the distance between the vehicle and obstacle decreases, and the possibility of collision 
increases. In these cases, the expert action (yellow circle) is used to control the vehicle to avoid unsafe situations 
(line 12). Moreover, only the state st of this situation and the expert action aexp,t are collected with the additional 
dataset Di (line 13). This is used to intensively train the network to overcome unsafe and near-collision situations.

DAgger with weighted loss function (WeightDAgger). The existing DAgger variant algorithms train 
the policy repeatedly by sampling low-accuracy/confidence data. Based on this algorithm, the proposed DAgger 
training algorithm (WeightDAgger) calculates different weights using data as the action discrepancy (through 
Step 1). These weights are paired with the entire training dataset by comparing the similarity (through Step 2), 
and the policy is trained with a high learning rate on low-accuracy data. Thus, WeightDAgger accurately imitates 
expert action on these data than existing variants DAgger in the same DAgger iteration. Consequently, DAgger 
iteration and human effort to collect additional data are reduced.

Step 1: Weighted loss function. The weighted loss function is used to address the data imbalance problem in 
machine learning. In classification tasks, the accuracy of distinguishing classes with a relatively small data pro-
portion is lower than that of classes with considerably more data. The weight is calculated high for the small data 
class to train the policy with a high learning rate. Therefore, the accuracy for the small data class is similar to 
that of the large data class.

A weight is defined based on the state in which the weighted loss function is to be applied to imitation learn-
ing. During DAgger execution, the state accuracy is quantified by calculating the discrepancy between the policy 
and expert actions. A state with a large discrepancy has out-of-distribution/unseen states in a small proportion 
in the training dataset. The weight is defined as proportional to the discrepancy, and the policy is trained with 
a relatively high learning rate for the low-distributed states in the training dataset. Therefore, after training, the 
accuracy of the state is similar to that of a sufficiently distributed state.

In WeightDAgger, the non-weighted loss function Ltj (2) is replaced by the weighted loss function as follows:

where Wt is the weight value, and LW t is the weighted loss function. In the policy training process, the change 
amount of parameter θ in the policy π(si; θ) , is calculated as large as the weight Wt . Wt can be expressed as 
follows:

where α is the gain for the action discrepancy τ̂t mentioned in line 6 of Algorithm 2. τ̂t is the normalized value 
for the distance between the expert action aexp,tj and the trained policy action ānet,tj , which can be obtained dur-
ing DAgger execution as follows:

The numerator in (7) represents the distance between two actions. The actions of each dimension are scaled 
from 0 to 1; aexp,tj , ānet,tj ∈ [0, 1]. The denominator is used to normalize τ̂t from 0 to 1 according to the action’s 
dimension n (e.g., n: 2).

The degree to which the policy cannot accurately imitate the expert action in a particular state can be quanti-
fied as the action discrepancy τ̂t . By reflecting τ̂t to the loss function LGaut in (2), it is evident that the loss value 
is larger than that without using τ̂t for low-accuracy states, and the policy is trained with a large learning rate. 
Therefore, a policy trained with τ̂t can calculate actions that are more consistent with expert actions than polices 
trained without τ̂t.

α in the weight, (6), regulates the application rate of τ̂t in the weighted loss function. The higher the α , the 
larger the loss value calculated during training for states where the expert action is inaccurately imitated (large 
τ̂t ). However, if α is considerably high, the policy may not converge with the lowest loss value, which is similar 
to failure to converge when using the too large learning rate value of the optimizer. Therefore, the accuracy was 
experimentally compared by training the policy with different values to determine a proper value for α . The 
results are presented in Section 10).

To apply τ̂t to the weighted loss function, τ̂t is additionally paired with the additional dataset Di obtained from 
the existing DAgger algorithms. This pairing process is implemented when obtaining Di (line 13 in Algorithm 2). 
In the BC dataset DBC , τ̂t cannot be obtained; thus, all τ̂t are initialized to zero.

(5)LW t = WtLt ,

(6)Wt = (1.0+ ατ̂t),

(7)τ̂t =

√

∑

j(aexp,tj − ānet,tj )
2

n
, where τ̂t ∈ [0, 1].
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Step 2: Weight update process. 

A weight update process applies to the dataset D and the additional dataset Di collected using WeightDAgger. 
The action discrepancy τ̂t in D (which is zero) must be updated to a non-zero value to apply the weighted loss 
function (5) to D. Therefore, data exhibiting a high similarity to the states of Di are searched among the state of 
D, and τ̂t among these two data is updated to a larger τ̂t . This is conducted in Algorithm 3. By using this step, the 
policy is trained with a weight on all similar data relevant to the situation where the policy cannot accurately 
imitate expert action.

Algorithm 3 is added to the DAgger algorithm (line 5 in Algorithm 1). D is the dataset used for training the 
policy πi (Algorithm 2); t is the data index in D. Di is the additional dataset obtained through the data-sampling 
function; it is the index of the data in Di . The similarity between sit and st is calculated and denoted as ε̂ (line 4 in 
Algorithm 3). Weight updating is conducted when ε̂ is larger than the similarity threshold ε (line 5). This process 
comprises two cases (first case lines 6-7 and second case lines 8-9).

In the first case, if τ̂it is greater than τ̂t (line 6), τ̂t is replaced by τ̂it (line 7), where τ̂it and τ̂t are the action 
discrepancies paired to sit and st , respectively (see Fig. 5a). A large action discrepancy (larger than τ ) occurred 
in the state s(i=1)t , because no sufficient data were similar to s(i=1)t in the BC dataset. The action discrepancy 
was paired to st , which is similar to s(i=1)t in the BC dataset, via Step 2. Therefore, even with the BC dataset, the 
policy was trained using the weighted loss function.

In the second case, if τ̂t is larger than τ̂it (line 8), τ̂it is replaced by τ̂t (line 9). For example, the action discrep-
ancy τ̂(i=2)t for s(i=2)t was slightly reduced after the first DAgger iteration (i = 1) (see Fig. 5b). Nevertheless, in 
this situation, the action discrepancy τ̂(i=2)t still existed. In Step 2, the policy π(t=3) was trained with the weight 
τ̂t , which was greater than τ̂(i=2)t , so that the associated data were trained with a larger weight.

Reasons to use look-ahead point as action. If the steering-accel/brake is used as the action, the expert 
suffers two problems in executing DAgger, and these can be addressed using the look-ahead point. First, the 
network action and expert behavior should be obtained simultaneously as shown in lines 4 and 5 of Algorithm 2. 
When the vehicle is being controlled by a network action, the expert action cannot be obtained simultaneously 
if the steering accel/brake is used as the action. In the HG-DAgger27 data collection process, the joystick (steer-
ing wheel and accelerator/brake pedal) must be additionally mounted on the autonomous vehicle. On the other 
hand, because the proposed method uses the look-ahead point as the action, the expert can select the look-ahead 
point with only a mouse pointer on the combined image xt regardless of the network action.

Figure 5.  Weight update process (step 2) of WeightDAgger: (a) DAgger executed once (i = 1) (b) Action 
discrepancy τ̂(i=2)t still occurs second DAgger iterations (i = 2).
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Second, the expert cannot clearly and instantaneously find a steering-accel/brake value that the vehicle can 
drive as safe and fast as possible when performing DAgger, even if the action is set as the steering-accel/brake 
and the expert action can be obtained simultaneously with the network action (see Fig. 6). This is because, when 
the vehicle is controlled by the network and expert intervention is required, the expert cannot calculate an action 
value considering the current network action used for vehicle control. Normally when humans drive, they do not 
directly calculate an absolute steering-accel/brake value, but calculate how much more or less rotate the steering 
angle and press the accel/brake pedals from the current value (i.e., amount of change).

In this study, the expert selects the look-ahead point that the vehicle should reach on the combined image 
xt by referring to the three criteria mentioned in the previous subsection. These criteria specify where the look-
ahead point is chosen for xt by its geometric relationship. Thus, the expert can clearly find one look-ahead point 
that the vehicle can drive as safe and fast as possible without the current steering-accel/brake feedback of the 
vehicle controlled by the network. This enables a state action pattern relationship to be clearly identified, so a 
neural network can learn the driving pattern more clearly.

Experimental setup
The vehicle used in the experiments was a Hyundai HG 240 (Fig. 7). The operating system of the laptop computer 
was Ubuntu 16.04, and the robot operating system (ROS) was used as a meta-OS platform. The GPU was Nvidia 
GTX 1080-ti (8 GB), and the CPU was 3.9 GHz Intel i9-8950HK. The steering wheel, accelerator, and brake were 
controlled by a micro controller unit using a proportional-integral-derivative (PID) controller. A front camera 
was attached 1.55 m above the ground and 0.25 m forward from the vehicle center. It was rotated about 20◦ in 
the pitch direction to minimize the shaded area of the bird’s-eye-view image. This camera comprised two lenses 
to capture a wide view of the environment. The field of view (FoV) of each lens was 120◦ , and the distortion of 
images was corrected.

Pure pursuit  algorithm19 was used to calculate the steering angle command ( δ ) to reach the look-ahead point: 
δ = tan−1

(

2L sin θl
Lf

)

 , where L is the wheelbase, and Lf  is the distance between the positions of the vehicle and 
look-ahead point. θl is the look-ahead heading, which is the difference between the heading of the vehicle and 
the heading of the vector from the vehicle to the look-ahead point. The range of δ was -540◦ to 540◦ . The velocity 
command v (m/s) used to reach the look-ahead point was proportional to ay which is the longitudinal distance 
between this point and the vehicle. Thus, v = ay

2.24 , where the final v was set to half of ay for safety reasons. The 
range of v was 0.5 - 2.2 (desired velocity) m/s. The accelerator and brake commands for controlling the velocity 
were calculated using the PI controller.

Network training. Perception. Softmax cross-entropy was used as the loss function to train the percep-
tion network. The drivable and non-drivable probability values were inferred for each pixel, and the average 
loss of each pixel was  calculated21. The Otsu algorithm was used to determine the threshold value for drivable 

Figure 6.  Labeling look-ahead point on the state is more clear than using steer-acc/brake.

Figure 7.  Autonomous vehicle.
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 probability28, which obtains an optimal threshold value at which a probability gap between binary-classified 
pixels can be smallest. Weights were assigned before training to initialize the network for efficient training. The 
encoder was initialized with weights trained on ImageNet data. The Adam optimizer with a learning rate of 10−5 
was used to train the network. The learning rates, 10−6 , 10−5 , and 10−4 were tested. The training was diverged 
when the learning rate of 10−4 was used, and was converged slowly with 10−6 . Among 1 × 10−4 , 5 × 10−4 , 1 × 
10−3 , the training was converged while preventing overfitting by using the weight decay of 5 × 10−4 . In the epoch 
process up to 100 k, the loss value was converged sufficiently from 10 k. The batch size was set to 128 considering 
approximately 1000 data. Since we observed adequate empirical convergence with these hyperparameters, we 
used these values.

The training dataset (i.e., RGB-segmented images) was collected for three parking lots as shown in Fig. 8. One 
image per second was collected for 989 RGB images as the vehicle was driven, and these images were segmented 
into a drivable and non-drivable class. The RGB and segmented images were transformed into the bird’s-eye-
view image and used to train the perception network. Eighty percent of the dataset was used for training, and 
the rest was used for validation.

Driving policy. The deep neural network was used as the driving policy πnet , and it comprised two pairs of 
convolutional and max-pooling layers with 32 and 64 channels, respectively. The flattened and fully connected 
layers with 1000 nodes were connected to these layers with 25 % and 50 % dropouts. Finally, the fully connected 
layer with four nodes was linked to predict the position of the look-ahead point and its confidence. , which is the 
maximum allowed by the memory of single GPU. The structural-similarity index measure algorithm [29] was 
used to quantify the similarity between the occupancy grid maps (line 4 in Algorithm 3; see Fig. 15a), and ε was 
set 70 % , which showed the highest accuracy (1.0 - τ̂ ). The policy was trained with different similarity thresholds 
ε , and the result is shown in Table 1.

In actual autonomous vehicle experiments, WeightDAgger based on EnsembleDAgger25 was used. α parameter 
in (6) was set to 10. The training dataset for the real autonomous vehicle was collected for the one parking lot 
shown in Fig. 8a. The vehicle was driven from the start point to the finish point and from the finish point to the 
start point (totaling 460 m). Data were collected at intervals of 0.05 s as the vehicle was being driven, which was 
recorded as a video: https:// youtu. be/ KOXFT EYL- xs. τ and χ were set to 0.05 and 0.15, respectively. The final 
policy was obtained after three DAgger iterations (i = 3). Increasing the number of DAgger iterations can improve 
performance, but not significantly. The number of collected data were BC: 7,082, First DAgger (i=1): 12,395, 
i=2: 16,324, i=3: 18,704. The ratio of executed network actions ( ̂ηi in Algorithm 2) i=1: 0.44, i=2: 0.79, i=3: 0.91.

Model-based motion-planning algorithm setup for comparison. The tentacle13 and VVF16 algo-
rithms were used to compare with the proposed method, which are matched with a goal of our study to compute 
in real-time and drive without using global information, and also representative algorithms for the candidate 
path selection and artificial field methods. The occupancy grid map was used as the input for these algorithms. 
The steering angle was calculated using each algorithm, and the velocity was set to be inversely proportional to 
the calculated steering angle.

The Tentacle  algorithm13 has 16 candidate path sets depending on the velocity, and each candidate path set 
has 81 candidate paths. The cost for each candidate path is calculated using the objective function, and the can-
didate path with the smallest value is selected. In the experiment, a set of candidate paths of 2.2 m/s was used. 
The application ratio of the clearance, flatness, trajectory, and forwarding terms in the objective function was; 
1:0:0:0.3. The flatness term was not used because the occupancy grid map in this study did not have the occupied 
probability. Moreover, the trajectory term could not be used because of the absence of global information. When 
the forwarding term was set to greater than 0.3, the oscillation problem was reduced, but the risk of collision was 
increased for large curvature changes. The clearance term included a detection range parameter to calculate the 
proportion of obstacles around the candidate path. This range was set to 0.35 m, which is the width of the vehicle 
(0.2 m) plus the safety distance (0.15 m). When this was increased further, the vehicle could avoid obstacles more 
safely, but more oscillation occurred in narrow drivable area.

Figure 8.  Parking lots used in the real autonomous driving experiment. At intersections, traffic cones are 
used to guide vehicles to drive in one direction. The yellow line is the center of the drivable area. The red boxes 
represent obstacle vehicles that were present in the fifth experiment. (a) Yellow line is about 230 m long; this 
parking lot was used to collect the training dataset for imitation learning. (b) Yellow line is 139 m long. (c) 
Yellow line is 149 m long.

https://youtu.be/KOXFTEYL-xs
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The VVF  algorithm16 has a repulsive field for obstacles and an attractive field for the goal point, like the 
artificial potential field algorithm. Additionally, to follow the desired velocity and direction, the velocity field is 
reflected in the APF field. The look-ahead point is searched by descending along the gradient of the field’s direc-
tion from the front of the vehicle to drive along the combined field.

In the experiment, the repulsive, attractive, and velocity fields were set to a ratio of 1:0:0.5. The attractive 
field could not be used because global path and localization data was not used in this study. The direction of the 
velocity field was set so that the vehicle could drive forward. When the fields were combined, only the repulsive 
field was applied around obstacles with a range of 2.3 m. If the range was set greater than 2.3 m, the vehicle 
could avoid obstacles more safely, but more oscillations occurred when it passed through a narrow drivable area.

Simulation setup for comparing DAgger algorithms. The performance of DAgger algorithms was 
compared in autonomous driving experiments using the CARLA  simulator29 (see Fig. 9). Parking lots were built 
using Unreal Engine 4, which had several complex obstacles; the width of the drivable area was narrow, and the 
change in its curvature was large (see Fig. 9), requiring multiple DAgger executions. The occupancy grid map 
is obtained through a camera installed above the vehicle. We uploaded the environment configurations, code, 
training dataset, and policies on Github: https:// github. com/ joonw ooahn/ Weigh tDAgg er. The existing DAgger 
algorithms were performed in simulation, and WeightDAgger was applied to these algorithms. In VanillaDAg-
ger20, the expert action is used with probability �iβ0 ∈ [0, 1] ( � ∈ (0, 1) ), so as more DAgger is conducted, more 
policy actions are selected; β0 and � were set to 1.0 and 0.5 respectively. SafeDAgger26 distinguishes whether the 
trained policy πi cannot accurately imitate aexp,t through τ < τ̂t . EnsembleDAgger25 also finds the policy action 
with low confidence: τ ≤ τ̂t or χ ≤ χ̂tx or χ ≤ χ̂ty . In HG-DAgger, the expert took the action when situations were 
unsafe or near-collision  situations27. The expert drove the vehicle from Pose1 to Pose2 and Pose2 to Pose1 in 
only Fig. 9a, and the training data were collected every 0.025 s (see Fig. 9c and video: https:// youtu. be/ FvuF9 
gg7_ YY)).

Experimental results
In actual environment experiments, the driving policy obtained through the proposed DAgger algorithm (Weight-
DAgger) and model-based motion-planning algorithms were compared. The effectiveness of WeightDAgger com-
pared to existing DAgger algorithms was verified using CARLA simulation. The reason for using the simulation is 
to analyze the performance according to the number of collisions and the α parameter in (6). The driving policy 
was trained separately for each environment.

Perception network test results. The performance of the perception network was tested with the vali-
dation dataset that was not used to train the network. The pixel accuracy was used as the evaluation metric: 
correctly classified pixels
total number of pixels (%) where the numerator is the number of pixels correctly predicted by the network. The 

Table 1.  Accuracy Comparison According to State Similarity Threshold. *Note. The value is the average 
accuracy. The value in {} is the ranking of the accuracy value in each column. Significant values are in bold.

Test Dataset

Accurately Trained State, τ̂t < τ Inaccurately Trained State, τ̂t ≥ τ Entire State

State 30 0.9766 {5} 0.9614 {4} 0.9750 {5}

Similarity 50 0.9831 {4} 0.9775 {2} 0.9823 {4}

Threshold 70 0.9869 {3} 0.9844 {1} 0.9866 {1}

ε (%) 90 0.9872 {2} 0.9631 {3} 0.9847 {2}

100 0.9893 {1} 0.9413 {5} 0.9845 {3}

Figure 9.  Semi-structured environments created using Unreal Engine4: (a) Trained environment (data 
collection and driving test) (b) Untrained environment (only driving test) (c) State and action in CARLA 
simulator.

https://github.com/joonwooahn/WeightDAgger
https://youtu.be/FvuF9gg7_YY
https://youtu.be/FvuF9gg7_YY
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result of the pixel accuracy was 98.14 (Fig. 8a), 97.75 (Fig. 8b), and 97.85 Fig. 8c. The drivable area is represented 
as the green areas in Figs. 11–14. The execution speed of the perception network was 27.9 fps.

Real environments test: effectiveness of driving policy with proposed imitation learning 
method. The experiments were conducted in three parking lots without intersections, as shown in Fig. 8. In 
the driving policy test, the WeightDAgger algorithm was analyzed and compared with the tentacle13 and VVF16 
algorithms: https:// youtu. be/ OQls9 fDgiaA. The calculation from the front camera image through the perception 
(27.9 ms) and driving policy (20 ms) networks to the look-ahead point value can be completed in about 30 ms.

The collision rate was used as an evaluation metric to quantify the performance of each driving policy algo-
rithm. This metric showed the number of collisions per 100 m as the vehicle was driven in each parking lot: 
100 cntcol

lenpath
, where cntcol represents the number of times a near-collision situation occurred. When the vehicle 

headed toward an obstacle and the distance was 0.5 m or less, the vehicle was stopped, and cntcol was incremented. 
Then, the driving was resumed at a point along the reference path closest to the collision point, as indicated by 
the yellow line in Fig. 8. At this point, the vehicle could drive without a collision. The length of the reference path 
was lenpath . A lower collision rate indicated a safer driving policy. When the rate was 0, the vehicle could reach 
the finish point without any collision.

Table 2 presents the test results for the collision rate at the three parking lots over five trials. In the experiment, 
each algorithm was used to travel a distance of 5180 m. The vehicle using WeightDAgger did not encounter any 
collisions. Even in the untrained parking lot with obstacles of different sizes and shapes, the vehicle drove without 
any collisions. This result demonstrates that the proposed method has generality. The tentacle and VVF algo-
rithms resulted in averages of 1.428 and 1.471 collisions per 100 m, respectively. Several unsafe or near-collision 
(near-collision) situations occurred with the tentacle and VVF algorithms as described in the next subsections.

Moreover, in order to evaluate a collision safety with obstacles, a ratio of the drivable area within 1.0 m range 
from the end of ego vehicle’s bumper, safe ratio, was measured: Ndri

Nran
, where Ndri is the number of pixels for the 

drivable area among Nran . Nran is the number of pixels around 1.0 m range from the end of ego vehicle’s bumper, 
which is indicated in blue range in Fig. 10. By measuring this ratio, we can measure how safely the vehicle can 
maintain a safe distance from obstacles on average. This range and ratio are shown in Fig. 10 and indicated in 
Table 3. WeightDAgger has the highest safe distance range ratio.

Qualitative analysis of driving policies. Limitations of tentacle algorithm. In the tentacle algorithm 
test, the vehicle drove near the boundary between the drivable and non-drivable areas rather than the center of 
the drivable area after avoiding obstacles or escaping the corner, which is shown in the leftmost image in Fig. 11. 
This is because the tentacle algorithm selects the most forward-facing candidate path with no obstacle among the 
candidate paths. Then, the vehicle drove at the minimum distance from side obstacles, increasing the possibil-
ity of collision. In the same situation, WeightDAgger tried to direct the vehicle toward the center of the drivable 
area. This is because, when the training dataset was collected, experts kept the distance between the vehicle and 
obstacles as large as possible by considering the overall pattern of the occupancy grid map.

The second to fourth images in Fig. 11 show that, when the vehicle was driving on the side of the drivable area 
and there was an obstacle in front, the vehicle was unable to avoid the obstacle because of the lack of sufficient 
space to avoid it. In other situations, even when a vehicle drove along the center of the drivable area and avoided 
obstacles, it did not avoid the obstacle with sufficient clearance, which is because the tentacle algorithm chose 
the candidate path with the least spacing to avoid obstacles. In contrast, WeightDAgger tried avoiding obstacles 
with sufficient safe distance in advance.

Limitations of VVF algorithm. In the VVF test, an oscillation problem occurred in narrow drivable areas where 
the vehicle frequently turned left and right (see Fig. 12a). In such spaces, the magnitudes of the fields from the 
two obstacles were almost the same because only a repulsive field was applied, but the directions were opposite. 
Thus, the position of the look-ahead point changed frequently in the opposite directions. This problem may be 
reduced by decreasing the gain and range of the repulsive force. However, the probability of collision would 
be increased in other situations, especially where the curvature changed significantly. On the other hand, with 
WeightDAgger, the vehicle drove stably without oscillation by imitating the expert who drove toward the middle 
of the drivable area even in narrow spaces.

As shown in Fig. 12b, with VVF, the vehicle could not enter the drivable area when the curvature changed 
rapidly, such as right-angled corners. This problem may be addressed using global information, where the goal 
point would be used as an attractive field. In contrast, this problem did not occur with WeightDAgger because 

Table 2.  Collision Rate. *Note. The average collision rate per 100m over 5 trials. The parentheses indicate 
additional results where the vehicle drove from the finish to start points. Significant values are in bold.

Fig. 8a Trained Env. Fig. 8b Untrained Fig. 8c Untrained Env.

Imitation Learning WeightDAgger 0 (0) 0 (0) 0 (0)

Model-based Tentacle 1.12 (0.95) 1.87 (2.01) 1.47 (1.15)

Motion-Planning VVF 1.38 (1.29) 2.01 (2.15) 1.07 (0.93)

https://youtu.be/OQls9fDgiaA
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when the training set for WeightDAgger was collected in this situation, the expert selected a look-ahead point 
where the vehicle could drive the furthest without collision.

Limitations of both tentacle and VVF algorithms. Figure 13 shows the problems of the VVF and tentacle algo-
rithms when the curvature and width of the drivable area changed more than the space where the vehicle was 
currently driving. The vehicle headed into the drivable area on the side of the adjacent obstacle before sufficiently 

Figure 10.  Results of safe distance range ratio; The blue area is the safe distance range, and its ratio is a measure 
of how much drivable area (green) exist within the blue area.

Table 3.  Safe Distance Range Ratio. *Note. The values represent the average safe distance range ratio over five 
trials. Significant values are in bold.

Fig. 8a Trained Env. Fig. 8b Untrained Env. Fig. 8c Untrained Env.

Imitation learning WeightDAgger 0.83 0.72 0.91

Model-based Tentacle 0.69 0.63 0.81

Motion-planning VVF 0.71 0.64 0.85

Figure 11.  The vehicle using tentacle did not drive in the middle of the drivable area and did not avoid 
obstacles safely. The blue lines in the tentacle image represent the candidate paths. The red line represents the 
selected path to track.

Figure 12.  Problems with the VVF algorithm; The white arrows represent the field direction. (a) Oscillation in 
a narrow drivable area. (b) The vehicle could not enter the right side of the drivable area in advance at a right-
angled corner. WeightDAgger did not encounter any problems in situations (a) and (b).
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avoiding it. This is because tentacle selected the path with the fewest obstacles among the candidate paths. The 
candidate path set according to the desired velocity (2.2 m/s) was limited in its ability to handle these situations. 
For VVF, the generated field could not sufficiently consider the nearest obstacles. To address this problem, the 
range of the repulsive field should be increased. Meanwhile, WeightDAgger tried to dodge the nearest obstacle 
until WeightDAgger successfully avoided it because it learned the pattern of preferentially avoiding the nearest 
obstacles from experts.

Driving results on noisy occupancy grid map. The occupancy grid map was not recognized accurately in com-
plex and shadowy environments (i.e., noisy input) because the learning data for such situations were insufficient 
to train the perception network. Data with the noisy state were contained in training data, so the trained network 
could learn some patterns for the noise and deal with the noisy state. As can be shown from the experiment in 
Fig. 14, a vehicle could drive without collision, even though there was noise in one trained environment and two 
untrained environments. However, the Tentacle and VVF algorithms encountered several problems.

As shown in Fig. 14a, the boundary between the speed bump and road was erroneously recognized as a non-
drivable area (i.e., noise). WeightDAgger was not affected by this noise because it trained the driving pattern 
from the overall shape of the state. However, the vehicle drove unstably with the Tentacle and VVF algorithms 
to avoid the misrecognized non-drivable area. Figures 14b and c show situations where the noise was caused by 
shadows. With WeightDAgger, the vehicle drove towards the drivable area with fewer oscillations than tentacle 
and VVF. This is because a training dataset for WeightDAgger contained similar situations, where the expert 
selected action without being affected by the noise. With the tentacle and VVF algorithms, however, the vehicle in 
the Fig. 14b situation avoided the shadows and then drove toward the largest drivable area blocked by obstacles, 
making it unable to drive any further. These algorithms also had more oscillation problems than WeightDAgger 
especially in Fig. 14c situation.

Figures 14d and e present situations in which a non-drivable area was recognized as a drivable area. In detail, 
not only the non-drivable area at the curb (i.e., the boundary of the drivable area) but also the space behind the 

Figure 13.  Problems for driving in narrow drivable area with large curvature changes: (a) VVF, (b) Tentacle.

Figure 14.  Driving results with WeightDAgger when the occupancy grid map contained noise. WeightDAgger 
did not encounter any problems in this situation. However, the vehicle could not drive smoothly or headed 
towards obstacles with Tentacle and VVF. (a) Noise from misrecognition; (b, c, and g) Noise by shadow; (d, e) 
Noise at the road boundary.
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curb was recognized as drivable area. Except for the curb, the vehicle attempted to drive toward the largest driv-
able area using WeightDAgger. However, tentacle was influenced by the noise at the curb, which is detected to be 
a drivable area. So, the vehicle was headed to the curb. VVF was less affected than the tentacle algorithm, but the 
vehicle was unable to drive toward the largest drivable area (see Fig. 14d and e). As shown in Fig. 14f, the vehicle 
with the VVF algorithm took actions to avoid the noise caused by a shadow next to the obstacle when passing 
through a narrow space. For the same situation, WeightDAgger and the tentacle algorithm did not respond sensi-
tively, and no problem occurred. Estimating a performance of the proposed method in off-road environments, it 
may be difficult to obtain a robust segmentation result in this environment, but it is expected that the proposed 
method can be applied because it showed robust driving results against somewhat noisy segmentation results.

Simulation test: effectiveness of WeightDAgger. A parameter α in (6) was analyzed. Overall, 80% of 
the dataset was used as the training set, and the rest was used for the test set. The test dataset was used to measure 
the accuracy calculated as 1.0 - τ̂ in (7). Additionally, it was classified into two types: accurately and inaccurately 
trained states. If τ̂t was less than τ , then this corresponds to the first data type; otherwise, this corresponded to 
the second data type. The policy was trained by 27 different α (see x-axis of Fig. 15b) with the dataset obtained 
via EnsembleDAgger. In this test, ε was set to 70. Fig. 15b shows that the accuracies of the accurately trained state 
(green line) were less sensitive to α . For the inaccurately trained state (red line) and entire state (blue line), the 
accuracy increased with an increase in α from 0 to 10. Conversely, when α was between 10 and 40, the accuracy 
slightly reduced. If α was excessively large (about 45 or greater), the accuracy was rather low, which is similar to 
when using the too-large learning rate of the optimizer in the policy training. Overall accuracies were the high-
est when α was 10.

Figure 16, Table 4, and video: https:// youtu. be/O- g4a_ xhB3o show the driving results with implemented 
policies trained using different DAgger algorithms. The proposed DAgger with the weighted loss function algo-
rithm was used in each of these algorithms, and the average number of collisions encountered within 100 laps 
was measured. When the vehicle collided with obstacles, driving was resumed 3 m in front of the collision spot 
on a collision-free trajectory. In both trained and untrained environments, the number of collisions reduced 
with increased accuracy. The vehicle using a policy trained via DAgger variant algorithms with the weighted 
loss function was driven without collisions in a single DAgger execution, except for VanillaDAgger. DAgger with 
the weighted loss function trained the policy with a higher weight in collision spots, particularly on roads with 
narrow or large curvature changes. The existing DAgger variants algorithms required more human effort and 
time to collect additional data than DAgger with the weighted loss function.

Conclusion
In this study, an autonomous driving method using vision-based occupancy grid map and imitation learning 
is proposed to deal with semi-structured environments such as parking lots. The occupancy grid map obtained 
via the U-net-based deep neural network was used as an input for imitation learning. Through the geometric 
relationship between the occupancy grid map and the look-ahead point, the expert clearly labelled this point 
when collecting the training data, and the DAgger algorithm was used for autonomous driving in semi-structured 
environments. Furthermore, DAgger with the weighted loss function (WeightDAgger) was proposed to train the 
driving policy with a high learning rate on high look-ahead point discrepancy data between trained policy and 
expert.

In real-environment and simulation experiments, a vehicle with the proposed method could drive toward 
the drivable area while avoiding obstacles reactively in real-time without using a global map and localization. 
In the actual experiments, the vehicle with WeightDAgger could drive more smoothly and safely than with the 
tentacle and VVF algorithms in environments where the width and curvature of the drivable area varied signifi-
cantly. Especially, WeightDAgger was more robust when the occupancy grid map was not accurately perceived 
or was noisy due to a shadow. WeightDAgger did not cause any collision, but the tentacle and VVF algorithms 
caused 1.42 and 1.47 collisions per 100 m, respectively. This is because the tentacle and VVF algorithms require 
different parameters to accommodate different complex situations. In contrast, WeightDAgger trains the deep 
neural network with numerous weight parameters using expert driving data for these situations. Furthermore, 
simulation test results demonstrates that WeightDAgger more accurately imitated expert action, especially for 

Figure 15.  (a) Weight update processes (Step 2) with ε = 70% when DAgger (e.g. EnsembleDAgger in this figure) 
is executed at once (i = 1). (b) Results of the average accuracy according to parameter α ; α of 0 is the same case 
as EnsembleDAgger.

https://youtu.be/O-g4a_xhB3o
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the unsafe or near-collision situations, than without using the weight. Future work will focus on developing 
proposed method for environments with intersections and dynamic obstacles.

Data availability
The dataset used for research and experiments can be obtained through the link below. - Drivable Area Seg-
mentation Dataset: https:// url. kr/ 7pn43m - Imitation Learning Dataset for Actual Vehicle: https:// url. kr/ h7xv8a 
- Imitation Learning Dataset for Simulation: https:// url. kr/ dqm1c3.
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