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A novel prognostic model 
for cutaneous melanoma based 
on an immune‑related gene 
signature and clinical variables
Yifan Tang 1,6, Huicong Feng 1,6, Lupeng Zhang 2, Chiwen Qu 3,4, Jinlong Li 2, Xiangyu Deng 5, 
Suye Zhong 1, Jun Yang 1, Xiyun Deng 1, Xiaomin Zeng 5*, Yiren Wang 5* & Xiaoning Peng 1,2,3*

Abundant evidence has indicated that the prognosis of cutaneous melanoma (CM) patients is highly 
complicated by the tumour immune microenvironment. We retrieved the clinical data and gene 
expression data of CM patients in The Cancer Genome Atlas (TCGA) database for modelling and 
validation analysis. Based on single‑sample gene set enrichment analysis (ssGSEA) and consensus 
clustering analysis, CM patients were classified into three immune level groups, and the differences 
in the tumour immune microenvironment and clinical characteristics were evaluated. Seven immune‑
related CM prognostic molecules, including three mRNAs (SUCO, BTN3A1 and TBC1D2), three 
lncRNAs (HLA-DQB1-AS1, C9orf139 and C22orf34) and one miRNA (hsa‑miR-17-5p), were screened 
by differential expression analysis, ceRNA network analysis, LASSO Cox regression analysis and 
univariate Cox regression analysis. Their biological functions were mainly concentrated in the 
phospholipid metabolic process, transcription regulator complex, protein serine/threonine kinase 
activity and MAPK signalling pathway. We established a novel prognostic model for CM integrating 
clinical variables and immune molecules that showed promising predictive performance demonstrated 
by receiver operating characteristic curves (AUC ≥ 0.74), providing a scientific basis for predicting the 
prognosis and improving the clinical outcomes of CM patients. 

Abbreviations
CM  Cutaneous melanoma
lncRNA  Long non-coding RNA
ceRNA  Competitive endogenous RNA
TCGA   The Cancer Genome Atlas
LASSO  Least absolute shrinkage and selection operator
ssGSEA  Single-sample gene set enrichment analysis
GO  Gene Ontology
KEGG  Kyoto Encyclopedia of Genes and Genomes
ROC  Receiver operating characteristic
AUC   Area under curve

Every year, there are more than 280,000 new patients and 60,000 deaths of cutaneous melanoma (CM) 
 worldwide1. GLOBOCAN 2020 estimates that 324,635 new CM cases and 57,043 new CM deaths occurred in 
 20202,3. Four subtypes of CM, namely superficial spreading melanoma, nodular melanomas, lentigo maligna 
melanoma and acral lentiginous melanoma, have been identified  pathologically4,5. CM is highly malignant, is 
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prone to lymph node and haematogenous metastases at the early stage of the disease, and has a poor clinical 
prognosis. The median survival time of CM patients in stage IV is only 4–9 months, and the 3-year survival rate 
of stage IV patients is less than 20%6,7. The 5-year survival rates of CM patients are 97% forstage IA, 84% for stage 
IB, 68% for stage II, 55% for stage III, and 17% for stage  IV7. The clinical diagnosis is easily affected by subjective 
factors, the histological grade cannot fully reflect the biological behaviour of CM. Increasing evidence shows that 
the prognosis of CM is related to molecular abnormalities, such as mutant P53, BRAF, KIT, NF1, RUNX3, S100, 
VEGF, LDH and MIA, which are involved in the occurrence, development, invasion and metastasis of  CM8–13. 
Therefore, it is difficult to accurately predict the prognosis of CM solely based on clinical variables.

The tumour microenvironment is composed of cancer cells, surrounding blood vessels, infiltrating immune 
cells, fibroblasts, signalling molecules and the extracellular  matrix14. The tumour microenvironment affects 
the gene expression of tumour tissue in a variety of ways, allowing tumour cells to escape immunity and then 
affecting the occurrence, development and therapeutic efficacy of the  tumour15–17. Studies have shown that 
immune system components are associated with the occurrence and development of  CM18. For example, immune 
cell infiltration is an effective prognostic factor of  CM19,20. However, new immunotherapies based on immune 
checkpoints benefit only a few melanoma  patients21. Therefore, it is necessary to screen the molecular prognostic 
indicators of the CM immune microenvironment and establish a prognostic prediction model integrating clini-
cal and immune characteristics, which will help to improve the accuracy of prognosis prediction and targeted 
therapy of CM patients.

In this study, we used the gene expression data of CM patients in TCGA (The Cancer Genome Atlas) to 
screen CM prognostic molecules using the least absolute shrinkage and selection operator (LASSO) Cox regres-
sion algorithm. A prognostic model of CM integrating with clinical variables and immune characteristics was 
established by multivariable Cox regression, providing a scientific basis for exploring the prognostic prediction 
of CM and improving the clinical treatment of CM patients.

Results
Clinical characteristics of CM patients. The flow chart of this study is shown in Fig. 1. In the training set 
of 291 CM patients, the longest survival time was 30.73 years and the median survival time was 7.75 years. The 
average age at initial pathological diagnosis of CM was 57.33 ± 16.35 (years). There were 275 white CM patients 
(97.17%), 261 primary neoplasm cases (89.68%), 269 patients with CM without systemic treatment (92.44%), 
139 CM patients with local lymph node infiltration (48.26%) and 105 patients (39.77%) with tumours at stage 
III. The clinical information is shown in Table 1.

Grouping of CM patients based on the immune level. The single-sample gene set enrichment analy-
sis (ssGSEA) score calculated by the analysis of 29 immune-related gene sets of each CM patient in the training 
set was obtained to quantify the activity or enrichment levels of immune cells, functions, or pathways (Table S1). 
We consensually clustered 291 CM patients in the training set into three immune level groups, and defined these 
groups as: Immunity-H (n = 98), Immunity-M (n = 82) and Immunity-L (n = 111) (Fig. 2A,B; Table 1). We found 
that the ESTIMATE score, immune score, stromal score and tumour purity were significantly different among 
the three groups (p < 0.05). The ESTIMATE score, immune score and stromal score of the Immunity-H group 
were the highest, and the tumour purity was the lowest; the Immune-L group had the lowest ESTIMATE score, 
immune score and stromal score, and the highest tumour purity (Fig. 2C–F).

The analysis of the relative proportion of immune cells showed that the infiltration levels of 13 kinds of 
immune cells had significant differences among the three immune groups (p < 0.05). Among them,  CD8+ T 
cells,  CD4+ memory activated T cells, follicular helper T cells, regulatory T cells (Tregs), gamma delta T cells, 
resting NK cells, monocytes, M1 macrophages and resting dendritic cells were more abundantly infiltrated in 
the Immunity-H group (Fig. 2G,H).

We then examined the HLA gene expression levels and found that the expression of the HLA gene family had 
significant differences among the three immune groups (p < 0.05). Most HLA genes had the highest expression 
levels in the Immunity-H group and the lowest expression levels in the Immunity-L group (Fig. 2I).

The comparison of clinical variables among the three immune groups showed that there were differences in 
pathologic-T stage, prior systemic therapy and tumour location among the three groups (p < 0.05) (Table 1). The 
numbers of CM patients with pathologic-T (T3 + T4) stage in the Immunity-H group, Immunity-M group, and 
Immunity-L group were 37 (48.05%), 43 (59.73%), and 68 (76.40%), respectively, suggesting that the range or 
degree of tumour involvement in the Immunity-L group was the highest. The number of CM patients with prior 
systemic therapy was the lowest in the Immunity-H group (3/291 = 3.06%) and the highest in the Immunity-L 
group (15/291 = 13.51%). The numbers of patients with distant metastasis in the Immunity-H group, Immunity-
M group, and Immunity-L group were 6 (6.19%), 10 (12.20%), and 30 (27.52%), respectively; the numbers of 
patients with tumour lymph node infiltration in the three groups were 69 (71.13%), 34 (41.46%) and 36 (33.03%).

The median survival times of CM patients in the Immunity-H group, Immunity-M group, and Immunity-L 
group were 12.35, 7.41, and 5.32 years, respectively. There were differences in overall survival (OS) among the 
three immune groups (HR = 0.739, 95% CI: 0.607–0.901). The patients in the Immunity-H group had the best 
prognosis, while those in the Immunity-L group had the worst prognosis (Fig. 2J).

Immune molecules related to CM prognosis. The Kruskal‒Wallis test was applied to analyse the gene 
expression levels of the three immune groups in the training set. The numbers of differentially expressed mRNAs, 
lncRNAs and miRNAs were 6,807, 1,828, and 255, respectively (p < 0.05) (Table S2). Based on these differentially 
expressed RNAs, we obtained 245 miRNA‒lncRNA pairs, 198 miRNA‒mRNA pairs and 224 lncRNA‒mRNA 
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pairs. Then, we used the obtained RNA pairs to construct a ceRNA network composed of 72 mRNAs, 43 lncR-
NAs and 7 miRNAs (including 75 miRNA‒mRNA pairs and 89 miRNA‒lncRNA pairs) (Fig. 3A).

LASSO Cox regression was applied to screen CM prognostic RNAs from the RNAs in the ceRNA network, and 
eight RNAs were identified. The eight RNAs included four mRNAs (SUCO, ANKRD33B, BTN3A1 and TBC1D2), 
three lncRNAs (HLA-DQB1-AS1, C9orf139 and C22orf34) and one miRNA (hsa-miR-17-5p) (Table 2; Fig. 3B,C). 
The results of the univariate Cox regression for the eight RNAs showed that except for ANKRD33B (p = 0.595), 
the other seven RNAs were associated with the overall survival of CM patients (p < 0.05). These seven RNA 
molecules are immune molecules connected with the prognosis of CM patients. Among the seven statistically 
significant RNAs, the higher the expression levels of hsa-miR-17-5p and TBC1D2 were, the greater the risk of 
death of CM patients (HR > 1, p < 0.05); the higher the expression levels of HLA-DQB1-AS1, C9orf139, C22orf34, 
SUCO and BTN3A1 were, the lower the risk of death of CM patients (HR < 1, p < 0.05; Table 2). TBC1D2, BTN3A1 
and SUCO are the target genes of hsa-miR-17-5p (Fig. 3A).

The results of GO analysis of mRNAs related to the ceRNA network showed that these mRNAs were sig-
nificantly enriched in biological processes related to phospholipid metabolism, positive regulation of leukocyte 
adhesion and protein autophosphorylation, cellular components related to the translation regulatory complex, 
RNA polymerase II transcription regulatory complex and Golgi subunit, and the molecular functions related to 
protein serine/threonine kinase, ubiquitin like protein binding and MAP kinase activity (p ≤ 0.05; Fig. 3D). The 

Figure 1.  Brief flow chart of this study.
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Table 1.  Clinical characteristics and univariate Cox regression of overall survival and immune level grouping 
results of CM patients in the training set. HR hazard ratio, 95% CI 95% confidence interval, SD standard 
deviation. a Dummy variable. b Includes satellite and in-transit metastasis. c The 5 CM patients were randomly 
assigned to I (n = 3) or II (n = 2).

Clinical variables Training set (n = 291)

Univariate Cox regression Immune level groups

p-valueHR (95% CI) p-value Immunity-H (n = 98) Immunity-M (n = 82) Immunity-L (n = 111)

Age at initial diagnosis (years, 
mean ± SD) 57.33 ± 16.35 1.025 (1.014–1.036)  < 0.001 56.67 ± 16.08 58.62 ± 15.12 56.96 ± 17.51 0.696

Gender (n, %) 0.868 (0.610–1.236) 0.432 0.070

Male 181 (62.20) 53 (53.06) 54 (65.85) 75 (67.57)

Female 110 (37.80) 46 (46.94) 28 (34.15) 36 (32.43)

Race (n, %)c 1.331 (0.714–2.481) 0.369 0.960

White 275 (97.17) 93 (96.88) 77 (97.47) 104 (97.20)

Asian 7 (2.48) 2 (2.08) 2 (2.53) 3 (2.80)

Black or African American 1 (0.35) 1 (1.04) 0 (0.00) 0 (0.00)

Not reported 8

Pathologic-M 1.604 (0.745–3.456) 0.227 0.115

M0 253 (92.67) 89 (96.74) 70 (88.61) 94 (93.07)

M1 20 (7.33) 3 (3.26) 9 (11.39) 7 (6.93)

Not reported 19

Pathologic-N 1.293 (1.099–1.522) 0.002 0.260

N0 148 (56.92) 49 (55.68) 42 (56.00) 57 (58.76)

N1 45 (17.32) 11 (12.50) 14 (18.67) 20 (20.62)

N2 27 (10.38) 10 (11.36) 10 (13.33) 7 (7.22)

N3 40 (15.38) 18 (20.45) 9 (12.00) 13 (13.40)

NX 17

Not reported 14

Pathologic-T 1.455 (1.223–1.732)  < 0.001 0.001

T0 14 (5.88) 8 (10.39) 3 (4.17) 3 (3.37)

T1 29 (12.18) 17 (22.08) 8 (11.11) 4 (4.49)

T2 47 (19.75) 15 (19.48) 18 (25.00) 14 (15.73)

T3 55 (23.11) 17 (22.08) 13 (18.06) 25 (28.09)

T4 93 (39.08) 20 (25.97) 30 (41.67) 43 (48.31)

Tis 6

TX 27

Not reported 20

Primary neoplasm (n, %) 0.740 (0.375–1.460) 0.385 0.134

Yes 261 (89.69) 83 (84.69) 76 (92.68) 102 (91.89)

No 30 (10.31) 15 (15.31) 6 (7.32) 9 (8.11)

Previous systemic treatment 1.073 (0.627–1.837) 0.797 0.010

Yes 22 (7.56) 3 (3.06) 4 (4.88) 15 (13.51)

No 269 (92.44) 95 (96.94) 78 (95.12) 96 (86.49)

Primary radiotherapy 1.271 (0.403–4.003) 0.682 0.353

Yes 8 (3.15) 1 (1.25) 2 (2.70) 5 (5.00)

No 246 (96.85) 79 (98.75) 72 (97.30) 95 (95.00)

Not reported 37

Tumor locationa 0.916 (0.803–1.044) 0.189  < 0.001

Distant metastasis 46 (15.97) 6 (6.19) 10 (12.20) 30 (27.52)

Primary tumor 59 (20.49) 12 (12.37) 20 (24.39) 27 (24.77)

Regional cutaneous or subcutaneous 
 tissueb 44 (15.28) 10 (10.31) 18 (21.95) 16 (14.68)

Regional lymph node 139 (48.26) 69 (71.13) 34 (41.46) 36 (33.03)

Not reported 3

Tumor stage (n, %) 1.344 (1.109–1.630) 0.003 0.499

0 6 (2.27) 2 (2.33) 0 (0.00) 4 (3.96)

I 49 + 3 (19.70) 25 (29.07) 16 (20.78) 11 (10.89)

II 81 + 2 (31.44) 18 (20.93) 24 (31.17) 41 (40.59)

III 105 (39.77) 38 (44.19) 29 (37.66) 38 (37.62)

IV 18 (6.82) 3 (3.49) 8 (10.39) 7 (6.93)

I/II 5c

Not reported 27
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results of KEGG pathway enrichment analysis indicated that the CM prognostic molecules were significantly 
enriched in the MAPK signalling pathway (p ≤ 0.05; Fig. 3E).

CM prognostic model combining clinical variables and immune molecules. The results of uni-
variate Cox regression showed that the clinical variables correlated with the prognosis of CM (p < 0.05) were age 
at initial diagnosis, pathologic-N stage, pathologic-T stage, and tumour stage (Table 1). The four clinical vari-
ables with statistical significance (p < 0.05) in univariate Cox regression and the seven RNA molecules related to 
the OS of the CM patients screened in this study were used as covariates for multivariate Cox regression analysis 
to fit the integrated prognostic model of clinical variable/immune molecules (mRNA/miRNA/lncRNA). The 
results showed that hsa-miR-17-5p, C22orf34 and TBC1D2 were independent prognostic factors of CM (Fig. 4A).

The predictive performance of the integrated clinical variables and immune molecules model was evalu-
ated in the training set, the testing set and the entire set of data. The training set patients were stratified into 
a high-risk group and a low-risk group according to a cut-off value (median risk score) of 0.972. As depicted 
in the Kaplan–Meier survival curve, patients with higher risk scores had worse clinical outcomes (shorter OS 
time) than those with lower risk scores (HR = 4.029, p < 0.05). The ROC curves of the training set (AUC ≥ 0.78) 
demonstrated that the prognostic model had a promising ability to predict the prognostic risk of CM patients 
(Fig. 4B,C). This prognostic predictive accuracy of the integrated prognostic model was confirmed in the testing 
set (AUC ≥ 0.74; Fig. 4D,E) and the entire set (AUC ≥ 0.78; Fig. 4F,G).

Discussion
Melanoma with a large amount of immune cell infiltration is considered to be one of the most immunogenic 
tumours because of its high mutation load. Based on the clinical information of CM patients and the genome 
expression data of mRNAs, miRNAs and lncRNAs as a whole, we analysed the immune cell infiltration pattern 
of CM and identified seven immune-related CM prognostic RNA molecules, including three mRNAs, three 
lncRNAs and one miRNA, as well as four clinical variables related to CM prognosis. Based on these seven 
immune molecules and four clinical variables, an integrated prognostic model of clinical variables and mRNAs/
miRNAs/lncRNAs was established. The AUC values of this prognostic model at 1-, 3-, 5- and 10 years were ≥ 0.74, 
revealing that the integrated prognostic model exhibited a promising predictive ability for the prognosis of CM 
patients (Fig. 5).

In this study, we screened three immune-related CM prognostic mRNAs: SUCO, BTN3A1 and TBC1D2. The 
hazard ratios (HRs) of SUCO and BTN3A1 were < 1, indicating that their increased expression led to a reduced 
risk of death in CM patients and that they are tumour suppressor genes in CM. TBC1D2 was also an independent 
prognostic factor of CM, and CM patients with elevated expression levels of TBC1D2 had an increased risk of 
death (HR > 1). Thus, TBC1D2 acts as an oncogene in CM. SUCO is overexpressed in hepatocellular carcinoma 
(HCC) tissues, andhigh SUCO expression is significantly correlated with a low overall survival rate in HCC 
patients. SUCO may be a potential diagnostic biomarker in patients with liver cancer, promoting the occurrence 
and development of liver cancer as a tumour  promoter22. The relationship between SUCO and CM has not been 
reported. The results of this study illustrate that SUCO may be a tumour suppressor gene in CM, suggesting that 
SUCO plays different roles in the occurrence and development of different tumours. BTN3A1 belongs to the 
BTN3A family, which is part of a type I transmembrane protein of the immunoglobulin (Ig) superfamily. The 
expression levels of BTN3A family members are different among various tumours, which has a crucial impact 
on tumour  prognosis23. In patients with melanoma, the expression of BTN3A is increased in pDC cells and γδ T 
cells; dysfunctional BTN3A leads to defective interaction between pDC and γδ T cells, affecting clinical  results24. 
TBC1D2 is a GTPase activating protein of Rab7, and TBC1D2 contributes to the survival and proliferation of 
nasopharyngeal carcinoma cells and the metastasis of lung cancer  cells25,26. The relationship between TBC1D2 
and melanoma has not been reported.

The three immune-related lncRNAs associated with CM prognosis were HLA-DQB1-AS1, C9orf139 and 
C22orf34, and the results suggested that they play the roles of tumour suppressor genes and prognostic protec-
tive factors (HR < 1). C22orf34 is an independent prognostic factor of CM. HLA-DQB1-AS1 is considered to be 
a protective factor related to the prognosis of  melanoma27, which is consistent with our findings. The lncRNA 
C9orf139 is highly expressed in pancreatic cancer and can be used as a potential diagnostic and prognostic marker 
for pancreatic cancer. It promotes the growth of pancreatic cancer cells mediated by the miR-663a/Sox12  axis28, 
playing a role as a tumour driver. The relationship between C9orf139 and melanoma has not been reported. 
Whole genome sequencing revealed that C22orf34 is a risk predictor of drug-induced interstitial lung  disease29, 
and the relationship between C22orf34 and melanoma has not been reported. The results of this study show that 
C9orf139 and C22orf34 may be tumour suppressor genes of CM, suggesting that C9orf139 and C22orf34 play 
different roles in different tumours.

One immune-related miRNA associated with CM prognosis was hsa-miR-17-5p, which was an independ-
ent prognostic factor of CM. Highly expressed hsa-miR-17-5p in CM plays the role of a tumour suppressor and 
prognostic risk factor (HR > 1). Hsa-miR-17-5p is a core member of the miR-17–92 family and is considered 
to be an oncogene. It promotes the malignant phenotype of breast cancer, prostate cancer and digestive system 
 tumours30–32. Hsa-miR-17-5p enhances melanoma cell proliferation by targeting the ADAR1  protein33. This is 
consistent with our findings.
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Conclusion
This study found seven immune-related RNAs associated with the prognosis of CM patients, and established a 
clinical variable/immune molecule integrated prognostic model of CM with good predictive power. The novel 
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Figure 2.  Three immune level groups were determined by ssGSEA and consensus clustering analysis. Cluster 
process diagram of consensus clustering analysis (A). Heatmap of the ssGSEA score for all CM patients in 
the training set (B). ESTIMATE score (C), immune score (D), stromal score (E), and tumor purity (F) of 
the different immune groups. The bar graph shows the proportion of 22 kinds of immune cells in CM tumor 
samples in the training set. Each column indicates one sample (G). The box plot shows the differentiation of 
13 kinds of immune cell fraction within the different immune groups (H). The box plot displays the difference 
in HLA gene expression within the different immune groups (I). Kaplan–Meier curves of the three different 
immune groups and the result of univariate Cox analysis. HR, hazard ratio. 95% CI, 95% confidence interval (J). 
*p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 3.  The immune molecules related to the prognosis of CM were screened. A ceRNA network of the 
differentially expressed lncRNAs, miRNAs and mRNAs in different immune groups (A). LASSO coefficient 
profiles of the genes in the ceRNA network (B). A coefficient profile plot was generated against the log (λ) 
sequence. Selection of the optimal parameter (λ) in the LASSO Cox regression analysis (C). Enrichment of top 
10 GO terms (p ≤ 0.05) (D) and KEGG pathways (E) of the mRNAs associated with the seven selected immune 
molecules related to the prognosis of CM patients.
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model provides a scientific basis for discovering new prognostic markers of CM, clarifying the molecular mecha-
nism of CM prognosis, and improving the prognosis and clinical management of CM patients.

Materials and methods
Data acquisition. The CM cohort data downloaded from the TCGA data portal included clinical, RNA-
seq and miRNA-seq data (https:// portal. gdc. cancer. gov/). The downloaded clinical dataset contains the clinical 
information of 470 CM patients, including age at initial pathologic diagnosis, gender, race, pathological clas-
sification, primary neoplasm, previous systemic therapy, primary radiotherapy, tumour location, tumour stage, 
survival status and survival time of CM patients. We omitted 10 of the 470 CM patients due to missing survival 
time information. The expression data (count) of RNA molecules were normalized and transformed to  log2 
(counts per million) with the “limma” R  package34. Of the 460 CM patients, 437 patients had lncRNA, mRNA 
and miRNA expression data and survival data. The data of these 437 CM patients were included in this study 
for analysis. The 437 CM patients were randomly divided into a training set (n = 291) and a testing set (n = 146). 
The immune-related prognostic molecules of CM were screened in the training set, and the CM prognostic 
model was constructed. The testing set and entire dataset (n = 437) were used to verify the predictive ability of 
the model.

Immune level grouping. Using the “limma”, “GSEABase” and “GSVA” R packages, we quantified the enrich-
ment levels of the 29 immune-related gene sets in each CM patient (n = 291) of the training set by  ssGSEA35,36. 
Based on the enrichment levels (ssGSEA scores) of the 29 immune signatures, we performed consensus cluster-
ing of the training set. There were 291 CM patients in the training set, which were divided into three groups 
with different immune levels, namely Immunity High (Immunity-H), Immunity Medium (Immunity-M) and 
Immunity Low (Immunity-L)37. The tumour microenvironment (TME) score of each patient was obtained with 
the “estimate” R  package38. The differences in TME scores among the three immune groups were compared with 
the “ggpubr” R package. The CIBERSORT algorithm was used to explore the infiltration levels of 22 kinds of 
immune cells in melanoma tissue  samples39, and the Kruskal‒Wallis test was used to compare the content of 
various types of immune cells among the three immune groups. The differences in HLA gene expression levels 
among the three immune groups were compared by one-way ANOVA. One-way ANOVA, the Kruskal‒Wallis 
test, the chi-square test and Fisher’s exact test were used to compare the differences in clinical parameters among 
the three immune groups. Univariate Cox regression was used to evaluate the effect of the immune level on the 
overall survival of CM patients.

Screening of immune‑related prognostic molecules of CM. The Kruskal‒Wallis test with p values 
adjusted by Benjamini & Hochberg (BH) correction was used to compare the gene expression levels among the 
three immune groups, and the differentially expressed mRNAs, lncRNAs and miRNAs were screened in the 
training set. For these differentially expressed RNAs (p < 0.05), the miRcode database was used to obtain the 
relationship between miRNAs and lncRNAs; the target genes (mRNAs) of miRNAs were obtained through the 
miRDB, miRTarBase and TargetScan databases. These target genes (mRNAs) of miRNAs were intersected with 
differentially expressed mRNAs to obtain miRNA‒mRNA pairs; the lncRNA‒mRNA pairs were obtained by 
co-expression analysis of lncRNAs and RNAs (Pearson correlation coefficient > 0.4 and p < 0.001)40. The inter-
section of RNAs in miRNA‒lncRNA, miRNA‒mRNA and lncRNA‒mRNA pairs was used to construct the 
ceRNA network and to plot the ceRNA network diagram of lncRNA‒miRNA‒mRNA by  Cytoscape41.

The LASSO Cox regression model of RNAs in the ceRNA network was constructed by the “glmnet” R 
 package42. For each RNA molecule in the LASSO Cox regression model, the “survival” R package was used for 
univariate Cox regression analysis. RNA molecules with p ≤ 0.05 were identified as immune-related prognostic 
molecules of CM. The selected mRNAs associated with CM prognosis, the mRNAs appearing in the ceRNA 
network and the target mRNAs of the screened miRNAs and lncRNAs related to CM prognosis were analysed 
by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses using the “cluster-
Profiler” R  package43–45. GO analysis mainly annotates and classifies genes through the biological process (BP), 
molecular function (MF), and cellular component (CC) categories to determine the shared functions of mRNAs 

Table 2.  CM prognosis-related immune molecules screened by LASSO Cox regression and univariate Cox 
regression. HR hazard ratio, 95% CI 95% confidence interval.

Gene symbol Biotype LASSO Cox regression coefficient

Univariate Cox regression

HR (95% CI) p-value

hsa-miR-17-5p MiRNA 0.156 1.154 (1.019–1.307) 0.024

HLA-DQB1-AS1 LncRNA −0.120 0.864 (0.803–0.930)  < 0.001

C9orf139 lncRNA −0.176 0.800 (0.719–0.891)  < 0.001

C22orf34 lncRNA −0.103 0.885 (0.810–0.968) 0.007

SUCO mRNA −0.185 0.737 (0.601–0.903) 0.003

ANKRD33B mRNA 0.187 1.024 (0.937–1.120) 0.595

BTN3A1 mRNA −0.172 0.708 (0.602–0.834)  < 0.001

TBC1D2 mRNA 0.201 1.173 (1.002–1.372) 0.047

https://portal.gdc.cancer.gov/
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(the enrichment threshold was p ≤ 0.05). KEGG analysis was performed to identify the signalling pathway in the 
enriched mRNAs (the threshold of enrichment was p ≤ 0.05).

CM prognostic model integrating clinical variables and immune‑related molecules. Univariate 
Cox regression analysis for clinical factors in the training set was implemented to identify the predictors of CM 
prognosis (p ≤ 0.05). Taking the screened prognostic RNA molecules of CM and the clinical variables affecting 
the prognosis of CM as covariates, the multivariate Cox regression model of CM was fitted to obtain the inte-
grated prognostic model of clinical variables of CM and immune-related mRNAs, miRNAs and lncRNAs. Then, 
the prognostic value of the integrated model of clinical variables and mRNA/miRNA/lncRNA molecules was 
evaluated in the training set, the testing set, and the entire set. The risk score of CM patients was calculated as 
follows: riskscore =

∑
coef

i
× Xi , where Xi is the value of the variable in the integrated model and coef i is the 

Variable
Age at initial pathologic diagnosis
Pathologic N
Pathologic T
Tumor stage
hsa−miR−17−5p
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C9orf139
C22orf34
SUCO
BTN3A1
TBC1D2

Coefficient*
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Figure 4.  A CM prognosis model integrating CM prognosis related immune molecules and clinical variables. 
Forest plot of multivariate Cox regression for the integrated prognosis model (A). Kaplan–Meier survival 
analyses for the integrated prognosis model based on the overall survival of the training set (B), the testing set 
(D), and the entire set (F), respectively. ROC analyses for the integrated prognosis model based on the overall 
survival of the training set (C), the testing set (E), and the entire set (G), respectively. Asterisk: multivariate Cox 
regression coefficient. HR hazard ratio, 95% CI 95% confidence interval.
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regression coefficient of the variable. The greater the risk score is, the worse the prognosis. Taking the median 
risk score of the training set as the cut-off value, the CM patients were divided into a high-risk group and a low-
risk group, and the survival curves of the high-risk group and the low-risk group were  drawn46. Univariate Cox 
regression and Kaplan‒Meier analysis with the log-rank test were used to compare the difference in the overall 
survival probability between the high-risk group and the low-risk group. The time-dependent receiver operating 
characteristic (ROC) curve was plotted using the “pROC” R package, and the time-dependent ROC curve and 
the area under the curve were obtained to evaluate the predictive performance of the prognostic model for CM 
patients. When the AUC reached 0.7, the prediction value was better.

Melanoma
Immune microenvironment

High Medium Low

score

Differential expressed mRNAs, 
lncRNAs and miRNAs

Influencing

Clinical 
information

Collecting

Record 

Constructing
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Low risk
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Figure 5.  Graphical abstract. Tang et al. develop an immune-related method to predict the survival status 
of cutaneous melanoma patients. Comprehensive analysis of the nucleic acid and clinical information of the 
patients can obtain different prognostic groups. These factors may be the key to the treatment of cutaneous 
melanoma.
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Statistics. All statistical calculations in this study were performed using R (version 4.0.5)  software47. The 
significance level was α = 0.05 for univariate Cox regression analysis, multivariate Cox regression analysis, the 
log-rank test, one-way ANOVA, the Kruskal‒Wallis test, the chi-square test and Fisher’s exact test.

Ethics approval and consent to participate. Not applicable. This study only conducts data mining 
on public databases and does not involve any animal and clinical experiments. All methods were performed in 
accordance with the relevant guidelines and regulations.

Data availability
The datasets generated and/or analyzed during the current study are available in the public open platform, includ-
ing TCGA (https:// portal. gdc. cancer. gov/), miRcode (http:// www. mirco de. org/), miRTarBase (http:// mirta rbase. 
mbc. nctu. edu. tw/), miRDB (http:// www. mirdb. org/) and TargetScan (http:// www. targe tscan. org/). The CM clini-
cal data set: “Project”-“TCGA-SKCM”, “Data Category”-“clinical”; the CM RNA-seq: “Project”-“TCGA-SKCM”, 
“Data Category”-“transcriptome profiling”, “Data Type”-“Gene Expression Quantification”; the CM miRNA-seq: 
“Project”-“TCGA-SKCM”, “Data Category”-“transcriptome profiling”, “Data Type”-“Isoform Expression Quan-
tification”. The miRcode database was used to obtain the relationship between differentially expressed miRNAs 
and lncRNAs. The target genes (mRNAs) of hsa-miR-126-3p, hsa-miR-142-3p, hsa-miR-146b-5p, hsa-miR-17-5p, 
hsa-miR-22-3p, hsa-miR-23b-3p and hsa-miR-876-3p were collected from the miRTarBase database, miRDB 
database and TargetScan database. The graph abstract of this study is shown in Fig. 5.
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