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Prediction of monthly dry days 
with machine learning algorithms: 
a case study in Northern 
Bangladesh
Shabbir Ahmed Osmani1, Jong‑Suk Kim2, Changhyun Jun1,3*, Md. Wahiduzzaman Sumon4, 
Jongjin Baik3 & Jinwook Lee3

Dry days at varied scale are an important topic in climate discussions. Prolonged dry days define a 
dry period. Dry days with a specific rainfall threshold may visualize a climate scenario of a locality. 
The variation of monthly dry days from station to station could be correlated with several climatic 
factors. This study suggests a novel approach for predicting monthly dry days (MDD) of six target 
stations using different machine learning (ML) algorithms in Bangladesh. Several rainfall thresholds 
were used to prepare the datasets of monthly dry days (MDD) and monthly wet days (MWD). A 
group of ML algorithms, like Bagged Trees (BT), Exponential Gaussian Process Regression (EGPR), 
Matern Gaussian Process Regression (MGPR), Linear Support Vector Machine (LSVM), Fine Trees (FT) 
and Linear Regression (LR) were evaluated on building a competitive prediction model of MDD. In 
validation of the study, EGPR‑based models were able to better capture the monthly dry days (MDD) 
over Bangladesh compared to those by MGPR, LSVM, BT, LR and FT‑based models. When MDD were 
the predictors for all six target stations, EGPR produced highest mean R2 of 0.91 (min. 0.89 and max. 
0.92) with a least mean RMSE of 2.14 (min. 1.78 and max. 2.69) compared to other models. An explicit 
evaluation of the ML algorithms using one‑year lead time approach demonstrated that BT and EGPR 
were the most result‑oriented algorithms (R2 = 0.78 for both models). However, having a least RMSE, 
EGPR was chosen as the best model in one year lead time. The dataset of monthly dry–wet days was 
the best predictor in the lead‑time approach. In addition, sensitivity analysis demonstrated sensitivity 
of each station on the prediction of MDD of target stations. Monte Carlo simulation was introduced to 
assess the robustness of the developed models. EGPR model declared its robustness up to certain limit 
of randomness on the testing data. The output of this study can be referred to the agricultural sector 
to mitigate the impacts of dry spells on agriculture.

The global temperature increased by 0.6 °C (0.4–0.8 °C) from 1901 to 2001, highlighting the warming of the Earth 
in recent  decades1. The resulting extreme temperatures, precipitation, and continuous wet or dry conditions have 
severely impacted human activities and the  ecosystem2–4. Similarly, droughts due to extreme temperatures and 
dry conditions have become increasingly commonplace  worldwide5,6. These drought events and their frequency 
are directly affected by global warming, with 30% of the Earth’s surface expected to experience as much as twice 
the drought intensity by the end of this century, affecting most of the global  population5–7. Hence, the occurrence 
of droughts is a prime area of focus for monitoring and management from agricultural point of view to ensure 
food security in affected areas.

Bangladesh is characterized as one of the most environmentally vulnerable countries in the  world8–10 owing 
to the substantial adverse impacts of climate change, in combination with its geographical location and socio-
economic conditions. Bangladesh is less adaptable to sustain adverse effects of climate change because of its 
developing economy, geography, and high population density, which lead to a low adaptive  capacity11. The adverse 
impacts of climate change are generally visible in the agricultural sector, as most agricultural processes depend on 
 rainfall12. Agriculture contributes approximately 14% to Bangladesh’s GDP and employs approximately 40% of its 
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labor  force13. As a result of reduced or no rainfall, regional droughts currently affect approximately 2.5 million and 
1.2 million ha of agricultural land in a year in the wet and dry seasons,  respectively14. Therefore, the prediction 
of dry days could be an approach for applying measures to mitigate the regional effects of prolonged dry spells.

Droughts have been identified and characterized at different scales. There are four types of  droughts15: mete-
orological, agricultural, hydrological, and socio-economic. Meteorological droughts are defined based on the 
degree of dryness (an expression of precipitation departure) and the duration of the dry  period15–19. Agricultural 
drought occurs when there is insufficient soil moisture to meet the needs of a particular crop in a specific time 
owing to deficient precipitation for an extended period. Hydrological drought occurs when there are deficien-
cies in surface and subsurface water supplies, based on measurements of streamflow and lake, reservoir, and 
groundwater levels. Meanwhile, socioeconomic drought can be referred to the situations when the supplied 
volume of water is less than the demand of water in a specific  region20.  Hoyt21 defined socioeconomic drought as 
occurring insufficient precipitation to meet the needs of human activities. This concept was expanded by  Hoyt22 
in 1942 by stating that socio-economic development in a region demands more water than normally available.

Multiple drought indices (DIs) have been used to define drought events and their  intensities23 to identify the 
spatiotemporal distribution of  droughts24. The standardized precipitation index (SPI)25 is the most popular mete-
orological drought index, based on monthly  precipitation26. The effective drought index (EDI)27 is another useful 
tool for distinguishing the characteristics of droughts. However, the application of SPI found some limitations 
in defining short and long-term droughts where EDI showed its effectiveness on detecting long and short-term 
 droughts26,28. In addition, different monthly SPIs are found in a particular month, while EDI provides a single 
value, which causes misinterpretation of droughts for that month. Other  studies28–30 have found that EDI can 
detect a high range of drought events. Moreover, precipitation and temperature define another drought index 
named as Standardized Precipitation Evapotranspiration Index (SPEI)31. The superiority of SPEI focuses by 
combining the effects of temperature variability on drought assessments.

Beside the drought indices, some other ways were also followed to characterize a dry event or period. A 
dry period was referred with prolonged consecutive dry days with little or no precipitation over a specific 
 duration32–35. Some meteorologists and climatologists designated a dry spell with precipitation less than 2 or 
5  mm27. Drought events were characterized by 15 consecutive dry  days35,36 or a long dry period with 25 days 
consecutive dry  days35. Moreover, climate scenarios were effectively presented through wet and dry  periods37–44 
and argued that wet and dry periods are useful indicators of  weather45,46. In Switzerland, wet and dry periods 
were found capable to extrapolate the climate through spatial and temporal trends of wet and dry  periods38. 
Dry days were found generating heat wave and in tropical, weather dry days were directly or indirectly related 
to heatwave. Heatwave vulnerability was used to identify the hot zones in a  locality47 through climatic, socio-
economic, physiological, and environmental parameters. Heat wave was also analyzed by the effect of the North 
Atlantic  Oscillation48. Similarly, in both day and nighttime situations, a dense meteorological network was used 
to study urban and rural air temperatures where the urban heat index (UHI) was the highest when weather was 
 dry49. Hence, dry days have logical relations on producing heatwaves.

There were a limited number of researches on predicting future dry days, based on monthly cumulative 
dry days. Other researchers, for example, mainly focused on Monthly Consecutive Dry Days (MCDD) over 
 Japan50 to present zonal climate and established the application of consecutive dry days. Meanwhile, a  study51 
on monthly dry days (MDD) argued that MDD cannot be a direct description of defining a particular type of 
drought, but it would be meaningful to find trends of changes of dry spells in different months. This study was 
motivated to establish some new approaches on finding correlations of MDD and monthly wet days (MWD) in 
between stations.

Dry period or drought prediction and forecasts can be performed using either physical or data-driven models. 
A flood forecasting data-driven  model52 showed data-driven models require minimal information for a short 
duration to build a result oriented model. Precipitation and droughts were also forecasted using statistical data 
driven models in several studies. For example, linear  regression53, support vector machine (SVM)54 and artificial 
neural network (ANN)55 were extensively used for long term drought prediction using SPI. These data-driven 
models took rainfall or drought relevant variables in the previous months as inputs, and the rainfall or drought 
indicators as outputs. ANN based models were more capable for forecasting droughts compared to others. Fur-
thermore, ANN provided greater performance than multiple linear regression in forecasting SPEI in Wilsons 
Promontory in  Australia56. Several ML algorithms were also implemented on rainfall  forecasting57 and the results 
were consistently better using auto correlation functions.

However, in Pakistan, the prediction of SPEI showed the superiority of SVM over ANN and k-nearest neigh-
bor (KNN)58. Another  study59 established the accuracy of SVM over ANN on predicting SPI over Iran. The 
studies were accomplished with the fact that ML models have higher advantage on producing better accuracy 
by utilizing only hydro-meteorological data rather than considering the inherent physical  processes60.

Drought forecasting with longer lead times and higher accuracy is of significant value in agriculture applica-
tions. A study on different lead times phenomena among different drought studies admitted the challenges on 
lead time  forecasting61. Among different ML algorithms, artificial neural network (ANN) based models were 
used in several studies and proved its effectiveness on forecasting droughts from 1 to 12 months lead  time62–64.

Uncertainty analysis on a proposed model confirms the robustness of the model. This uncertainty could 
be originated from a systematic error or by a random error. Uncertainty of different hydrological models on 
predicting climate events has been established as a vital approach to quantify the domain of study inputs or 
model parameters. In these studies, Monte-Carlo sampling-based methods were  adopted65–67. Different ranges 
of random data from the input parameters were generated to see the effect on the original level of output. For 
example, Monte Carlo simulation was used to perform uncertainty in different water model  parameters68,69 and 
checked the robustness of the proposed models.
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This study was intended to deal with monthly dry days (MDD) and monthly wet days (MWD) instead of 
consecutive dry days. And finding regressions among MDD and MWD would claim the novelty of the study. It 
is not to visualize any dry spell or dry period in the study area. Rather, finding a strong regression among MDD 
of different climate stations through several machine learning algorithms was initiated. Here, a dry day was 
defined when a day has a rainfall less than 2 mm instead of 1  mm50 and MDD was the cumulative dry days in 
every month. Datasets of monthly wet days, defined by several daily rainfall thresholds, were also used to establish 
regressions with MDDs. Different ML algorithms, like Fine Tree (FT), Bagged Trees (BT), Linear Regression (LR), 
Linear Support Vector Machine (LSVM), Exponential GPR (EGPR) and Matern GPR (MGPR) were incorporated 
to find a strong prediction model of MDD of the climate stations. The outcome of the study was also assessed its 
robustness using Monte Carlo simulation with different ranges of random datasets.

Results
Statistical summary. MDD of 27 stations have varied statistical responses. Figure 1A represents diversified 
ranges of mean, median and standard deviation. Several stations have high and low reaches in mean, median and 
standard deviation. The datasets are normally distributed since mean and median are very close to each other. 
Negative skewness depicts a higher concentration of data to the right. Skewness values in the range of − 2 to + 2 
are generally  acceptable70. The datasets are found to be less skewed as the skewness was in the range of − 0.6 to 
− 0.2. It means the datasets are very close to normally distributed.

In contrast, Kurtosis defines the relative peaked-ness or flatness of the data relative to normal distribution. 
Figure 1B clearly depicts all negative values within − 1.5 to − 0.5 which means mean thinner tails. Kurtosis value 
in the range of − 2 to + 2 is generally acceptable to prove normal univariate  distribution70.

Prediction of MDD. The performance of the ML models for the prediction of MDD was determined and 
assessed using multiple approaches. In the first approach, only MDD of all stations were considered as study 
dataset. Every target station was taken as response while remaining 26 stations were the predictors. In the sec-
ond approach, MWDs of all 26 stations (other than the target) were used as predictors. In the third approach, 
integrated monthly dry and wet days (MDWDs) at all stations were utilized as predictors. From the dataset of 
35 years, 23 years (2/3rd) of data were used for training and 12 years (1/3rd) of data were used for testing. Two 
performance indicators, R2 and RMSE, of each developed model stratified the efficiency on prediction strategy.

Out of all, EGPR and MGPR secured better results than any other algorithm in training dataset (Table 1). 
More particularly, EGPR routinely outperformed all other algorithms, with the highest mean  R2 (~ 1.00) for the 
first and third approaches. MGPR, on the other hand, for the same first and third approaches, has the second-
best  R2 (~ 0.99). Reasonably, performance levels of the developed models are a bit deviated for the testing period.

Focusing at the testing results, through the second approach, BT outraced the performance of other algo-
rithms. The lowest average score of R2 (~ 0.77) was produced by FT. All other responses using the second approach 
had a non-significant R2 of 0.87 by BT. But for the first approach, EGPR, LSVM and LR, each algorithm scored a 
mean R2 of 0.91 while they scored RMSE of 2.14, 2.16 and 2.16, respectively. In contrast, using the third approach, 

Figure 1.  Descriptive statistics of MDD of all stations in this study.
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EGPR, MGPR, and LSVM, each have a bit reduced mean R2 (0.90) and higher RMSE of 2.19, 2.26 and 2.21, 
respectively. Therefore, EGPR has the optimum scores of R2 and RMSE by using the data of the second approach.

On the other hand, while prediction of MDD was tested from MDWD using the third approach, BT scored 
a highest mean R2 (0.91) and second lowest mean RMSE of 2.20 (Table 2). In summary, comparing all scores, 
EGPR has the lowest mean RMSE of 2.14 with highest R2 of 0.91, Hence, the study found EGPR as the best model 
and the 1st approach was identified as the best approach.

Figure 2a and b represented a comparison of the predicted MDD developed by all ML models for the six 
target stations following the first approach. The predicted values of Sylhet are traced well by LSVM rather than 
any other model where EGPR and LR picked the most of the actual values of MDD of Srimangal. Meanwhile, 
Rangpur station was caught by EGPR, LSVM and LR for better accuracy whilst EGPR and MGPR worked well 
for prediction of Dinajpur. Therefore, individual model goes fit for the individual station while combined per-
formance considering least RMSE suggest EGPR as the best algorithm.

Lead time forecasting. The key objective of lead time approach was to evaluate the effectiveness of ML 
techniques for developing a reliable forecasting model that can be used to manage dry periods in advance by the 
agricultural industry, and the authority could take necessary precautions against possible dry spells. One year 
lead time was considered to step up the scenario of dry days in one ahead. All the three identical approaches 
and their predictors were employed to identify the most significant input datasets building a MDD forecasting 
model with high R2 with low RMSE. The training dataset contained predictors from 1982 to 2003 and responses 
from 1983 to 2004. The testing period for the predictors was from 2004 to 2016, and consequently, the forecasted 
period was 2005–2017.

The results of the lead time approach in Table 3 showed a consistent regression for having better forecasting 
on MDD. In comparison, BT and EGPR models, for the third approach, produced highest R2 and least RMSE 
compared to other models. Having an identical mean R2 of 0.78, BT and EGPR are the stronger models in this 
simulation for predicting MDD with one year lead. However, the performance of EGPR outraced BT on the 
basis of less RMSE.

The performance of LSVM was not satisfactory for having a low R2 (0.71) even though it had the lowest RMSE 
(2.75) for forecasting Srimangal. In addition, FT produced highest RMSE (5.32) for Dinajpur and minimum R2 

Table 1.  Values of  R2 from the ML models for the approaches (1) MDD to MDD (2) MWD to MDD & (3) 
MDWD to MDD. Significant values are in bold and italics.
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(0.53) for Mymensingh. And, EGPR and LSVM were competitive for Rangpur having highest R2 with varied 
RMSE. Every ML algorithm uses specific set of model parameters and coefficients to generate prediction models 
using variety of input datasets with minimized prediction errors by using different performance indicators like 
RMSE and R2  values57,71. Likely, performance levels are fluctuated here for different ML algorithms as well as 
input datasets.

The results of the testing dataset using EGPR are extrapolated through Figs. 3 and 4. Most of the highs and 
lows are easily captured by the model. However, some points of MDD have a bit fluctuation. For example, year 
2006 has significant deviation of predicted values with the actuals. But these are very little compared to the true 
patterns of prediction. Particularly, Sylhet and Bogra have a very good one-year lead time prediction throughout 
the testing period.

Sensitivity analysis. Sensitivity analysis finds the efficiency of input parameters in developing data driven 
models. The focus is centered on the behavior of input parameters on the variation of the model output. In 
fact, different parameters have different (sometimes extreme) effect on the model’s outcome. Given that some 
parameters play significant roles, while others are marginally important, make sensitivity analysis a valuable tool.

To perform sensitivity analysis, a scenario was assumed that a station did not have any study data in the test-
ing period. Keeping every station of Northern Bangladesh as target, all the 26 stations were checked through 
the developed EGPR model. Figure 5 summarizes the output levels of prediction for the six target stations. Sig-
nificance of the station parameters in model validation is usually checked through this process. Results showed 
variety of significant stations to reach to the desired levels of prediction.

Rangpur is most sensitive when predicting MDD of Sylhet for one year lead time where Faridpur and Rajshahi 
were sensitive without any lead time (Fig. 5). Again, Mymensingh and Khepupara are found least sensitive with-
out considering any lead time while Comilla was the least sensitive with one year lead targeting Sylhet.

Sylhet is significant for targeting Srimangal, Rangpur and Dinajpur while there is no any significant station 
predicting Mymensingh for zero lead time. In summary, for different target station with no lead time, the R2 
values of predicted models lie within 0.90 ± 0.04 for Sylhet, 0.84 ± 0.03 for Srimangal, 0.88 ± 0.02 for Rangpur, 
0.94 ± 0.02 for Mymensingh, 0.86 ± 0.02 for Dinajpur, and 0.87 ± 0.03 for Bogra. In contrast, when considering 

Table 2.  RMSE of the ML models for the approaches (1) MDD to MDD (2) MWD to MDD & (3) MDWD to 
MDD. Significant values are in bold and italics.
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Figure 2.  (a) Actual and predicted MDD using all ML models when targets are: A = Sylhet, B = Srimangal, 
C = Rangpur. (b) Actual and predicted MDD using all ML models when targets are: D = Mymensingh, 
E = Dinajpur and F = Bogra.
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one year lead time, R2 values remain around 0.78 for targeting Sylhet, Srimangal, Mymensingh and Bogra where 
R2 was approximately 0.68 and 0.81 for Rangpur and Dinajpur respectively.

In summary of the sensitivity analysis, it is concluded that a particular station was not highly sensitive for 
most of the target stations. Specifically, Sylhet and Dinajpur were found sensitive solely for Rangpur and Sri-
mangal stations, respectively. Hence, sensitivity analysis for this intended procedure and models of the study is 
less result oriented.

Uncertainty analysis. An uncertainty analysis shows the propagation of uncertainty through the hydro-
logical models and to derive meaningful uncertainty bounds of the model  simulations72. This study incorporated 
two scenarios to perform uncertainty analysis. At first, any station was assumed to have random data within 
different coefficient of variations (CV). Secondly, any two stations were random within different CVs. Here, 0.01, 
0.05, 0.1, 0.5, 1 and 2 are the CVs had been considered to do the simulation.

The typical syntax to generate random data is:

CV=0.1; % Coefficient of variation = 10% (for example). 
for n=1:10000 % no of generations   
load data % testing dataset.  
Station_num=randi ([01 26]); % To pick a station randomly
Random_10_percent (:, Station_num) = normrnd (data(:, Station_num), CV *data(:, Station_num));
Yfit_10= EGPR . predictFcn (Random_10_percent); % Yfit_10 is the predicted values using developed EGPR model. 
end

To comply with Monte Carlo simulations, total 10,000  sets73 of new datasets were generated for a particular 
CV. When Sylhet was the target, for example, a station was picked randomly among the 26 stations and data of 
testing period of that station was generated randomly with a specific CV. This was repeated for 10,000 times for 
that CV. Every dataset was then evaluated by the developed EGPR model. The statistical details of the results are 
summarized through the boxplots in Figs. 6 and 7.

Table 3.  R2 & RMSE of the ML models for the approaches (1) MDD to MDD (2) MWD to MDD & (3) MDWD 
to MDD using testing dataset. Significant values are in bold and italics.
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Case A: a single station was random. This type of uncertainty would be originated due to the errors in data 
recording, data processing, or errors in systems. The results of the analyses through Fig. 6a and b ensure that the 
models are consistent for the randomness of the predictors up to the CV of 0.1. If any station data vary at CV of 
0.5 or more, the performance of the models are getting deviated.

Case B: any two stations were random. If a situation arises when any two stations are having random data with 
different spikes then the developed should also work with the new testing dataset. Figure 7a and b represent the 
outputs of this scenario. The analysis of this type of randomness produced quite similar responses compared to 
the randomness of one station. However, for Ranpur, Mymensingh, Dinajpur and Bogra, the robustness of the 
EPGR was extended up to the random data with CV of 0.5.

Figure 3.  Spatiotemporal distribution of actual and predicted MDD using EGPR at all stations.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19717  | https://doi.org/10.1038/s41598-022-23436-x

www.nature.com/scientificreports/

Discussion
The data analysis and the developed models through different sets of inputs and outputs represented a detail data 
driven model for forecasting a climate parameter. Simulation in this study generated some key outputs for the 
prediction of MDD. The study was not intended to define a drought or any similar event through the values of 
MDD. Instead, it tried to find a correlation among MDDs of all climate stations in Bangladesh through regres-
sions using ML algorithms.

MDDs of the target stations showed a good regression with different MWDs and MDDs of the predictor sta-
tions in Bangladesh. ML algorithms were capable to build a fine prediction model of MDD. A Prolonged dry spell 
or regional drought due to low or no rainfall is objectionable by an agricultural  sector14. Dryness is the defining 
feature of a dry spell, thereby allowing the interpretation of a drought. This study can help the agricultural sec-
tor to take precautions against periodical dry days in a month. The predicted models were assessed on the basis 
of R2 and RMSE. A very strong regression was found in MDDs of the climate stations. MWDs were also firmly 
correlated with MDDs which would direct a future study on targeting MWD of the target stations. Response in 
one year lead time was also satisfactory to predict MDD.

Sensitivity analyses studied the effectiveness of each station to be present in producing desired level of model 
output. In summary of the sensitivity analysis, it is concluded that a particular station was not highly sensitive for 
most of the target stations. However, Sylhet and Dinajpur were found sensitive for predicting MDD of Rangpur 
and Srimangal, respectively. In general, a specific station would not produce much deviation in the model outputs.

Uncertainty analysis assessed the domain of the study data for predicting MDD with a satisfactory level of 
output. Robustness of the proposed models through Monte Carlo simulation was clearly determined for certain 
ranges of random input data. Most of the cases, input data could vary with maximum CV of 10% to limit the 
output of the predicted model at a satisfactory level. Figures 6 and 7 depicted the summary of this scenario. 
However, for Ranpur, Mymensingh, Dinajpur and Bogra, the robustness of the EPGR was sustained up to the 
random data at CV of 0.5.

Several optimized model parameters from the simulation of different ML algorithms in MATLAB are sum-
marized. Tables 4 and 5 present the changes of the optimized parameters of the developed EGPR models for six 
target stations. The EGPR models with these values of the model parameters can be used for forecasting MDD 
without lead (Table 4) and with one year lead time (Table 5).

The outcome of the study demonstrates the possibility of using MDWD instead of consecutive dry  days32–35. 
This approach can be useful for defining dry periods with certain rainfall thresholds. The rainfall threshold used 

Figure 4.  Forecasted MDD using EGPR for Sylhet, Srimangal, Rangpur, Mymensingh, Dinajpur and Bogra 
stations.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19717  | https://doi.org/10.1038/s41598-022-23436-x

www.nature.com/scientificreports/

in this study was 2 mm 27. This concept can be used for real-time dry day forecasting by reducing computational 
time, improving water resource management against possible droughts, and reducing the cost of unnecessary 
field data collection. Hence, the novelty of the study comes from several outcomes using different ML algorithms 
through the correlation analysis on monthly dry days between different stations and the relationship between 
monthly dry days and monthly wet days. It demonstrates that ML methods are capable of outperforming current 
state-of-the-art methods for the prediction of MDD, representing a novel approach of lead-time phenomena 
with an established path for forecasting MDD.

Figure 5.  Sensitivity of different stations for predicting MDD of six target stations: A = Sylhet, B = Srimangal, 
C = Rangpur, D = Mymensingh, E = Dinajpur and F = Bogra.
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Conclusion
MWD and MDWD datasets were prepared based on daily rainfall at all stations in Bangladesh to establish a 
strong regression with MDD of the six target stations in Northern Bangladesh. The summary of all approaches 
points out EGPR as the best model among EGPR, BT, MGPR, FT, LSVM and LR. In addition, lead time effort 
also presented a satisfactory result to forecast MDD for one year ahead.

Figure 6.  (a) Variation of R2 when a station has random data with different CV: A = Sylhet, B = Srimangal, 
C = Rangpur, D = Mymensingh, E = Dinajpur and F = Bogra. (b) Variation of RMSE values when a station has 
random data with different CV: A = Sylhet, B = Srimangal, C = Rangpur, D = Mymensingh, E = Dinajpur and 
F = Bogra.



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19717  | https://doi.org/10.1038/s41598-022-23436-x

www.nature.com/scientificreports/

Uncertainty analyses based on Monte Carlo simulation has established robustness of the developed EGPR 
model. In summary of the sensitivity analysis, a particular station was not highly sensitive for most of the target 
stations. Sylhet and Dinajpur were found sensitive for Rangpur and Srimangal, respectively. Hence, sensitiv-
ity analysis for this intended procedure and models of the study is less result oriented. The combination of all 
approaches and the findings with the predictors and responses confirmed the novelty of the study. The outcomes 
of the study are summarized as:

Figure 7.  (a) Variation of R2 values when two stations have random data with different CV: A = Sylhet, 
B = Srimangal, C = Rangpur, D = Mymensingh, E = Dinajpur and F = Bogra. (b) Variation of RMSE values when 
two stations have random data with different CV: A = Sylhet, B = Srimangal, C = Rangpur, D = Mymensingh, 
E = Dinajpur and F = Bogra.
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• EGPR algorithm was able to provide satisfactory model with highest mean R2 of 0.91 and lowest mean RMSE 
of 2.14 among all six algorithms.

• A very good regression was found among MDD and MWD. Hence, dry days with 0–2 mm rainfall have a 
strong correlation with 10–25 mm and 26–50 mm of rainfall.

• The inclusion of one year lead time also performed very well by EGPR and showed the best response for 
forecasting MDD.

• EGPR model was assessed its robustness through Monte Carlo simulation. The model is robust up to CV of 
0.1 for considering random data in a single station and two stations.

• For most of the target stations, no any station is highly sensitive except Sylhet and Dinajpur.

This study provides novel insights into the analysis of monthly dry and wet days in climate research, which 
may directly or indirectly relate to the actual impacts of droughts. These results could be used in a future study for 
the definition of a new drought situation with other drought indices based on a strong relationship with monthly 
dry days. Future studies could seek to establish the relationship between dry events and consecutive dry days 
compared with different drought indices. More generally, within the broad area of intelligent systems, this study 
showed that ML algorithms can be applied to establish relationships between dry and wet days.

Methods
Study area and data. Bangladesh is prone to natural disasters and extremely vulnerable to climate 
 change74,75. Bangladesh extends from 20° 34 N to 26° 38 N and 88° 01 E to 92° 41 E. Except for the hilly southeast, 
the majority of the country is characterized by low-lying plains situated on deltas of large rivers flowing from the 
Himalayas. The country is surrounded by the Meghalaya Plateau in the north, the lofty Himalayas lying farther 
to the north, the Assam Hills in the east, and the Bay of Bengal in the south. Located in a tropical monsoon 
region, the climate of Bangladesh is characterized by moderately warm temperatures and high humidity with 
marked seasonal variations in rainfall.

The four recognized seasons are a hot, humid summer from March to May, a wet, warm, and rainy mon-
soon season from June to September, autumn from October to November, and a dry winter from December to 
 February76–78. January is the coldest month, with an average temperature of 18.1 °C, while May is the hottest 
month with an average temperature of 28.7 °C.

In the summer, the mean temperature gradient leans towards the northeast (cooler) from the southwest 
(warmer); in contrast, the winter mean temperature gradient is oriented towards the north (cooler) from the 
south (warmer). Rainfall in Bangladesh mostly occurs in the monsoon, induced by weak tropical depressions 
that are brought from the Bay of Bengal into Bangladesh by wet monsoon  winds77. More than 75% of the 
rainfall in Bangladesh occurs during the monsoon season. The daily rainfall in different stations shows a huge 
rainfall variation in between stations and seasons. Due to reduced or no rainfall, regional droughts currently 
affect approximately 2.5 million and 1.2 million ha of agricultural land in a year in the wet and dry seasons, 
 respectively14. Hence, there would exist a better correlation in terms of varied rainfall magnitudes between 

Table 4.  Optimized parameters of EGPR models for six target stations without any lead. SigmaL length 
scale for predictors, SigmaF signal standard deviation, Beta initial value of coefficients, Sigma initial value for 
the noise standard deviation of the Gaussian process model, ActiveSetMethod active set selection method, 
LogLikelihood the natural logarithm of the likelihood.

Model parameters Sylhet Srimangal Rangpur Mymensingh Dinajpur Bogra

LogLikelihood − 632.93 − 628.31 − 541.60 − 544.62 − 449.88 − 515.68

Kernel function: SigmaL 21.8883 8.2939 68.8375 36.7693 67.6816 32.9028

Kernel function: SigmaF 10.4600 6.5132 13.2054 9.7234 11.8457 8.3212

Beta 12.1846 19.6351 22.0104 16.9517 20.8954 19.9433

Sigma 0.0941 0.0740 0.0655 0.0746 0.0631 0.0634

ActiveSetMethod Random Random Random Random Random Random

Table 5.  Optimized parameters of EGPR models in one year lead time.

Model parameters Sylhet Srimangal Rangpur Mymensingh Dinajpur Bogra

LogLikelihood − 677.64 − 660.16 − 610.62 − 627.51 − 597.89 − 605.84

Kernel function: SigmaL 8.4501 9.8512 9.9992 11.1110 14.1240 11.3839

Kernel function: SigmaF 6.4281 5.9975 5.2892 5.9552 5.7041 5.4368

Beta 13.4357 19.0560 19.1886 17.0954 20.4283 19.2318

Sigma 1.0688 1.3443 0.6809 0.6821 0.7100 0.6892

ActiveSetMethod Random Random Random Random Random Random
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Figure 8.  Geolocation of study area with six target stations.

Table 6.  Calculation of dry days when a day has a rainfall less than 2 mm.

Year Month Day Mymensingh, mm Dry days Dhaka.mm Dry days Faridpur, mm Dry days

1982 4 1 0 1 0 1 0 1

1982 4 2 0 1 0 1 0 1

1982 4 3 0 1 0 1 0 1

1982 4 4 0 1 0 1 0 1

1982 4 5 0 1 0 1 0 1

1982 4 6 0 1 7 0 13 0

1982 4 7 0 1 8 0 3 0

1982 4 23 2 1 5 0 0 1

1982 4 24 0 1 0 1 0 1

1982 4 25 6 0 11 0 0 1

1982 4 26 2 1 7 0 24 0

1982 4 27 0 1 12 0 5 0

1982 4 28 33 0 11 0 22 0

1982 4 29 0 1 0 1 0 1

1982 4 30 21 0 0 1 3 0

MDD in April 1982 Mymensingh 23 Dhaka 17 Faridpur 18
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stations on a monthly scale or a seasonal scale to deal with dry periods or droughts and there might have better 
directions to be used in the agriculture sector.

Figure 8 shows 27 rain gauge stations with rainfall records for more than 30 years (1982–2016) operated by 
the Bangladesh Meteorological Department (BMD). To predict monthly dry days (MDD), we selected only six 
target stations (Sylhet, Srimangal, Rangpur, Dinajpur, Bogra, and Mymensingh) located in Northern Bangladesh.

A rainfall threshold of 2 mm on a daily scale was used to characterize a dry day and a sample in Table 6 shows 
monthly cumulative dry days. MDD was defined as the frequency of dry days in a month as elaborated in Table 6. 
Details of the custom datasets prepared from daily rainfall are listed in Table 7.

Study procedure. After preparing the datasets, the study used Regression Learner toolbox in MATLAB and 
performed the simulation of the proposed ML models. The study has two perspectives. In first perspective, the 
predictor stations were used to predict the MDD of the target stations without any lead time whereas in second 
perspective, the predictor stations were utilized to predict MDD of one year ahead.

The best model was chosen on the basis of optimized values of R2 and RMSE. Then sensitivity and uncertainty 
analysis were performed to establish the robustness of the developed model. The detail procedure of the study 
is presented through Fig. 9.

Prediction of MDD. The main objective of this study was to build regression models for the prediction of 
MDD at six target stations using different rainfall stations as predictors and several ML algorithms.

ML algorithms. ML algorithms employ various statistical, probabilistic, and optimization methods to learn 
from past experiences and detect useful patterns from large, unstructured, and complex datasets. The ML algo-
rithms used in this study were linear regression (LR) models, regression trees (RT), support vector machines 
(SVM), Gaussian process regression (GPR) models, and bagged trees (BT).

LR. Linear  regression79 is a statistical modeling technique used to describe a continuous response variable as a 
function of one or more predictor variables. It can help understand and predict the behavior of complex systems 
or analyze experimental, financial, and biological data. Linear regression was used to create a linear model that 

Table 7.  Three datasets in this study to predict MDD at six target stations.

Monthly dry days (MDD) Monthly wet days (MWD) Monthly dry and wet days (MDWD)

MDD is the summation of dry days in a month where a 
day is classified as a dry day if daily rainfall is between 0 
and 2 mm

MWD is the combination of light wet days (LWD) and 
average wet days (AWD). A day is classified as LWD if daily 
rainfall is from 10 to 25 mm, and as AWD if daily rainfall 
lies between 26 and 50 mm. The MWD dataset comprised 
data from 54 stations (27 stations for each LWD and 
AWD). These data are used as predictors and the MDD at 
each target station is the response

MDWD is the combination of MDD and MWD. The data-
set comprised data from 81 stations (27 stations for each 
MDD, LWD, and AWD)

Figure 9.  Procedural flow chart of the materials and methods in this study.
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describes the relationship between a dependent variable y (also called the response) as a function of one or more 
independent variables Xi (called the predictors). The general equation for a linear regression model is:

where β represents the linear parameter to be computed and ϵ represents the error term.
All four linear regression models (linear, interactive linear, robust linear, and stepwise linear) have easy 

interpretability, but linear and robust linear models have very low flexibility. The regression learner uses the 
fitlm function to train linear, interactive linear, and robust linear models. The app uses the Stepwiselm function 
to train stepwise linear models.

RT. A regression tree is built through a process known as binary recursive partitioning, which is an iterative 
process that splits data into partitions or  branches80. Then, each partition is split into smaller groups as the 
method moves up each branch. Initially, all records in the training set (pre-classified records that are used to 
determine the structure of the tree) are grouped into the same partition. The algorithm then begins to allocate 
data into the first two partitions or branches using every possible binary split in every field. The algorithm then 
selects the split that minimizes the sum of the squared deviations from the mean in the two separate partitions. 
This splitting rule is then applied to each new branch. This process continues until each node reaches a user-
specified minimum node size and becomes a terminal node. If the sum of the squared deviations from the mean 
in a node is zero, then that node is considered to be a terminal node even if it has not reached the minimum size.

SVM. SVM, a supervised learning model, was introduced through different  studies81–83. The basic idea of SVM 
is to find a hyperplane in a high-dimensional space to separate data using the structural risk minimization 
(SRM) principle based on the Vapnik–Chervonenkis (VC) dimension. For a classification task, SVM is a binary 
classification model. The binary classifier assumes that there are two classes in the task, and that each class is 
well identified by the decision surface. A sequence of binary classifiers can be used to handle multiclass tasks. 
For example, this study used two classes of flags. An event was classified as 1, and a non-event (background) was 
classified as 0.

The general idea of the SVM can be summarized as follows: suppose a set of datasets with k samples, {xi, yi}, 
i = 1, …, k, where x ∈  Rn is an n-dimensional vector and y ∈ {− 1, + 1} denotes the corresponding class label. The 
SVM calculates a hyperplane with the maximum margin by solving the following equation:

where ∅(xi) maps the input space to the feature space. C > 0 is a penalty factor that controls the trade-off between 
the minimization of the classification error and maximization of the margin. w , b , and ξ were optimized during 
the training phase.

The optimal decision surface can be determined by introducing Lagrange multipliers, and the classification 
function is represented as

where ai is the support vector, b* is the bias, and k (xi, x) = 〈∅(xi), ∅(x)〉 is the kernel function.

GPR. GPR models are nonparametric kernel-based probabilistic  models84. A GPR model can be trained using 
the fitrgp function. Consider the training set {(xi, yi); i = 1, 2, …, n}, where xi ∈ Rd and yi ∈ R, drawn from an 
unknown distribution. A GPR model addresses the question of predicting the value of a response variable ynew, 
given a new input vector xnew and training data. A linear regression model has the form

where ε ∼ N (0, σ2). The error variance σ2 and coefficients β are estimated from the data. A GPR model explains 
the response by introducing latent variables, f (xi), i = 1, 2, …, n, from a Gaussian process (GP) and explicit basis 
functions, h. The covariance function of the latent variables captures the smoothness of the response, and the 
basic functions project the inputs x onto a p-dimensional feature space.

A GP is a set of random variables, such that any finite number of them have a joint Gaussian distribution. 
If {f(x), x ∈ Rd} is a GP, then given n observations of x1, x2, …, xn, the joint distribution of the random variables 
f(x1), f(x2), …, f(xn) is Gaussian. A GP is defined by its mean function m(x) and covariance function k (x, x). 
In other words, if {f(x), x ∈ Rd} is a Gaussian process, then E (f(x)) = m(x) and Cov[f(x), f(x)] = E[{f(x) − m(x)}
{f(x) − m(x)}] = k (x, x′). There are four types of GPR models: rational quadratic, squared exponential, Matern 
5/2, and exponential. Each type of model has a hard interpretability and automatic flexibility to fit datasets.

Exponential GPR. One can specify the exponential kernel function using the “KernelFunction,” “exponential” 
name–value pair argument. This covariance function is defined as follows:

(1)y = β0 +
∑

βiXi + ǫi

(2)
min

1

2
(w)T · w + C

k
∑

i=1

ξi

s.t. yi(w
T · ϕ(wi)+ b) ≥ 1− ξi , ξi ≥ 0, i = 1, . . . , k

(3)f (x) = sgn
(

yiaik(xi , x)+ b∗
)

(4)y = xTβ + ε

(5)k(xi , xj|θ) = σ 2
f exp

(

−
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where σl is the characteristic length scale and

is the Euclidean distance between xi and xj.

Matern 5/2 GPR. One can specify the Matern 5/2 kernel function using the “Kernel Function,” “matern52” 
name–value pair argument. The Matern 5/2 covariance function is defined as

where

is the Euclidean distance between xi and xj.

BT. Ensemble learning is currently a primary and popular research direction in data mining and ML. By train-
ing many base learning systems, aggregating these base learning systems, and using multiple versions of the 
learning system to solve the same problem, the generalization ability of a learning system can be improved 
significantly. Ensemble learning is regarded as a computing technique that has broad prospects for many appli-
cations. Currently, there are many ensemble learning algorithms, including bagging, boosting, and subspace, 
whereof bagging is a well-known algorithm.

The bagging  algorithm85 was first proposed by Breiman in 1996. A training set D consists of data {(yi, xi), i = 1, 
…, N}, where xi is an instance and yi is a label of class label set Y whose amount is k. A classifier φ(x, D) is built 
using a given method. If an instance x is input with an unknown class label, a class label y can be predicted with 
φ(x, D). Suppose that there is a training set sequence {D1, …, Dm}, where the number of instances of Di is the 
same as that for D. N instances in Di are randomly selected from D by bootstrap sampling with replacement. The 
value of m is set in advance; for instance, it can be set to 50. The learning mission uses {D1, …, Dm} to obtain a 
better classifier than classifier φ(x, D), which is learned from a single training set D. If y is numerical, an obvious 
procedure is to replace φ(x, D) with E (φ (φ(x, D)), that is, by the average of φ(x, Dk) over k (1 ≤ k ≤ m), where 
E(φ(x, D)) denotes the expectation over D. If y is nominal, then one method is to aggregate the results of φ(x, 
Dk) by voting. This aggregation method is called “bootstrap aggregating” or “bagging.” The bagging ensemble 
technique has been successfully used in civil engineering applications for the prediction of material properties 86.

One‑year lead time. Given early warnings with sufficient lead time, water resource management authori-
ties and other civil protection bodies can exercise caution and take preventive measures to mitigate the impacts 
of any climatic event, such as droughts, floods, or cyclones. Several studies have been undertaken by the Multi-
hazard Mitigation  Council87 and United Nations Development  Program88, with the money spent on emergency 
response being far more effective and less costly than money spent on recovery efforts. A well-built early dry 
period or drought warning system could inform decision makers in agriculture and water resource management 
bodies, enabling the establishment of preventive measures.

This study incorporates a new approach to verify the performance of ML techniques in forecasting MDD 
by considering a shift in the target time series. The shift is assumed to be a one-year lead. Six ML techniques, 
namely BT, EGPR, MGPR, LSVM, FT, and LR, were used to perform the simulation. Three previous approaches 
and their corresponding predictors were used in this scenario to find effective predictors to produce the best 
forecasting model. To do this, the training periods for the predictors and response were from 1982 to 2003 
and 1983 to 2004, respectively. The testing period for the predictors was from 2004 to 2016; hence, values were 
forecasted from 2005 to 2017.

Uncertainty analysis. Monte Carlo (MC) simulation is used to perform the uncertainty analysis of the 
proposed model in order to demonstrate the methodology robustness with respect to uncertainties in different 
input data. Random data for every input station is generated and the new data set is used to check the perfor-
mance of the model comparing with actual data. Different ranges of coefficients of variation are used to generate 
random data. Monte Carlo simulation was used to perform uncertainty in different water model  parameters68,69 
and checked the robustness of the proposed models. Different coefficients of variation were used 68,69 to range 
the random data having specific mean of each input data. In this study, same procedure of uncertainty analysis is 
followed by generating random data, using different coefficient of variations and specific mean. The uncertainty 
analysis worked out in consideration of two cases. At first, data of a single station would be random with uncer-
tainty at different coefficients of variation (CV). Secondly, any two stations would be random within different 
CVs. Here, 0.01, 0.05, 0.1, 0.5, 1 and 2 are CVs incorporated to do the simulation.

Sensitivity analysis. A sensitivity analysis is a technique used to determine how significant any input 
parameter is to reach to a desired level of output. At first, it was assumed that a single station would not contain 
any data for the whole testing period of analysis. To perform sensitivity analysis, a scenario was assumed that a 
station does not have any study data in the testing period. Significance of the station parameters in model valida-
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tion is usually checked through this process. Then of course the sensitivity analysis finds which station is more 
or less sensitive to the developed model of MDD. Figure 10 demonstrates the procedure of the sensitivity and 
uncertainty analysis.

Performance indicators. R2 and RMSE were the two performance indicators used to define the efficiency 
of the training and testing models. Both RMSE and R2 quantify how well a regression model fits the dataset. The 
RMSE indicates how well a regression model can predict the value of the response variable in absolute terms, 
while R2 indicates how well a model can predict the value of the response variable in percentage terms.

where xi and yi are the actual and predicted values, respectively, x and y are the average actual and predicted 
values, respectively, and n is the number of values.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to inclusion of 
the datasets to the subsequent studies and involves other unpublished ancillary works that are currently under 
analysis, but are available from the corresponding author on reasonable request.
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