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Dysregulated thrombospondin 
1 and miRNA‑29a‑3p in severe 
COVID‑19
In Soo Kim 1,2,3,7, Sung‑Gwon Lee 4,7, Seul Gi Shin 2,3,7, Hyeongseok Jeong 5,7, 
Kyung Mok Sohn 5, Ki‑Sun Park 6, Prashanta Silwal 2,3, Shinhye Cheon 5, Jungok Kim 5, 
Sungmin Kym 5, Yeon‑Sook Kim 5*, Eun‑Kyeong Jo 1,2,3* & Chungoo Park 4*

Although nearly a fifth of symptomatic COVID‑19 patients suffers from severe pulmonary 
inflammation, the mechanism of developing severe illness is not yet fully understood. To identify 
significantly altered genes in severe COVID‑19, we generated messenger RNA and micro‑RNA profiling 
data of peripheral blood mononuclear cells (PBMCs) from five COVID‑19 patients (2 severe and 3 
mild patients) and three healthy controls (HC). For further evaluation, two publicly available RNA‑
Seq datasets (GSE157103 and GSE152418) and one single‑cell RNA‑Seq dataset (GSE174072) were 
employed. Based on RNA‑Seq datasets, thrombospondin 1 (THBS1) and interleukin‑17 receptor A 
(IL17RA) were significantly upregulated in severe COVID‑19 patients’ blood. From single‑cell RNA‑
sequencing data, IL17RA level is increased in monocytes and neutrophils, whereas THBS1 level is 
mainly increased in the platelets. Moreover, we identified three differentially expressed microRNAs 
in severe COVID‑19 using micro‑RNA sequencings. Intriguingly, hsa-miR-29a-3p significantly 
downregulated in severe COVID‑19 was predicted to bind the 3′‑untranslated regions of both IL17RA 
and THBS1 mRNAs. Further validation analysis of our cohort (8 HC, 7 severe and 8 mild patients) 
showed that THBS1, but not IL17RA, was significantly upregulated, whereas hsa-miR-29a-3p was 
downregulated, in PBMCs from severe patients. These findings strongly suggest that dysregulated 
expression of THBS1, IL17RA, and hsa-miR-29a-3p involves severe COVID‑19.

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), is a serious threat to global public health. As per the WHO living guidance for COVID-19 management, 
15% of symptomatic COVID-19 patients develop severe disease characterized by respiratory distress, and 5% 
are critically  ill1,2. So far, much effort has been made to comprehend the clinical, biological, and immune char-
acteristics associated with the severity of COVID-19. Recent meta-analysis studies found that serum C-reactive 
protein, lactate dehydrogenase, and D-dimer levels are significantly linked with the severity of COVID-193,4. 
In addition, older age, male sex, and comorbidity have been identified as the risk factors for critical illness and 
death caused by SARS-CoV-25–7. Severe patients admitted to the intensive care unit typically hospitalize longer, 
are more likely to require mechanical ventilation due to respiratory failure, and have higher  mortality8,9. To effec-
tively control the poor outcomes, it is important to understand a mechanism for developing severe COVID-19.

Multiple studies on severe COVID-19 have highlighted immunological perturbations such as reduced T 
cell subsets, increased neutrophil to lymphocyte ratio, and elevated proinflammatory cytokine  production10–12. 
Proinflammatory cytokine overexpression contributes to pulmonary inflammation and pathological lung damage 
in COVID-19 patients with cytokine release  syndrome13,14. Interleukin (IL)-17 is one of the proinflammatory 
cytokines released from patients with COVID-19-related cytokine release  syndrome15,16. In addition, thrombosis 
is a deadly complication of respiratory virus infections, including COVID-19. The crosstalks between coagulation 
and immune system may determine the severity of pulmonary pathology during viral  infections17,18. MicroRNA 
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(miRNA) is a small non-coding RNA and is widely studied as a biomarker and regulator of numerous human 
 diseases19,20. Recent studies have attempted to figure out miRNA profiles which correlate with clinical severity in 
peripheral blood from COVID-19  patients21–23. Despite this, the actual predicting markers of severe COVID-19 
remained obscure until recently. Identifying effective targets associated with clinical severity will develop new 
preventive and therapeutic strategies against COVID-19. Therefore, this study aimed to investigate the transcrip-
tomic characteristics correlated with the severe COVID-19.

We previously showed no significant difference between severe and mild/moderate COVID-19 cases in the 
context of immune-related transcriptomic profiles by the nCounter Human Immunology gene expression  assay24. 
However, for unbiased screening of a whole range of transcripts between mild and severe COVID-19 patients, 
we sequenced total messenger and small RNAs from peripheral blood mononuclear cells (PBMCs) of COVID-19 
patients (three mild and two severe illnesses) and three healthy controls (HC). Our sequencing data, as well as 
publicly available two RNA sequencing (RNA-Seq) and one single-cell RNA-Seq data, revealed that both IL-17 
receptor A (IL17RA) and thrombospondin 1 (THBS1) mRNA levels were elevated, but the hsa-miR-29a-3p 
level was down-regulated, in PBMCs from the severe group, when compared to those from HCs and mild group 
of COVID-19. Further experimental analysis of our cohort (8 HCs, 7 severe and 8 mild patients) showed that 
THBS1, but not IL17RA, was significantly upregulated, whereas hsa-miR-29a-3p was downregulated, in PBMCs 
from severe patients compared with those from HCs. These findings contribute to laying the groundwork for 
developing novel therapeutic strategies for severe COVID-19.

Methods
Patients and samples. A real-time quantitative polymerase chain reaction was used to establish the pres-
ence of SARS-CoV-2 in the nasopharyngeal and oropharyngeal swabs or sputum of COVID-19 patients. Mild 
and severe patients were classified into ‘0–1’ and ‘6–7’, respectively, depending on the WHO severity  score1. The 
study included COVID-19 patients hospitalized at Chungnam National University Hospital, and all subjects 
were given informed consent including age/sex-matched HCs. Patients under the age of 19 were excluded. All 
clinical and laboratory findings were at the time when the samples were taken.

Sample preparation and total RNA extraction. PBMCs from heparinized venous blood was isolated 
using a density gradient medium, Lymphoprep (STEMCELL Technologies, Vancouver, Canada), as detailed 
 previously24. Total RNA from PBMCs was isolated with QIAzol lysis reagent (Qiagen, Hilden, Germany) and 
miRNeasy Mini Kits (Qiagen) according to the manufacturer’s instructions. RNA quality was evaluated using 
Agilent 2100 bioanalyzer with the RNA 6000 Pico Chip (Agilent Technologies, CA, USA). RNA was quantified 
using a NanoDrop 2000 Spectrophotometer system (Thermo Fisher Scientific, MA, USA).

Library preparation and sequencing. Regarding RNA-sequencing (RNA-Seq), QuantSeq 3′ mRNA-Seq 
Library Prep Kit (Lexogen, Wien, Austria) was used for the library construction. In brief, reverse transcrip-
tion was performed with each 500 ng total RNA after hybridization using an oligo-dT primer linked with an 
Illumina-compatible sequence at 5′ end. Next to RNA template degradation, the second strand was synthesized 
with random primers containing an Illumina-compatible linker sequence at its 5′ end. All reaction components 
were removed using magnetic beads purifying the double-stranded library. The complete adapter sequences for 
cluster generation were added by amplifying the library. After purification of the finished library, single-end 75 
sequencings were performed with NextSeq 500 (Illumina, CA, USA).

For small RNA-sequencing (smRNA-Seq), the NEBNext Multiplex Small RNA Library Prep kit (New England 
BioLabs, MA, USA) was used for the construction of the library. Shortly, after ligation adaptors to each 1 μg total 
RNA, reverse transcription was performed with adaptor-specific primers. The library was amplified and puri-
fied using QIAquick PCR Purification Kit (Qiagen) and AMPure XP beads (Beckman Coulter, CA, USA). The 
yield and size distribution of the small RNA libraries was assessed using Agilent 2100 Bioanalyzer instrument 
for the High-sensitivity DNA Assay (Agilent Technologies). Single-end 75 sequencings were performed by the 
NextSeq500 system (Illumina).

RNA‑Seq analysis. To remove low-quality bases (< Q20), all raw sequence reads were fed to BBduk, a tool 
of BBMap package (https:// sourc eforge. net/ proje cts/ bbmap). Next, remained reads from QuantSeq 3′ mRNA-
Seq and small RNA-Seq were mapped to the human reference genome (GRCh37/hg19)25 and mature miRNA 
sequences of miRBase  database26 using Bowtie2  software27, respectively. We calculated read counts of genes with 
 Bedtools28 and performed quantile normalization using  EdgeR29. Unless otherwise stated, the unit of expression 
level in our analyses is quantile normalized read count. For identifying differentially expressed genes (DEGs), 
gene expression levels between groups were analyzed statistically by applying Student’s t test recommended by 
the protocol, and we defined DEGs with p-value < 0.05 and twofold change. To characterize the genes responsible 
for the COVID-19 disease, we analyzed the enrichment of gene ontology (GO) using the Database for Annota-
tion, Visualization, and Integrated Discovery (DAVID, http:// david. abcc. ncifc rf. gov). The expression heatmap of 
DEGs was depicted using R pheatmap package (version 1.0.12). Protein interaction relationships were analyzed 
using STRING protein interaction database (version 11)30.

Meta‑data analysis of publicly available RNA‑sequencing data. Three COVID-19-related pub-
licly available RNA-sequence datasets were retrieved from the NCBI GEO  database31. The first cohort  data32 
(GSE157103) was studied for peripheral blood leukocyte transcriptome from 100 COVID-19-positive patients. 
We discriminated 42 severe and 58 moderate cases of COVID-19-positive patients by the use of mechanical ven-
tilator support. The second cohort  data33 (GSE152418) contained PBMC transcriptomes from 16 acute COVID-
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19 hospitalized patients, consisting of 8 severe, 4 ICU, and 4 moderate patients. Twelve patients labeled with 
severe or ICU were considered the severe case, and four patients labeled moderate were grouped as the moder-
ate case. From each obtained quantified transcriptome expression data, the edgeR R-package (version 3.36.0)29 
was used for transformation of the raw counts into counts per million (CPM) and for exclusion of very lowly 
expressed genes. Genes with log2-CPM ≥ 1 in at least 2 samples were kept for further analysis. After filtering, to 
scale the raw library sizes, normalization factors were calculated with the trimmed mean of M-values (TMM) 
method using the calcNormFactors function in edgeR of the R package (version 3.36.0)29. Differential expres-
sion analysis was performed using the glmFit and glmLRT functions embedded in the edgeR package. The false 
discovery rate (FDR) of Benjamini and Hochberg was used to correct for multiple testing, and only genes with 
FDR < 0.05 and a 1.5-fold change cutoff were considered significantly differentially expressed.

In the third cohort  data34 (GSE174072), there were RBC-lysed whole blood single-cell RNA-sequencing 
(scRNA-Seq) datasets of 41 samples, including 33 COVID-19 patients and 8 healthy controls. We obtained their 
processed scRNA-Seq data from the COVID-19 Cell Altas (https:// www. covid 19cel latlas. org/). To identify genes 
differentially expressed among the cell populations, we used the ‘FindAllMarkers’ function in Seurat (version 
4.0.5)35 using default parameters. Statistical significance was determined by Seurat’s implementation of the two-
sided Wilcoxon rank-sum test with Bonferroni’s correction.

MiRNA target gene prediction. Putative target genes and binding sites of the indicated microRNAs 
(miRNAs) were predicted using miRWalk 3.0 online prediction software (http:// mirwa lk. umm. uni- heide lberg. 
de/; last accessed February 2022)36. Minimum free energy (ΔG) for each miRNA-target pair was also calculated 
by miRWalk 3.0.

Cell culture and transfections. THP-1 cells were purchased from American Type Culture Collection 
(TIB-202, ATCC, VA, USA). THP-1 cells were maintained in a humidified incubator at 37 °C temperature and 
5%  CO2 conditions in RPMI 1640 media (12-702F, Lonza, Basel, Switzerland) supplemented with 10% FBS and 
1% penicillin/streptomycin. For transfection, THP-1 cells were seeded at 3 ×  105 per well in 48-well plates and 
differentiated for 3 h with Phorbol-12-myristate-13-acetate (P8139, Sigma-Aldrich, MO, USA) of 500 nM con-
centration. After 3 h, THP-1 cells were transfected with mimic negative control (50 nM) or hsa-miR-29a-3p (5, 
20, 50 nM) using Lipofectamine 2000 (12566014, Invitrogen, MA, USA) according to the manufacturer’s instruc-
tions. The hsa-miR-29a-3p mimic (5′-UAG CAC CAU CUG AAA UCG GUUA-3′) was purchased from Genolution 
(Seoul, South Korea). The mimic negative control was purchased from Ambion (4464058, TX, Austin).

Quantitative real‑time polymerase chain reaction analysis (qPCR). After total RNA extraction, 
complementary DNA was synthesized using a reverse transcription master mix (EBT-1515C, Elpis Biotech, Lon-
don, England) for mRNA expression analysis, and miScript II RT kits (218161, Qiagen) for miRNA expression 
analysis. qPCR was performed in the Rotor-Gen Q 2plex system (9001620, Qiagen) using the Quantinova SYBR 
Green PCR Kit (208056, Qiagen) or miScript SYBR Green PCR Kit (218073, Qiagen). Data were analyzed using 
the delta-delta CT relative quantification method with human ACTIN or RNU6-2 as an internal control gene. 
Primer sequences were as follows: ACTIN forward: 5′-CAC CAT TGG CAA TGA GCG GTTC-3′, reverse: 5′-AGG 
TCT TTG CGG ATG TCC ACGT-3′, IL17RA forward: 5′-AGT TCC ACC AGC GAT CCA AC-3′, reverse: 5′-GGC 
ATG TAG TCC GGA ATT GG-3′, THBS1 forward: 5′-CAG GGA TAC TCG GGC CTT TC-3′, reverse: 5′-GAA ACC 
CGT CTT TGG CCT GT-3′, Hsa-miR-29a-3p: 5′-TAG CAC CAT CTG AAA TCG GTTA-3′. Primer for RNU6-2 was 
purchased from Qiagen (MS00033740).

Ethics statement. This study was approved by the Institutional Research and Ethics Committee at Chung-
nam National University Hospital (Daejeon, Korea; CNUH 2019-04-046, CNUH 2020-07-082) and conducted 
in accordance with the Declaration of  Helsinki37. Informed consent was submitted by all subjects when they 
were enrolled.

Results
Characterization of immune features of COVID‑19 patients related to the clinical severity. All 
samples were collected from Korean subjects with mild or severe-illness COVID-19 and healthy status. Their 
clinical characteristics and laboratory findings were summarized in Table 1. Clinically, only one MILD patient 
complained of fever, but over 85% of SEVERE patients had a fever at the time of blood sampling (P = 0.0101). 
There was no significant difference between MILD and SEVERE groups regarding underlying diseases. Con-
trary to needing mechanical ventilation for all SEVERE patients, all MILD patients remained stable without 
medical intervention during the isolation period except for some analgesics (P = 0.0002). The sampling point 
for this study was relative early, which was five to seven days after illness onset. In line with our previous report, 
C-reactive protein (P = 0.0003) and albumin (P = 0.0068) showed significant differences between the MILD and 
SEVERE  groups24.

Transcriptome analysis show that both IL17RA and THBS1 gene levels are upregulated in 
severe COVID19 patients’ blood. To explore gene expression patterns and identify significantly changed 
genes in severe COVID-19 cases, we generated RNA-Seq data of PBMCs from five COVID-19 patients, including 
two SEVERE and three MILD phenotypes and three HC. Three pairwise comparisons showed that overall tran-
scriptome profiles did not appear to be very much different, even though the Spearman correlation coefficient 
(ρ) between HC and MILD (ρ = 0.966) was slightly higher than that between SEVERE and HCs (ρ = 0.951) and 

https://www.covid19cellatlas.org/
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that between SEVERE and MILD (ρ = 0.947) (Supplementary Fig. 1a). Next, we identified DEGs for each dataset 
separately and their related pathways and functions by integrated bioinformatics analysis. Using 279 DEGs of 
HC versus MILD, 595 DEGs of SEVERE versus HC, and 455 DEGs of SEVERE versus MILD (Fig. 1a), gene 
ontology (GO) enrichment analysis was performed to investigate the main function of target genes. Although 
there were no significant enriched GO terms or pathways among 279 DEGs of HC versus MILD, the DEGs from 
the comparisons with SEVERE had enriched GO terms. 595 DEGs of SEVERE versus HC showed enrichment 
functionalities related to ribosome-related pathways, including SRP-dependent cotranslational protein targeting 
to membrane, rRNA processing, and translational initiation (Supplementary Fig. 1b). Intriguingly, we found a 
specific enrichment of genes associated with T cell activation and its signaling pathways among 455 DEGs of 
SEVERE versus MILD (Supplementary Fig. 1c). These findings convincingly indicated the alteration of expres-
sion of immune-related genes in the SEVERE COVID-19 patients.

To identify SEVERE-specific expression marker genes, we sorted out genes that were differentially expressed 
both between SEVERE versus HC and between SEVERE versus MILD. Of the 131 commonly altered DEGs in 
severe COVID-19 patients (Fig. 1b), 64 genes were upregulated, and 67 genes were downregulated in SEVERE 
compared to both MILD and HC (Fig. 1c).

Following that, we sought to validate our results using two publicly available human RNA-Seq datasets from 
PBMC samples among COIVD-19 patients. In the GSE157103 cohort, 2890 DEGs were identified between 42 
severe and 58 moderate cases of COVID-19-positive patients (Supplementary Fig. 2a). In addition, 1019 DEGs 
were screened from the GSE152418 cohort, including 12 severe and 4 moderate COVID-19 patients (Supple-
mentary Fig. 2b). As a result of comparing them with our experimental result, we found five putative SEVERE-
specific expression marker genes, which were four upregulated genes (IL17RA, SMPDL3A, SNX10, and THBS1) 
and one downregulated gene (TRABD2A) (Fig. 1d). Furthermore, an investigation of protein–protein interaction 
using STRING  database30 indicated that IL17RA and THBS1 were characteristically shown as a hub and directly 
connected with several genes that are related to the cytokine and interleukin signaling pathways in the immune 
system (Fig. 1e). These data suggest that both IL17RA and THBS1 levels are upregulated in PBMCs from severe 
COVID-19 patients compared to those from HC and mild patients.

Table 1.  Characteristics and laboratory findings of patients with COVID-19. Data were presented as mean 
(ranges) or numbers (%). P-values were calculated by Mann–Whitney tests.

Mild cases, n = 8 Severe cases, n = 7 P-value

Characteristics

Age, years 51.3 (26–97) 62 (36–78) 0.1787

Male 6 (75) 4 (57) 0.6084

Body mass index, kg/m2 22.3 (11.8–26.6) 23.3 (20.3–27.7) > 0.9999

Fever 1 (12.5) 6 (85.7) 0.0101

Sampling point from symptom onset (day) 6.9 (5–10) 7.6 (5–11) 0.5859

Mechanical ventilator use 0 (0) 7 (100) 0.0002

Modified Early Warning Score (MEWS) 1.3 (1–2) 2.6 (2–3) 0.0023

National Early Warning Score (NEWS) 0.1 (0–1) 5 (1–8) 0.0005

Sequential Organ Failure Assessment (SOFA) score 0.1 (0–1) 2.7 (0–6) 0.0039

Underlying conditions

Cardiovascular disease 0 (0) 0 (0) > 0.9999

Cerebrovascular disease 0 (0) 0 (0) > 0.9999

Diabetes mellitus 0 (0) 1 (14.3) 0.4667

Chronic kidney disease 0 (0) 1 (14.3) 0.4667

Charlson Comorbidity Index (CCI) 1.3 (0–5) 3.1 (0–6) 0.0847

Laboratory findings

White blood cell count, ×  103/mm3 4.3 (3.7–5.5) 6.3 (2.8–11.8) 0.267

Neutrophil, ×  103/mm3 2.8 (1.9–3.6) 4.7 (2.1–10.4) 0.1206

Lymphocyte, ×  103/mm3 1.1 (0.5–1.9) 1.1 (0.6–1.9) 0.8665

Neutrophil-to-lymphocyte ratio 3.1 (1.1–5.8) 4.8 (2.5–11.0) 0.1893

Monocyte, ×  103/mm3 0.4 (0.2–0.6) 0.5 (0.1–0.9) 0.4129

Monocyte, % 8.4 (5.8–13.0) 7.8 (3.1–14.3) 0.8665

Platelet, ×  103/mm3 192.8 (107–314) 187.7 (97–269) > 0.9999

Alanine aminotransferase, U/L 37.8 (12–121) 23.9 (8–53) 0.9282

Aspartate aminotransferase, U/L 27.1 (13–50) 41.6 (19–110) 0.2922

Albumin, g/dL 4.1 (3.4–4.6) 3.0 (2.3–4.1) 0.0068

Total bilirubin, mg/dL 0.6 (0.1–1.9) 0.7 (0.1–2.27) 0.4834

Lactate dehydrogenase, U/L 404.4 (280–554) 701.3 (340–1461) 0.0541

C-reactive protein, mg/dL 0.7 (0.3–1.7) 8.1 (2.3–12.4) 0.0003
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In the severe COVID‑19 patients, IL17RA was mainly expressed in monocytes and neutro‑
phils, whereas THBS1 was highly expressed in platelets. To investigate which immune-related cell 
types are responsive to IL17RA and THBS1, we used the GSE174072  cohort34 scRNA-Seq data consisting of 
over 175,000 single transcriptomes from 33 COVID-19 patients and 8 healthy controls with WHO COVID-19 
severity scores. Given preprocessed scRNA-Seq data, we visualized them in two dimensions using the uniform 
manifold approximation and projection (UMAP) method and obtained the same plot as the original study (Sup-
plementary Fig. 3). In the 14 distinct cell type clusters by UMAP plotting, IL17RA expression was most abun-
dantly observed in ‘CD14-positive monocyte’ and ‘neutrophil’ cell types. On the other hand, THBS1 expression 
showed distinctly different patterns, which was just a weak expression in ‘CD14-positive monocytes’ and no 
evident expression in ‘neutrophil’ cell types, but mainly observed in ‘platelets’ (Fig. 2a). We next questioned 
whether these gene expression patterns are predictive of COVID-19 severity scores. In general, the expression 
levels of IL17RA gene had significantly positive correlations with COVID-19 severity scores in CD14- positive 
monocytes (ρ = 0.474 and P = 0.0017) and neutrophils (ρ = 0.488 and P = 0.0016) (Fig. 2b, left panels). Notably, 

Figure 1.  RNA-seq based transcriptome profiling of PBMCs from COVID-19 patients and healthy controls. 
(a) Volcano plots representing differentially expressed genes (DEGs) with the log2-fold change plotted against 
the negative log10 p-value for the three groups. Red and blue dots indicate significantly upregulated and 
downregulated genes, respectively. (b) Venn diagram showing the overlap of DEGs among each comparison. (c) 
A heatmap shows commonly identified 131 DEGs of HC versus SEVERE and MILD versus SEVERE. Expression 
levels are normalized to Z-score and cluster by Euclidean distance matrix. (d) Venn diagram showing the 
overlap of genes among each comparison of two publicly downloaded datasets and our own RNA-seq data. (e) 
Protein network analysis using the STRING database.
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the IL17RA gene expression levels at severity score 6–7 were significantly higher than those at severity score 0 in 
CD14-positive monocyte (P = 0.0015, Wilcoxon rank-sum test) and neutrophil (P = 0.0100, Wilcoxon rank-sum 
test) cell types, whereas these changes were not observed in the THBS1 gene expression patterns (Fig. 2b, right 
panels). In contrast, the expression levels of the THBS1 gene were significantly (P = 0.0009, Wilcoxon rank-sum 
test) upregulated in the platelets from a severe group of COVID-19 patients. Altogether, these data strongly indi-
cate that both monocytes and neutrophils are the major sources of IL17RA, whereas the platelets are the princi-
pal origin for THBS1, in human immune cell types. Moreover, elevated expression levels of IL17RA and THBS1 
in the severe COVID-19 patients suggest that those genes could serve as indicators of COVID-19 severity.

Hsa-miR-29a-3p is a potential microRNA targeting IL17RA and THBS1 in PBMCs from severe 
COVID‑19 patients. Recently, it has been convincingly demonstrated that host and viral-encoded miRNAs 
are essential for replication and infection of SARS-CoV-238–40. Therefore, we sought to identify human miRNAs 
that were differentially expressed in severe COVID-19 samples and thus performed smRNA-seq experiments. 
After filtering lowly expressed miRNAs based on the threshold of normalized read counts < 5, two significantly 
downregulated (hsa-miR-29a-3p and hsa-miR-146a-5p) and one significantly upregulated (hsa-miR-144-5p) 
miRNAs were identified (Fig. 3a).

We questioned whether these miRNAs especially downregulated in severe COVID-19 samples were predicted 
to bind the 3′-UTR of IL17RA and THBS1. Analysis of the miRWalk database found that hsa-miR-29a-3p could 
bind to both IL17RA and THBS1 (Fig. 3b). For the IL17RA mRNA, there were a total of 13 pairings beginning at 
the third position from the 5′-end of the hsa-miR-29a-3p, with two guanine-uracil wobble base pairs, given the 
theoretically calculated free energy of − 17.4 kcal/mol (Fig. 3b, upper panel). For the THBS1 mRNA, the miRNA 
target sites lacked both perfect seed pairing and 3′-compensatory pairing but instead had 17 Watson–Crick pairs 
and three wobble pairs, giving the theoretically calculated free energy of − 20.2 kcal/mol (Fig. 3b, lower panel). 
Further, we found a significant negative correlation (ρ = − 0.675 and P = 0.004) between the expression levels of 
hsa-miR-29a-3p and two target genes (Fig. 3c). These findings implied that elevated IL17RA and THBS1 mRNA 
expressions could be partly associated with dysregulation of hsa-miR-29a-3p in severe COVID-19 patients.

Figure 2.  In severe and fatal COVID-19 patients, IL17RA expression is elevated in monocytes and neutrophils, 
but THBS1 expression is elevated in platelets. (a) Two-dimensional UMAP projections of single cells from the 
GSE174072 cohort scRNA-Seq data colored by expression levels of IL17RA and THBS1. (b) Box plots depicting 
average expression levels of IL17RA and THBS1 in monocyte (top), neutrophil (middle), and platelet (bottom). 
Patients are grouped by the severity score at the time of sample collection. *P < 0.05; **P < 0.01; ***P < 0.001; n.s 
not significant at P = 0.05 by two-sided Wilcoxon rank-sum test.
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THBS1, but not IL17RA, is elevated in PBMCs from COVID‑19 patients and modulated by 
hsa-miR-29a-3p. To further validate the bioinformatics results, we performed qRT-PCR analysis for IL17RA 
and THBS1 in PBMC samples from COVID-19 patients (7 severe and 8 mild patients) and 8 healthy controls. 
We found that the mRNA expression of THBS1, but not IL17RA, was significantly increased in mild and severe 
patients compared to those from HCs (Fig. 4a,b). In addition, the hsa-miR-29a-3p level was significantly down-

Figure 3.  Correlation between the expression levels of hsa-miR-29a-3p and its two putative target genes in 
the severe COVID-19 samples. (a) Volcano plots representing differentially expressed miRNAs with the log2-
fold change plotted against the negative log10 p-value of the compared groups. Red and blue dots indicate 
upregulated and downregulated miRNAs, respectively, in the severe COVID-19 samples. (b) Sequence 
alignments of hsa-miR-29a-3p with human IL17RA or THBS1 mRNA 3′-UTRs. The prediction of binding sites 
and free energy (ΔG) were obtained from miRWalk 3.0 online prediction software. (c) Scatter plots showing 
the expression levels of hsa-miR-29a-3p versus IL17RA and THBS1 in all eight subjects. ρ indicates Spearman’s 
correlation coefficient.

Figure 4.  THBS1 is upregulated, but hsa-miR-29a-3p is downregulated, in PBMCs from severe patients, and 
THBS1 is targeted by hsa-miR-29a-3p. (a–c) Human PBMCs were isolated from mild (n = 8), severe (n = 7) 
patients and HCs (n = 8). THBS1 (a), IL17RA (b), and hsa-miR-29a-3p (c) expression levels were measured by 
qRT-PCR analysis. (d,e) THP-1 cells were transfected with either negative control (50 nM) or hsa-miR-29a-3p 
mimic (5, 20, 50 nM). After transfection, total RNA was extracted for the measurement of hsa-miR-29a-3p (d) 
and THBS1 (e) expression levels. Experiments were performed duplicate or triplicate and values are presented 
as means ± SEM (a–e). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Kruskal–Wallis test (a–c) and One-way 
ANOVA (d,e). NC negative control of hsa-miR-29a-3p mimic.
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regulated in PBMCs from severe patients compared with those from HCs (Fig. 4c). Because we found the upreg-
ulation of THBS1 and downregulation of hsa-miR-29a-3p in severe patients, we further investigated the effects of 
hsa-miR-29a-3p upon the mRNA expression of THBS1 in human THP-1 cells. As shown in Fig. 4d,e, we found 
that hsa-miR-29a-3p was overexpressed by hsa-miR-29a-3p mimic transfection, whereas THBS1 mRNA expres-
sion was downregulated. Collectively, these data strongly suggest that THBS1 is upregulated, whereas hsa-miR-
29a-3p was downregulated, in PBMCs from severe patients. In addition, our data indicate that hsa-miR-29a-3p 
overexpression negatively regulated the THBS1 level in human monocytic cells.

Discussion
Recently, several studies have revealed that severe COVID-19 patients exhibit dysregulated immune responses 
during SARS-CoV-2  infection14–16,41. The lung pathology of SARS-CoV-2 infections represents diffuse pulmonary 
intravascular thrombosis associated with extensive  inflammation17,42,43. The increased risk of venous thrombo-
embolism is often shown to the upregulation of circulating D-dimer levels in COVID-19  patients44. There are 
close interactions between viruses and host factors involved in the immunothrombosis (coagulation and immune 
system). In addition, these crosstalks can be continued long after the clearance of viruses and influence the patho-
genesis of different stages of COVID-1917,45. Recent studies with meta-analyses have proposed the promising 
effects of therapeutic heparin for moderately ill COVID-19  patients46. Indeed, heparin anticoagulation therapy 
leads to a decrease in the risk of mortality in hospitalized patients with COVID‐1943,44. However, it has not been 
widely known about the exact predicting markers for COVID-19 severity in the context of thromboembolism.

From the combinatorial analysis of messenger RNA-Seq data of three cohorts, this study discovered that 
THBS1 was increased in severe COVID-19. The single-cell RNA-seq dataset revealed that THBS1 was expressed 
in monocytes but had no significant change in monocytes with severity. On the other hand, we found that THBS1 
expression was mainly in platelets and high in severe COVID-19 patients. THBS1 is well known to be secreted by 
thrombin-activated platelets and is a significant player in  thromboembolism47–49. Recent studies show that THBS1 
is associated with not only thrombus formation but also  immunomodulator50,51. In the immune and infection 
context, THBS1 and its receptor, CD47, inhibit T cell  differentiation52–54. A previous proteomics study found 
significantly increased THBS1 levels in plasma from COVID-19 patients than healthy  controls55. Although the 
sample size is small, we also confirmed that THBS1 was upregulated in PBMCs from mild and severe patients, 
compared with those from HCs. Additional studies are warranted to examine the role of THBS1 in the disease 
progression and pathogenesis of COVID-19 and how it is upregulated during coagulation cascades and inflam-
matory responses.

MiRNAs have been recognized as potential biomarkers and regulators in the pathological responses during 
SARS-CoV2  infection21–23. Through targeting numerous genes involved in the pathophysiological responses 
during infection, the candidate miRNAs may participate in the modulation of a variety of molecular functions 
of target genes which influence the distinct patterns or the clinical outcomes of COVID-1921,23. Our data with 
the decreased expression of hsa-miR-29a-3p in severe patients partly correlate with previous findings that hsa-
miR-29a-3p level is suppressed in the serum and plasma from severe group of COVID-19  patients56,57. Interest-
ingly, the decreased level of hsa-miR-29a-3p is negatively associated with COL5A3 in any grade of COVID-19 
 patients56. Our data is unique in showing the negative correlation of hsa-miR-29a-3p with IL17RA and THBS1 
in all subjects analyzed in the present study. Further experimental analysis strongly suggest that the reduced 
level of hsa-miR-29a-3p contributes to the excessive expression of THBS1 in severe cases of COVID-19. To our 
knowledge, this is the first report to reveal that THBS1 is potentially targeted by hsa-miR-29a-3p, which level 
is dysregulated in severe patients. A recent study also showed that miR-29a has an inhibitory function against 
different strains of influenza A infection by targeting the frizzled 5  receptor58. Furthermore, the miR-29a level 
showed an inverse correlation with HIV-1 replication and  propagation59,60, suggesting that miR-29a plays an 
essential role in antiviral responses during viral infection. The recent in silico data that miR-29a has a high affinity 
to the SARS-CoV-2  genome61 highlight that miR-29a may be an attractive therapeutic target for SARS-CoV-2 
infection. Future studies are urgently needed to evaluate whether hsa-miR-29a-3p contributes to antiviral and 
anti-inflammatory responses in the severe status of COVID-19.

In addition, our in silico analysis data showed that IL17RA as well as THBS1 was predicted to be a target of 
miR-29a-3p. Th17 cells are the T lymphocyte subsets that mainly produce the cytokine IL-17A62. IL-17 is also 
produced by other cell types such as CD8+ T cells, γδ T cells, and natural killer  cells63. Th17 cells can be divided 
into two types; host protective Th17 subset expressing IL-17 and IL-1064,65 and inflammatory Th17 cell type 
with the increased expression of IL-17, IL-22, and IFN-γ66,67. So far, it has been known that there are at least 
six IL-17 family members, IL-17A (usually called IL-17), IL-17B, IL-17C, IL-17D, IL-17E/IL-25, and IL-17F68. 
IL-17A and its receptor (IL17RA) are the best-characterized components that trigger downstream signaling 
pathways to activate pathologic inflammatory  events68,69. IL-17/IL17RA signaling triggers the production of 
CXCL1, CXCL2, CXCL5, and CXCL8/IL-8, thereby inducing the recruitment of  neutrophils62. This study repeat-
edly observed that IL17RA was consistently elevated in four different RNA-seq datasets profiling peripheral 
blood from severe COVID-19 patients, including a single-cell dataset. Emerging data suggest that the treat-
ment with monoclonal antibodies targeting IL-17/IL17R (e.g., Ixekizumab, Secukinumab, and Brodalumab) 
is effective in various immune-mediated  diseases68. It is largely unknown about the clinical significance of the 
IL17R levels to date. A recent finding by Scalia et al. showed that, in the serum of 35 Italian COVID-19 patients, 
IL-17A is higher, but the soluble IL17RA is lower in advanced severity. The increase of serum IL17RA prevents 
the interaction between IL-17 and its cell receptor, suggesting the benefit of monoclonal antibodies targeting 
the IL-17 pathway for COVID-19  treatment70. Therefore, it is warranted to accumulate more data to understand 
the clinical relevance of IL17RA in the context of severe COVID-19 treatment. In addition, a future study with 
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a large cohort analysis should clarify whether IL17RA is the molecular target of has-miR-29a-3p in the context 
of severity during COVID-19.

Our work has various limitations, including a small sample size of Korean COVID-19 patients and a lack of 
gene expression validation in a larger population due to facility and patient enrollment constraints. Nevertheless, 
the increased THBS1 and decreased has-miR-29a-3p in severely ill patients indicate that they are potentially valu-
able candidates for predicting clinical manifestations of COVID-19. Therefore, further studies in a large cohort 
are warranted to offer novel biomarkers and therapeutic options based on the THBS1, IL17RA, and miR-29a-3p 
for the treatment of severe COVID-19 patients.

Data availability
All RNA-Seq data generated in this study are available in the NCBI Gene Expression Omnibus (GEO) through 
accession numbers SRR18361588-SRR18361603 under BioProject PRJNA817356.
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