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The g3mclass is a practical software 
for multiclass classification 
on biomarkers
Marina A. Guvakova 1* & Serguei Sokol2

The analytes qualified as biomarkers are potent tools to diagnose various diseases, monitor therapy 
responses, and design therapeutic interventions. The early assessment of the diverseness of human 
disease is essential for the speedy and cost-efficient implementation of personalized medicine. We 
developed g3mclass, the Gaussian mixture modeling software for molecular assay data classification. 
This software automates the validated multiclass classifier applicable to single analyte tests 
and multiplexing assays. The g3mclass achieves automation using the original semi-constrained 
expectation–maximization (EM) algorithm that allows inference from the test, control, and query 
data that human experts cannot interpret. In this study, we used real-world clinical data and gene 
expression datasets (ERBB2, ESR1, PGR) to provide examples of how g3mclass may help overcome 
the problems of over-/underdiagnosis and equivocal results in diagnostic tests for breast cancer. We 
showed the g3mclass output’s accuracy, robustness, scalability, and interpretability. The user-friendly 
interface and free dissemination of this multi-platform software aim to ease its use by research 
laboratories, biomedical pharma, companion diagnostic developers, and healthcare regulators. 
Furthermore, the g3mclass automatic extracting information through probabilistic modeling is 
adaptable for blending with machine learning and artificial intelligence.

Targeted therapy is a crucial focus of drug development and a cornerstone of precision  medicine1. However, 
molecularly targeted therapies and immunotherapies are expected to benefit only a subset of treated patients. 
Identifying individuals likely to benefit from the targeted treatments and monitoring resistance to new cancer 
therapies depends heavily on biomarkers. This broad category of analytes, including biochemical, genomic, 
and proteomic measurements, may indicate an underlying disease mechanism or predict a response to a  drug2.

With the rapid adoption of high-throughput assay technologies, discovering “promising/potential/candidate” 
biomarkers and therapeutic targets has exploded, producing an enormous volume of raw data needing human 
and robotic intelligence  assessment3,4. To discover biomarkers, researchers often start by comparing references 
(a healthy population) and tests (a sick population), assuming the normal distribution of measurements in 
each group. However, this assumption is frequently not tenable as the real-world readouts of laboratory tests 
rarely fit into one normal (Gaussian)  distribution5,6. The best-known example of such biomarker in oncology 
is a human epidermal growth factor receptor 2 (HER2) overexpressed in a fraction of breast (15–30%), gastric 
and gastroesophageal (10–30%), ovarian (20–25%), endometrial (14–80%), bladder (23–80%), and lung (up 
to 20%)  cancers7,8. Furthermore, two distributions of continuous values from test and reference are rarely fully 
 separated9. The overlapping distributions create a methodological dilemma for choosing a diagnostic cutoff 
value that impacts the diagnostic accuracy and clinical  decisions10. Although an arbitrary cutoff between the 
positive and negative results remains a routine clinical practice, there is uncertainty (and hence concern) that 
dichotomization on biomarkers reflects the continuous clinical risk from a measured test  value11. Overdiagnosis 
may cause unnecessary morbidity and cost, whereas underdiagnosis may increase the risk of disease progression. 
Innovative statistical approaches that can address these deficiencies are needed.

The probability approach is a statistical concept that measures the likelihood of something happening. It has 
been exploited successfully to analyze the underlying complex structure of text documents, image objects, and 
voice signals in many subject areas, including biology and  medicine12,13. Gaussian Mixture Model (GMM) is 
the flexible probabilistic approach that can characterize multimodally distributed continuous  variables14. Each 
class is modeled according to a different Gaussian distribution. In addition, Bayesian classifiers can be used to 
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predict class membership probabilities, such as the probability that a given value belongs to a particular class. 
The diagnostic applications of Bayesian analysis in medicine have been evolving over the past few  decades15–17. 
We recently introduced the method for multiclass cancer classification on biomarkers by applying a Bayesian 
 approach18,19. The proposed method allows the discovery of previously unknown groups with different levels of 
biomarkers by extracting information from molecular assay data using probabilistic modeling. The performance 
of this method has been validated over datasets of more than 300 clinical samples. In addition, it has been shown 
to improve the binary classification of clinical markers (HER2 and steroid hormone receptors).

Given these successes and the need to improve disease diagnosis and personalized treatment options, we 
developed g3mclass, a practical Gaussian mixture modeling software for molecular assay data classification. It is 
intended for tests where the random variation of the parameter-of-interest is an essential component of the mod-
eled situation. In this article, we introduce and employ g3mclass using a real-world example of human breast tis-
sues. Samples were classified on clinical markers to help distinguish patients most likely to benefit from the Food 
and Drug Administration (FDA)-approved targeted therapies while sparing others that need different treatment.

Results
Overview of the g3mclass’s functionality: or how it works. The g3mclass is a probabilistic modeling-
based classification and visualization software purpose-built for analyzing laboratory assay data. Our develop-
ment of g3mclass was motivated by the outstanding problem of classifying test results in the research laborato-
ries and clinical settings, considering the prior knowledge of the reference. In this regard, Bayesian statistical 
methods to update pre-existing information about the likelihood of the change provided a robust system for our 
development of the g3mclass. The g3mclass core function requires two kinds of data entries for each analyte: test 
(e.g., disease, treated) and reference (e.g., healthy control, nontreated). Additionally, we built a complementary 
capability in this software to classify new data (e.g., suspected disease) obtained by the same assay but from an 
independent source. These incoming unknown data are queries. Thus, the g3mclass workflow includes data 
preparation and input, probabilistic modeling, automated classification of the test, reference, and optional que-
ries, followed by the analysis and archiving of the results (Fig. 1).

The g3mclass learns the total test GMM and separates modes composing the mixture upon data input. The 
GMM learning is based on our semi-constrained algorithm, a modification of the original expectation–maximi-
zation (EM)  algorithm20. To detect test classes distinct from the reference, we constrained the position (i.e., the 
mean value), spread (i.e., the standard deviation value), but not the weight of the test class 0 to be equal to the 
corresponding reference values. All other test classes have all parameters adjustable. While our semi-constrained 
approach preserves parameters of the reference class, it does not affect the convergence and high speed of the 

Figure 1.  Graphical abstract of the g3mclass workflow.
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analysis regardless of the overlap between the reference and the test values. For example, using a laptop com-
puter, the g3mclass runtime for classifying ten analytes with thousands of measurements takes less than 20 s. In 
the test classes labeled with negative (e.g., − 1, − 2, etc.) and positive (e.g., 1, 2, etc.) integers, the mean values are 
lower and higher than class 0. The greater the absolute integer value, the further the class is positioned relative 
to class 0, as illustrated in a plot created by the g3mclass software (Fig. 2A). To learn the test model, the software 
initializes the semi-constrained EM algorithm with classes corresponding to peaks in the histogram calculated 
on the test sample. The software depicts the model as a probability density function (PDF) overlaid on a test 
histogram. Because information about the number of bins and their boundaries is not inherent to the data but 
will influence a GMM, g3mclass can vary binning parameters to initialize the EM algorithm. The model learning 
controls include the settings of the fixed number and the varying number of bins, as well as a threshold for fus-
ing too close Gaussians, and a threshold for vanishing Gaussians with a too low number of values, as described 
in detail in the g3mclass user’s manual on https:// g3mcl ass. readt hedocs. org site. Suppose several histograms 
are used for the semi-constrained EM algorithm initialization. In that case, g3mclass automatically selects the 
mathematically preferred model with the lowest Bayesian information criterion (BIC) that measures the model’s 
fit to the test data and outputs the test model parameters. The classification of references and queries relies on 
the selected GMM for the test. Individual models could be optimized for each analyte across the different study 
populations. The g3mclass additional functionalities include the output of spreadsheets with summary statistics 
(the mean, median, and standard deviation values for each class) and classification heatmaps.

The g3mclass performs consecutively three classification types—proba, cutoff, and stringent cutoff (a.k.a. 
s.cutoff) for a given test model to maximize the automated classification accuracy. The g3mclass proba utilizes the 
Bayesian approach to classify data. It classifies each value based on a maximum a-posteriori probability estimate 
of class membership. There is no a priori assumption about the number of classes. However, during this initial 
step, some analyte values in the test may be incorrectly assigned by the proba classification. This situation may 
occur when a component of GMM has a wide dispersion with its tails picking up values that otherwise belong 
to a different class (Fig. 2B). To directly address the separation of the GMM modes, g3mclass computes a set of 
cutoffs and autocorrects the potential proba misclassification. At cutoff classification step, data parsing is per-
formed based on a minimal misclassification value with equal weights relative to adjacent classes. The consecutive 
s.cutoff classification relies on either the left or right interval values computed for a minimal misclassification 
cutoff that can be interpreted as tolerable intervals of the misclassification error rate (a tradeoff between mis-
classification of one type for misclassification of the other kind). During s.cutoff classification, more values are 
assigned to class 0 by the expansion of cutoff intervals. If the weight of class 0 in the test GMM is close to null, 
the proba classification of reference is invalid (Fig. 2C). However, cutoff and s.cutoff classification results may be 
valid for test and reference, depending on the degree of overlap for those samples. The lower overlap, the higher 
the accuracy of the g3mclass classification.

The g3mclass has a feature that allows users to evaluate parameter stability. The user can subsample the 
selected fraction from the original sample (reference, test, or both) up to 100 times. Resampling is done randomly 
without replacement to limit the risk of creating false classes based on repeated events from far-tailed distribu-
tions. The independent GMM is learned for each resample, and parameter estimates are provided. If, for example, 
a user selects the option of variable bin number, the software will apply it to each resample. The optimal number 
of classes for each resample will be based on BIC and may or may not differ from sample to sample. The user 
may compare the variability of the estimates of the biomarker classifier parameters: the number of classes, the 
mean values, and the diagnostic cutoffs separating the reference-like values from the disease-related test values 
(e.g., cutoffs between class 0 and class − 1; class 0 and class 1). Hence the user may base the judgment not only 
on the original model but also on the potential outcomes resulting from resampling. One way to conceptualize 
the utility of g3mclass in the field of biomarkers is to consider its value in updating the existing knowledge about 
biomarkers in reference samples (e.g., before disease or before treatment) and assessing the biomarker change 
in the test (e.g., in disease or post-treatment).

Multiclass classification on a single analyte: biomarker or therapeutic target. First, we demon-
strated the capabilities of g3mclass to automatically classify samples on the gene expression data for the estab-
lished diagnostic/drug-response biomarker, the ERBB2 encoding HER2. The mRNA levels were measured by a 
QuantiGene Plex 2.0 (QG2) assay in the intended-use population (as described in “Materials and methods”), 
where there is a regular need to differentiate among the patients with breast cancer. For the test and reference 
input, we used mRNA measurements from invasive breast carcinoma (IBC) and mammoplasties (noncancer), 
respectively. Additionally, we queried this gene expression data from the independent cohort of patients diag-
nosed with ductal carcinomas in situ (DCIS) on the pre-operative biopsy. To estimate the number and character-

Figure 2.  Examples of types of the g3mclass created model plots.

https://g3mclass.readthedocs.org
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istics of cancer classes on ERBB2 mRNA data, we used the g3mclass default parameters with varying bins (vector 
of k: 10, 15, 20, 25, 30, 35, 40). Among the models learned by g3mclass on varying histograms, the software 
picked GMM with the lowest BIC value = 1650.6 and the bin number k = 10, as illustrated in Fig. 3A. Based on 
the g3mclass-selected model, the ERBB2 mRNA test values fit into the 4-class GMM. Class 0 is like a reference 
(in terms of the mean value and standard deviation); classes 1, 2, and 3 have increased mean values of ERBB2 
mRNA compared to a reference. The software learns new models by selecting a higher fixed number of bins in a 
histogram. For example, with k = 20 and BIC = 1660.8, the ERBB2 mRNA test values fit into 5 class-GMM. Class 
0 is like reference (as above); classes 1, 2, 3, and 4 have the increased mean value relative to the reference. This 
model allows a more detailed classification of ERBB2 mRNA’s test values and may be preferred in some clinical 
applications. With the increased number of bins, k = 30 and BIC = 1672.0, the ERBB2 mRNA test values fit into 
8-class GMM. This model provides an even more detailed classification; however, the model overfitting may 
occur, and reference may be represented by two classes − 1 and 0.

Considering all three models, we performed classification of the IBC, DCIS, and mammoplasty samples on 
ERBB2 mRNA (Table 1). The g3mclass automatically stratified heterogeneous populations into multiple classes 
with differential levels of ERBB2 expression, each of which was represented by Gaussian distribution. Apart 
from computing the proportions of each class as shown in Table 1, the g3mclass provides spreadsheet records on 
individual sample membership and summary statistics. For example, depending on the test GMM, an estimated 
3–15% of ERBB2 mRNA values from the reference data belonged to class 1, whereas the majority of ERBB2 
mRNA values from the test and query were classified into class 2 and higher that have not been present in the 
reference. Thus, it was reasonable to suggest that the software computed up-2 cutoff, which separated class 2 
and higher from lower classes, was a diagnostic cutoff point associated with ERBB2/HER2 overexpression in the 
subset of breast cancers.

Figure 3.  The g3mclass-assisted autoclassification on ERBB2 mRNA. (A) A total mixture model and GMM’s 
components for the test ERBB2 mRNA was obtained with the g3mclass. The data distribution is shown as a PDF 
overlaid on a histogram and estimated by the means values, standard deviation, and weights of each component. 
The total GMM (gray); separate components are as follows: green—class 0 with the mean value of reference; 
class/es with the mean value lower than that of reference (blue) and class/es with the mean value higher than 
that of reference (red). The ERBB2 mRNA model parameters including the mean ± standard deviation values 
and weights per class are: 4-class GMM: class 0 (40.4 ± 13.6; weight 0.46); class 1 (88.7 ± 48.9, weight 0.38), 
class 2 (403 ± 189, weight 0.14), class 3 (879 ± 29.1, weight 0.02); 5-class GMM: class 0 (40.4 ± 13.6; weight 
0.43), class 1 (74.8 ± 37.9; weight 0.36), class 2 (287 ± 155; weight 0.17), class 3 (661 ± 38.7; weight 0.03), class 4 
(878 ± 28.6; weight 0.02); 8-class GMM: class − 1 (27.0 ± 10.1; weight 0.21), class 0 (40.4 ± 13.6; weight 0.20), class 
1 (77.2 ± 21.8; weight 0.28), class 2 (168 ± 57.6; weight 0.14), class 3 (381.0 ± 36.0; weight 0.04), class 4 (506 ± 18.6; 
weight 0.03); class 5 (659 ± 38.1; weight 0.03); class 6 (878 ± 28.6; weight 0.02). The best fit was obtained for the 
4-class GMM based on the lowest BIC = 1650.6. (B) Graphs: Examples of the multiclass and subsequent binary 
classifications of IBC on ERBB2 mRNA. (C) Graphs: Examples of multiclass and subsequent binary classification 
of DCIS on ERBB2 mRNA.
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The diagnostic performance of the g3mclass modeling solutions. Going a step further, we exam-
ined how well a HER2 status may be predicted from ERBB2 mRNA expression data using the g3mclass com-
puted cutoffs because proteins are traditional therapeutic targets. We used the standardized statistical methods 
requiring biomarker dichotomization. For this purpose, we considered the current FDA-approved method for 
determining a binary HER2 status in breast cancer as a gold standard. We stratified HER2 positive (HER2+) 
and HER2 negative (HER2−) IBC based on the pathology reports. To test how well the measurements of ERBB2 
mRNA predict HER2+, we dichotomized the ERBB2 mRNA data into groups using g3mclass-calculated cutoffs 
for three models. Choosing a model-predicted cutoff value, i.e., 186.6 (4-class GMM), 147.0 (5-class GMM), and 
113.9 (8-class GMM), allows the transformation of multiclass into binary classification, at the same time elimi-
nating equivocal results (Fig. 3B). When 186.6 is chosen as the ERBB2 expression cutoff, the sensitivity is 70%, 
and the specificity is 99% (Table 2). When the cutoff is decreased to 147.0, the sensitivity is increased to 90%, and 
the specificity is reduced to 97%. When the cutoff is further reduced to 113.9, the sensitivity increases to 93%, 

Table 1.  Summary of multiclass classification of breast tissue on ERBB2 mRNA.

Sample Model Method

Class number

− 1 0 1 2 3 4 5 6

IBC

4-class GMM

proba 55.63% 29.58% 12.68% 2.11%

cutoff 55.63% 28.87% 13.38% 2.11%

s. cutoff 60.56% 23.94% 13.38% 2.11%

DCIS

proba 36.00% 50.67% 13.33%

cutoff 34.67% 50.67% 14.67%

s. cutoff 49.33% 36.00% 14.67%

Noncancer

proba 94.12% 5.88%

cutoff 94.12% 5.88%

s. cutoff 100.00% 00.00%

IBC

5-class GMM

proba 54.23% 26.76% 14.08% 2.82% 2.11%

cutoff 52.11% 27.46% 15.49% 2.82% 2.11%

s. cutoff 59.86% 19.72% 15.49% 2.82% 2.11%

DCIS

proba 30.67% 53.33% 14.67% 1.33%

cutoff 32.00% 50.67% 14.67% 2.67%

s. cutoff 48.00% 34.67% 14.67% 2.67%

Noncancer

proba 91.18% 8.82%

cutoff 88.24% 11.76%

s. cutoff 97.06% 2.94%

IBC

8-class GMM

proba 33.80% 14.79% 28.17% 11.97% 3.52% 2.82% 2.82% 2.11%

cutoff 30.28% 19.72% 26.06% 12.68% 3.52% 2.82% 2.82% 2.11%

s. cutoff 14.08% 45.07% 16.90% 12.68% 3.52% 2.82% 2.82% 2.11%

DCIS

proba 14.67% 17.33% 42.67% 17.33% 4.00% 1.33% 2.67%

cutoff 12.00% 20.00% 38.67% 20.00% 5.33% 1.33% 2.67%

s. cutoff 2.67% 42.67% 25.33% 20.00% 5.33% 1.33% 2.67%

Noncancer

proba 47.06% 38.24% 14.71%

cutoff 38.24% 47.06% 14.71%

s. cutoff 5.88% 91.18% 2.94%

Table 2.  Diagnostic performance of g3mclass solutions for ERBB2 mRNA test in IBC. *These values are 
dependent on HER2+ disease prevalence.

Model
4-class GMM
(BIC 1650.6; Cutoff 186.6)

5-class GMM
(BIC 1660.8; Cutoff 147.0)

8-class GMM
(BIC 1672.0; Cutoff 113.9)

Statistic Value
(95% confidence interval)

Value
(95% confidence interval)

Value
(95% confidence interval)

Sensitivity 70.00% (50.60–85.27%) 89.66% (72.65–97.81%) 93.10% (77.23–99.15%)

Specificity 99.11% (95.13–99.98%) 97.35% (92.44–99.45%) 93.81% (87.65–97.47%)

Disease prevalence* 21.13% (14.73–28.77%) 20.42% (14.12–28.00%) 20.42% (14.12–28.00%)

Positive predictive value* 95.45% (74.64–99.34%) 89.66% (73.81–96.38%) 79.41% (65.15–88.84%)

Negative predictive value* 92.50% (87.71–95.52%) 97.35% (92.62–99.07%) 98.15% (93.29–99.51%)

Accuracy* 92.96% (87.43–96.57%) 95.77% (91.03–98.43%) 93.66% (88.31–97.06%)
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while the specificity decreases to 94%. Thus, if binary classification on ERBB2 mRNA is desired, cutoff up-2 may 
represent a tradeoff between sensitivity (the fraction of HER2+ cancers that are correctly identified by ERBB2 
mRNA assay as being HER2+) and specificity (the fraction of HER2− cancers that are correctly identified by 
ERBB2 mRNA assay as not being HER2+). Considering the prevalence of HER2+ human breast cancer 20%, the 
estimated positive predictive values were 96%, 90%, 79%, and negative predictive values were 93%, 97%, 98%. 
The accuracy of the ERBB2 mRNA test was 93%, 96%, 94% in 4-class, 5-class, and 8-class GMM, respectively.

Additionally, using the g3mclass modeling solutions, we calculated the ERBB2 mRNA diagnostic test param-
eters for query—an independent cohort of patients diagnosed with DCIS (Fig. 3C and Table 3). For 75 biopsies 
successfully profiled in QG2 assay, HER2 status by IHC could be assessed in 70 samples freshly cut from the same 
blocks of tissue that remain available after gene expression analysis. For the g3mclass selected 4-class GMM with 
the lowest BIC = 1650.6 and 186.6 as a cutoff, the accuracy, i.e., an overall probability that a patient’s pre-surgical 
biopsy being correctly classified on a binary HER2 status from the ERBB2 mRNA expression data, was 92.86% 
(95% confidence interval 84.11–97.64%), the positive predictive value was 100%, while the negative predictive 
value was 91.53% (95% confidence interval 84.11–97.64%). Thus, the results of g3mclass data analyses show the 
accuracy of identifying breast cancer potentially sensitive to anti-HER2 therapy and the robustness of the software 
in making the correct classification without equivocal results in the test and independent query.

Multiclass classification on multiple biomarkers. The g3mclass can easily be upscaled to analyze data 
from multiplexing assays. The data processing steps are the same as those for a single biomarker, i.e., prepara-
tion and entry of input data, modeling, classification, and analysis of the output results. We ran g3mclass to 
concurrently classify breast tissue samples on ERBB2, ESR1, and PGR mRNA measurements obtained in the 
validated and highly reliable multiplex QG2 assay (“Materials and methods”). These target genes encode HER2 
and human steroid hormone receptors—estrogen receptor alpha (ER), and progesterone receptor (PR), abnor-
mal presence of which defines treatments, such as anti-HER2 and hormonal  therapies21. We obtained clinical 
markers’ binary status (positive vs. negative) from pathology reports (“Materials and methods”). We input the 
mRNA expression data from the test (IBC), reference (mammoplasties), and two queries (DCIS and five human 
breast cancer cell lines) as one file into g3mclass. Instantaneously, the software selected and depicted each gene’s 
mathematically favorable test model (Fig. 4A). It also performed three sequential classifications (proba, cutoff, 
and s.cutoff) for each model. Finally, it summarized data into spreadsheets and heatmaps. Using the resampling 
feature of the g3mclass, we found that diagnostic cutoff estimates for ESR1 were stable despite the appearance/
disappearance of far-tailed classes (Supplementary Table 1). To illustrate the essence of the tumor’s classification 
on ESR1 in the context of the other two genes, we present heatmaps built for s.cutoff classification that improves 
the specificity (Fig. 4B–E).

As depicted in Fig. 4B, we found two groups of noncancerous breast tissues—with no activity of ESR1 
(class − 1) and with physiological levels of the ESR1 transcript (class 0) based on a 5-class test GMM for ESR1 
mRNA. In cancer, three other groups emerged with either slightly (class 1), moderately (class 2), or highly 
increased (class 3) levels of ESR1 mRNA (Fig. 4C, D). In our study populations, the ESR1’s transcript levels were 
abnormally increased in 40% of IBC, 64% of DCIS, and 0% of noncancer, based on the up-1 cutoff separating 
class 0 from 1 and higher. The ERBB2 mRNA was abnormally high in 16% of IBC, 15% of DCIS, and 0% of 
noncancer, considering up-2 as a diagnostic cutoff. Thereby g3mclass automatically selected tumors potentially 
sensitive to endocrine and anti-HER2 therapy, while other cancers may need different types of treatments. Nota-
bly, the g3mclass estimates showed that about 24% of IBC and 19% of DCIS, scored as ER-positive in pathology 
reports had reference-like levels of ESR1 transcript. These cases are candidates for overdiagnosis. The potential 
underdiagnosis was estimated in 0% of IBC and 1% of DCIS. Concurrently, the g3mclass provided insights into 
the variability of PGR, encoding steroid hormone receptor PR, a marker recommended for testing in IBC but 
not in  DCIS22. High levels of PGR mRNA (class 2) were found in 9% of IBC, 13% of DCIS, and 0% of noncancer. 
In sharp contrast, low/undetectable levels of PGR mRNA (class − 1) were in 48% of IBC, 25% of DCIS, and 21% 
of reference. Thus, the g3mclass revealed low/or loss of PGR mRNA expression in IBC and the upregulation of 
PGR mRNA in DCIS in our study populations. Finally, we queried an independent set of mRNA data from the 
human breast cancer cell lines with the know expression levels of HER2, ER/PR23,24 and found them classified 
according to the established status (Fig. 4E).

Table 3.  Diagnostic performance of g3mclass solutions for ERBB2 mRNA test in DCIS. *These values are 
dependent on HER2+ disease prevalence.

Model
4-class GMM
(BIC 1650.6; cutoff 186.6)

5-class GMM
(BIC 1660.8; cutoff 147.0)

8-class GMM
(BIC 1672.0; cutoff 113.9)

Statistic Value (95% confidence interval) Value (95% confidence interval) Value (95% confidence interval)

Sensitivity 68.75% (41.34–88.98%) 68.75% (41.34–88.98% 68.75% (41.34–88.98%)

Specificity 100.00% (93.40–100.00%) 98.15% (90.11–99.95%) 83.33% (70.71–92.08%)

Disease prevalence* 22.86% (13.67–34.45%) 22.86% (13.67–34.45%) 22.86% (13.67–34.45%)

Positive predictive value* 100.00% 91.67% (60.55–98.75%) 55.00% (38.20–70.73%)

Negative predictive value* 91.53% (83.93–95.72%) 91.38% (83.66–95.64%) 90.00% (81.16–94.95%)

Accuracy* 92.86% (84.11–97.64%) 91.43% (82.27–96.79%) 80.00% (68.73–88.61%)
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In short, we demonstrated the diagnostic accuracy of the g3mclass analysis of clinical biomarkers and thera-
peutic targets. Additionally, we showed the robustness of this software in the automated multiclass classification 
of the test and independent queries. We have also provided evidence of the scalability of the g3mclass software 
to classify and visualize classifications on multiple analytes concurrently. We demonstrated the software output’s 
interpretability by showing how various valuable insights can be extracted from raw test and query data using 
the g3mclass. More importantly, we showed how the g3mclass helps analyze each person’s cancer with a unique 
pattern of biomarkers.

Discussion
Modern biomedical science requires highly specialized but easy-to-adapt software. This article presents g3mclass, 
a practical stand-alone application for a general biomedicine task concerning molecular assay data classifica-
tion. The g3mclass offers inference about the number of classes, the mean and spread levels of an analyte in each 
class, and the prevalence of each class in the study population. In oncology, this allows unraveling and taking 
full advantage of hidden unique patterns of biomarkers and targets in each person’s cancer. In addition, it may 
help researchers in the early stages of pharmaceutical testing of new therapies and companion diagnostics to 
determine whether further, often expensive, studies are warranted.

In the present article, we demonstrated how g3mclass-assisted classification helps human experts quickly 
assess the biological variability of gene transcripts across the populations of women diagnosed with primary 
breast cancer without extensive and long-term data collection. We also provided how human experts may select 
among probabilistic GMMs automatically learned by the g3mclass software. GMM is often used for unsupervised 
clustering, mainly for data exploration. An example of such an approach is subgrouping cancers based on the 
similarity of gene expression  patterns25–27. The g3mclass exploits the customized semi-constrained EM algorithm’s 
ability to learn test models from known (provided by experts) and unknown (missing values) information. This 
computational approach is the opposite of supervised classifications requiring the predefined knowledge of the 
number of the mixture components. For example, a two-component mixture model sorts differentially expressed 
genes in microarray  experiments12. The principal innovation of g3mclass is embedding pre-existing experts’ 
knowledge of reference parameters into the test GMM. As a result, it substantially improves the differentiation of 
new-to-test versus reference-like values and provides biological and clinical context for interpretation outcomes. 
This approach defines the significant difference of g3mclass from other powerful software packages handling 
Gaussian finite mixture modeling as their clustering capabilities, including the most popular R package  mclust14 
and the Addinsoft XLSTAT (https:// www. xlstat. com/ en/ compa ny). Overall, there are two critical applications 
of the g3mclass in the biomedical field. First, it enables the discovery of previously unknown groups with differ-
ent levels of biomarkers, including those that are not part of the reference and thus are more likely linked with 
disease. Second, it allows individual patient classification in line with personalized clinical decision-making.

Figure 4.  The g3mclass autoclassification on three genes. (A) The g3mclass-selected models. The 5-class 
model parameters for ESR1 mRNA: class − 1 (0.49 ± 0.57; weight 0.25); class 0 (3.34 ± 3.18; weight 0.27), class 
1 (17.4 ± 9.22; weight 0.25), class 2 (63.4 ± 29.2; weight 0.19), class 3 (99.5 ± 105; weight 0.05). The 4-class 
model parameters for PGR mRNA: class − 1 (0.30 ± 0.43; weight 0.48); class 0 (3.09 ± 2.77; weight 0.26), class 1 
(7.88 ± 3.49; weight 0.13), class 2 (63.4 ± 29.2; weight 0.12). The 4-class model parameters for ERBB2 mRNA as 
above in Fig. 2. (B)–(E) The g3mclass-created classification heatmaps. The s.cutoff classification heatmaps on 
ESR1, PGR, and ERBB2 for mammoplasties (B), IBC (C), DCIS (D), and IBC cell lines (E). The IHC score for 
ER-positive (1), and ER-negative (0) cancers are on the top of heatmaps (C, D). In E, human breast cancer cell 
lines: MDA-MB-231 (triple-negative), SK-BR-3 (HER2 overexpressing), BT-474 (luminal B), T47D (luminal A), 
MCF7 (luminal A). Bar, heatmap’s color scale for classes.

https://www.xlstat.com/en/company
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This article focused primarily on validated biomarkers because the quality of HER2 and ER diagnostics affects 
millions worldwide. According to World Health Organization, with an estimated 2.3 million new annual cases 
reported globally, female breast cancer is the most diagnosed cancer type (https:// www. who. int/ news- room/ fact- 
sheets/ detail/ breast- cancer). Experts recommend that every primary IBC be tested for the presence of HER2 and 
ER and re-tested in subsequent recurrences and metastases by semi-quantitative immunohistochemistry (IHC) 
and/or fluorescence in situ hybridization (FISH)22,28. These tests may produce equivocal results that could not 
be interpreted as positive or negative. The challenge remains to define either at the  protein8,29 or the  mRNA30–33 
the HER2/ER expression cutoffs that segregate patients who may derive meaningful clinical benefit from endo-
crine and targeted therapies from those who will not. We have previously demonstrated that dichotomization of 
structurally mixed mRNA data with a single cutoff, e.g., using a ROC model or two-component GMM, may result 
in the loss of reliable information about the patient groups, as well as misclassification of some  individuals19. 
This article presented practical statistical software to help remedy such a problem and demonstrated how multi-
class classification with g3mclass may help fine-tune stratification on clinical biomarkers. In our study cohorts, 
g3mclass automatically recognized cancers unlikely to be present in the reference, i.e., ERBB2 mRNA + (class 
2 and higher) and ESR1 mRNA + (class 1 and higher). Likewise, recognizing by g3mclass the group of ERBB2 
mRNA + (class 1) may help define HER2-low positive breast cancer in clinical  trials34. Clinical studies adopting 
g3mclass are warranted to investigate whether the groups with differentially increased levels of ERBB2 mRNA 
and ESR1 mRNA have different sensitivity to the targeted therapy.

In clinical trial designs, g3mclass provides experts with a flexible diagnostic cutoff driven by the intended 
use where the sensitivity or specificity is more beneficial. HER2 and ER are the targets of the emerging therapies 
for breast cancer and other types of  cancer35,36. The cutoffs necessary for testing the clinical benefits of new 
therapies are likely to differ across cancer  types37–39. Using g3mclass, experts may tailor the biomarker cutoff for 
each disease. If a more standard binary classification is desired, experts may choose a data-driven approach and 
transform multiclass into binary classification while eliminating equivocal results. To further unravel the g3mclass 
capabilities in determining the biological and clinical value of candidate biomarkers, we provide evidence of the 
scalability of the g3mclass software to classify on multiple analytes and visualize concurrent classifications with 
heatmaps. This approach may help manage ER+/HER2+ cancers, as the dual implementation of the hormone 
and anti-HER2 therapies showed evidence of success in the clinical  trials8.

In sum, the applicability of g3mclass may be easily extended beyond one biomarker, dataset, or disease. It 
provides a cost-effective and straightforward way to examine and deal with the variability of the molecular 
assay data. The analysis with the g3mclass does not depend on the computing environment, which ensures the 
research’s reproducibility. In clinical settings, applying g3mclass promises more precise stratification that may 
help improve therapeutic sensitivity. Yet, the limitations for the g3mclass application exist, as outlined in this 
article and software documentation. To what degree this molecular classifier combined with the genomic clas-
sifier and conventional clinicopathological characteristics improves patient outcomes remains to be seen in 
clinical studies. The free dissemination of g3mclass paves the path towards such investigational studies and a 
personalized treatment approach.

Materials and methods
Human tissues and cell lines. The formalin-fixed paraffin-embedded (FFPE) human breast tissues were 
obtained from the Department of Pathology and Laboratory Medicine, Tumor Tissue and Biospecimen Bank, 
and the Cooperative Human Tissue Network at the University of Pennsylvania. The study was performed with 
256 samples, including 34 mammoplasties from women with no history of breast cancer, 75 diagnostic biopsies 
of ductal carcinomas in situ (DCIS), 142 surgical excisions of primary invasive breast cancer (IBC), and 5 human 
breast cancer cell lines. The cell lines MCF-7T-47D, MDA-MB-231, SK-BR-3, and BT-474 were purchased from 
the American Type Culture Collection and cultured accordingly. MycoAlert Assay (Cambrex) confirmed that 
mycoplasma-free cells were used in the experiments. The tissue samples were accrued randomly from the same 
geographic region. Summaries of the characteristics of the study populations have been  published19,40.

Direct messenger RNA (mRNA) profiling. For mRNA data collection, we ran QuantiGene Plex 2.0 
(QG2) assay (Genospectra/Panomics/Affymetrix/eBioscience/ThermoFisher Scientific, USA) and read on Flex-
Map 3D (Luminex/Merck Millipore) according to manufacturers’ protocol and as described in  detail19. QG2 is 
a highly reliable and validated molecular assay that uses amplified branch DNA (bDNA) technology for parallel 
gene expression  profiling41,42. We analyzed measurements of specific probes with the QG2 assay kits for quan-
titation of multiple target specific RNAs directly in lysates from FFPE tissue and cell lines. Our human Plex Set 
12988 included 14 target-specific and two housekeeping gene probes described in  detail40. Here, we analyzed 
mRNA for ERBB2 (probe set region 1203–1621), ESR1 (probe set region 5671–6292), and PGR (probe set region 
2609–3194).

Clinical markers. The status of steroid hormone receptors (ER and PR) and HER2 were determined by IHC 
and/or FISH, the FDA-approved methods. The status of ER, PR for all tumors, and HER2 for primary IBC were 
obtained from surgical pathology reports. In addition, HER2 status in DCIS was assessed based on the FDA-
approved method for IBC as  described40.

Statistical analyses and modeling. In this article, modeling and analyses of datasets were performed 
with g3mclass v.1.2 on macOS Mojave v.10.14.6. with Python v.3.9.5 and wxPython v. 4.1.1. Additionally, we used 
MedCalc, a diagnostic test evaluation calculator at https:// www. medca lc. org/ calc/ diagn ostic_ test. php (Version 

https://www.who.int/news-room/fact-sheets/detail/breast-cancer
https://www.who.int/news-room/fact-sheets/detail/breast-cancer
https://www.medcalc.org/calc/diagnostic_test.php
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20.027; accessed March 2, 2022) and GraphPad Prizm 9.3.0 (GraphPad Software, LLC, La Jolla, CA, USA) to 
visualize group comparisons.

Ethics approval. Studies were conducted in accordance with recognized ethical guidelines. We used 
approval from the University of Pennsylvania Institutional Review Board committee with a waiver of written 
informed consent to analyze patients’ tissue and records.

Data availability
All data needed to evaluate the article’s conclusions are present in the article or the Supplementary Informa-
tion. Series record GSE214540 provides access to QuantiGene Plex 2.0 16-gene expression data submitted to 
the GEO repository. In addition, the g3mclass is available as a standalone application on https:// pypi. org/ proje 
ct/ g3mcl ass site.

Code availability
The g3mclass software is written in Python, and its graphical user interface (GUI) is based on wxPython. Its 
documentation is distributed with the software but also is available online https:// g3mcl ass. readt hedocs. io. It 
includes installation instructions as well as a step-by-step workflow example. The g3mclass was tested on macOS, 
Windows, and Linux platforms but should run on any other platform offering Python3 and wxPython. It is 
distributed under OpenSource license GPL-2, freely installable from https:// pypi. org/ proje ct/ g3mcl ass with 
the standard Python pip tool. The code source is freely accessible from https:// github. com/ Maths Cell/ g3mcl ass.
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