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An influential node identification 
method considering multi‑attribute 
decision fusion and dependency
Chao‑Yang Chen1,2*, Dingrong Tan1, Xiangyi Meng3 & Jianxi Gao4

It is essential to study the robustness and centrality of interdependent networks for building reliable 
interdependent systems. Here, we consider a nonlinear load‑capacity cascading failure model on 
interdependent networks, where the initial load distribution is not random, as usually assumed, 
but determined by the influence of each node in the interdependent network. The node influence is 
measured by an automated entropy‑weighted multi‑attribute algorithm that takes into account both 
different centrality measures of nodes and the interdependence of node pairs, then averaging for 
not only the node itself but also its nearest neighbors and next‑nearest neighbors. The resilience of 
interdependent networks under such a more practical and accurate setting is thoroughly investigated 
for various network parameters, as well as how nodes from different layers are coupled and the 
corresponding coupling strength. The results thereby can help better monitoring interdependent 
systems.

Infrastructure networks such as power  grids1–3, communication  networks4,5, and transportation  networks6,7 are 
usually not isolated but interdependent and coupled, forming a network of  networks8–11. As a consequence of 
the dependency, random failures can easily propagate in the network, resulting in cascading effects and serious 
consequences. A typical example is the Italian blackout in  200312, when initial failures in the grid caused other 
nodes in the power-grid network to fail. The resulting cascading failure left more than half of the country without 
power for several hours. Between 2003 and 2012, there were more than 600 power outages in the United States, 
affecting millions of  people13. Such, it is of great practical significance to study the robustness of interdependent 
networks for building reliable interdependent systems.

Generally, the robustness of interdependent networks is mainly studied from two perspectives, namely, perco-
lation and load capacity. In 2010, Buldyrev et al.12 constructed a cascading failure percolation model. They found 
that removing only a small proportion of initial nodes can cause failure of the entire interdependent network. 
Based on this model, Parshani et al.14 found that reducing the proportion of coupling nodes between the networks 
can change the percolation phase transition from being the first order to the second order, thereby improving the 
robustness of the network. Gao et al.8–10 developed an analytical framework to study the percolation of a tree-
like network formed by n interdependent networks. They found that while for n = 1 the percolation transition 
is of second order, for n> 1, the network collapses as a first-order transition. Considering that the initial failure 
of important nodes may not be random but targeted, Huang et al.15 proposed a mathematical framework for 
understanding the robustness of interdependent networks under targeted attacks. Dong et al16,17. extended the 
framework to the scenario of targeted attacks on a general network of networks. Since then, the application of 
percolation theory to analyzing the robustness of interdependent networks has attracted much  attention15,18,19.

However, the percolation model only considers the topological properties of the network, yet real-world sys-
tems often additionally carry a load (such as power or transportation). This leads to the Motter-Lai (ML)  model20 
that considers the effect of cascading failure under limited load capacity of complex networks. Attack strategy, 
coupling strength, load distribution strategy, network topology, etc. are the main focuses when studying load 
capacities. Gao et al.21 proposed six attack strategies for evaluating the robustness of the network. Considering the 
node load redistribution mechanism, Wang et al.22 studied the robustness of interdependent networks with differ-
ent attack strategies, connection strategies, and load distribution mechanisms. While extensively  studied23–25, the 
ML model assumes that the initial load and capacity follow a simple linear relation, which is unrealistic. Smaller 
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load nodes (edges) tend to have larger  capacities26. In light of this, Dou et al.27 proposed a nonlinear load capac-
ity model for cascading failures. They found a trade-off between the cost and robustness of the interdependent 
networks. Chen et al.28 proposed a nonlinear model for cascading failure of weighted networks with overloaded 
edges. The model can describe the redundant capacity of edges and capture the interaction strength of nodes.

None of the above models, however, explicitly considered the fact that the distribution of load capacities of 
nodes are usually not totally random but are closely related to the influence of each node. For example, in a large-
scale computer network, backup capacities are usually assigned to server nodes according to the importance of 
each server, a common approach to optimize the resources. Generally, the influence of nodes can be measured 
by network centrality indicators, including degree  centrality29, betweenness  centrality30, closeness  centrality31, 
eigenvector  centrality32, resilience  centrality33, etc. These indicators characterize the importance of a single node 
in the network from different perspectives. Furthermore, a currently popular area in network science is the 
development of community-aware centrality measures, which identify influential nodes from the perspective 
of the modular structure of the  network34–36. To improve the accuracy of identifying influential nodes, many 
improved centrality methods have been  proposed37–40. The idea of multi-attribute decision-making, in particular, 
has been introduced for node influence evaluation. For instance, the technique for order performance by simi-
larity to ideal solution (TOPSIS) is adopted to rank nodes based on trade-offs between existing  metrics41,42. The 
analytic hierarchy process (AHP)43 considers several different centrality methods as multiple attributes to identify 
influential nodes, and so does the multi-evidence centrality (MeC)44 method. These methods further confirm 
that multi-attribute decision-making methods are more accurate than single centrality method in evaluating 
the influence of nodes. However, in most of these methods, multiple attributes are weighted either on an equal 
footing, or on a different but manually decided footing, making the methodology less objective.

This paper seeks to address the above limitations and contributes as follows. The main novelty of this work is 
to consider an initial load distribution that is not random but defined based on the influence of each node in the 
interdependent network, measured by an automated entropy-weighted multi-attribute algorithm that takes into 
account both different centrality measures of nodes and the interdependence of node pairs. When determining 
the influence of each node, the algorithm evaluates not only the node itself, but also its nearest neighbors and 
next-nearest neighbors. This represents another practical improvement that has seldomly been considered in 
the previous literature. Moreover, the load capacity of each node is determined from its initial load, not by a 
simple linear relation but by a general nonlinear relation. The effects of the model parameters, as well as the inter-
network coupling modes and coupling strength on the robustness of the interdependent network are explored.

Results
Topology is of great significance in the study of network dynamics. Typical topologies help to better analyze 
and control the effects of cascading  failures9,15,17. The ER network and the BA network have different cascading 
failure dynamics behaviors. Therefore, this paper selects the ER network and the BA scale-free network to link, 
the IEEE118 actual power distribution system is abstracted into a network topology for verification. Figure 1a,b 
show the schematic diagram and topology of the IEEE 118 power grid, respectively. According to the different 
structures and characteristics of real networks, this paper generates different topologies for different situations. 
The network parameters are shown in Table 1. To avoid the influence of accidental factors on the experimental 
results, all experimental results in this paper are the average of 50 independent repeated experiments. 

1. The relationship between robustness and network parameters

Consider the BA-BA network as an example. Set the number of sub-network nodes N = 500 , and the average 
degree < k >= 4 . The effect of the network parameters α,β , η, θ in the nonlinear model (see “Methods”) on the 

Figure 1.  IEEE 118 power grid.
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robustness evaluation indicator p is investigated. As shown in Fig. 2a, the selected parameter α = 0.4, η = 0.2 
remains unchanged, and p increases gradually with the increase of α . The larger α is, the smaller the increment 
of β required for p to jump from a small value to a large value, and the steeper the trend. That is to say, better 
robust performance can be obtained by only adding a smaller capacity, which can effectively resist cascading 
failures at a lower cost. However, when a critical phenomenon occurs, p no longer increases substantially with the 
increase of β , but gradually approaches 1. It means that the node failure at this time will not cause a large-scale 
spread of the failure, and the network can maintain good connectivity. Setting the parameter α = 0.4, η = 0.2 , 
it can be observed from Fig. 2b that as the load parameter θ increases, p grows more slowly and the network 
exhibits worse connectivity. This conclusion is actually in line with the characteristics of actual networks. That 
is, the load and capacity of a node are not simply linear, and many nodes with smaller capacity have larger 
redundant capacity. For example, a road network with greater unoccupied capacity in areas of light loading 
exhibits less efficient behavior, but this feature may provide alternative routes for congested traffic. Setting the 
parameter α = 0.4, θ = 0.2 , Fig. 2c shows that the sensitivity of p to η is not high, but it still offers a certain law. 
As η increases, the connectivity of the entire system becomes worse. In other words, the greater the influence of 
dependent nodes, the less robust the network will be. Therefore, a reasonable selection of network parameters 
can improve the robustness of the network while appropriately reducing the cost.

2. Robustness analysis of interdependent networks under different coupling modes

Set the initial load and capacity parameter θ = 0.2, η = 0.2,α = 0.4 . The interdependent network is constructed 
according to three coupling modes, namely assortative link (AL), disassortative link (DL), and random link 
(RL)45. By adjusting the capacity parameter β of nodes, the robustness rules of different interdependent networks 
under different coupling modes are explored. The simulation results are shown in Fig. 3. Obviously, the robust-
ness of different interdependent networks in the three coupling modes satisfies: pAL > pRL > pDL . Assortative 
link means that the nodes with larger betweenness in two subnets are connected to each other. Since nodes with 
larger betweenness have a larger capacity threshold, the interdependent network has a stronger ability to carry 
loads, and nodes are less prone to collapse. Therefore, the interdependent network is the most robust under 
assortative coupling. Moreover, all learning curves exhibit a three-stage characteristic with the node capacity 
parameter β . That is, adjusting the node capacity threshold within an appropriate interval can effectively improve 
the robustness of the interdependent system. Besides, the learning curves of assortative link and disassortative 
link in Fig. 3b–d have a large difference, but this difference is small in Fig. 3a. The reason for this phenomenon 
is that the degree distribution of the BA network has strong heterogeneity, while the degree distribution of the 
ER network is relatively uniform. This difference in network topology results in the difference in the robustness 
effects of the coupling modes. Therefore, when building an interdependent system, no matter what type of net-
work the subsystems belong to, choosing the assortative coupling can maximize the robustness of the interde-
pendent system. If it is necessary to select a disassortative mode for coupling, the coupling between subsystems 
with strong heterogeneity should also be avoided as much as possible.

3. Robustness analysis of interdependent networks under different coupling strengths

Table 1.  Initial parameters of the interdependent network.

Parameter ER-ER BA-BA ER-BA IEEE118-BA

The number of node 500/500 500/500 500/500 118/118

System generation parameter p0 = 0.008/p0 = 0.008 m0 = 2,m = 2/m0 = 2,m = 2 p0 = 0.008/m0 = 2,m = 2 −/m0 = 2,m = 2

< k > 4.0/4.0 4.0/4.0 4.0/4.0 3.0/2.0

Figure 2.  The relationship between the robustness index p and the network parameters α,β , η, θ.
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Keep the initial parameters of the network unchanged, and choose a random link method to couple the sub-
networks. Set the coupling strength parameters to 0.25, 0.5, 0.75, and 1, respectively. The relationship between the 
robustness of the interdependent network and the coupling strength is shown in Fig. 4. As the coupling strength 
increases, the robust performance gets worse. To obtain better robustness, the required capacity parameter β is 
larger. That is to say, the stronger the coupling strength of the interdependent network, the easier the cascad-
ing influence will spread in the network, and the easier the whole system will collapse. This echoes the results 
obtained by Parshani et al14. In addition, while all the curves in Fig. 4 exhibit three-stage characteristics, the 
connectivity p of the curves in Fig. 4d grows slowly with the parameter β . This is because the average degree 
of the two subnets is quite different, and the network similarity is low. Therefore, selecting sub-networks with 
high similarity for assortative coupling of key nodes has practical significance for improving the reliability of 
interdependent systems. 

4. Comparative analysis of node influence identification methods

Maintain the initial parameters and coupling methods unchanged. Selecting a proportion of initial failure nodes, 
the cascading failure of the interdependent network under the proposed nonlinear load capacity model is ana-
lyzed, and the proposed MAFC centrality method is compared with the classical centrality methods. As shown 
in Fig. 5, the trends of all learning curves are basically the same, which indicates that different centrality methods 
have a certain similarity in identifying influential nodes. Rank node influence according to different centrality 
methods. It can be observed that MAFC makes the connectivity of the network decay faster. In different types 
of dependent networks, the ranking accuracy of influential nodes obtained by the MAFC method is higher than 
that of the general centrality method. But obviously, there are some distinctions between Fig. 5a–d. The degree 
distribution of the network has a great impact on the ranking results. The more uniform the degree distribution 
of the network, the smaller the difference in ranking results. By simulating different types of interdependent 
networks, it means that MAFC can not only accurately identify influential nodes in interdependent networks, 
but also can be widely applied to different complex interdependent networks. Therefore, the proposed MAFC 

Figure 3.  Robustness of interdependent networks under different coupling modes.
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outperforms previous centrality methods in the context of dependent networks, which has important implica-
tions for operating and controlling complex interdependent networks.

5. Model comparison

Hold the initial parameters and network coupling mode unchanged. Select MAFC to sort node influence. The 
ML linear model (Model 1) and the proposed nonlinear model (Model 2) are compared and analyzed. As shown 
in Fig. 6, Model 2 has stronger connectivity than the ML linear model as the proportion of initial failed nodes 
increases. That is, compared with the ML linear model, the nonlinear model proposed in this paper, which con-
siders the dependencies and actual flow, is more reliable and robust. Therefore, when modeling interdependent 
networks, this model is chosen to be more robust against cascading failures while being realistic.

Discussion
Considering the traffic characteristics of the actual network and the nonlinear relationship between load and 
capacity, a nonlinear model of cascading failure based on node betweenness and node pair dependencies is 
proposed. Furthermore, the following conclusions are mainly drawn from the two aspects of the robustness and 
centrality of the interdependent network. 

1. In the nonlinear cascade failure model proposed for interdependent networks, the choice of initial param-
eters makes a difference in the robustness of the network. Increasing the capacity parameter in a small range 
can steeply improve the network robustness, but the network robustness does not change significantly after 
a certain threshold is exceeded. An increase in capacity parameters means an increase in network costs. 
Choosing appropriate network parameters can improve network robustness and reduce network costs.

2. Employing betweenness coupling instead of degree coupling, some robust laws of interdependent networks 
are obtained. The robustness of the assortative link network is the highest, and the robustness of the disas-

Figure 4.  Robustness analysis of interdependent networks under different coupling strengths.
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sortative link network is the worst. The higher the coupling strength, the worse the robustness of the inter-
dependent network. Therefore, try to select a small number of nodes with high influence to couple with each 
other, while increasing the similarity between networks.

3. A multi-attribute decision fusion centrality (MAFC) algorithm is proposed based on interdependent net-
works. This method has higher accuracy than the single centrality method in identifying influential nodes, 
which provides a strong reference for the protection and backup of influential nodes in interdependent 
systems.

4. Since the nodes sorted by MAFC are more destructive to the network, MAFC is selected to sort the network 
nodes. On this basis, the proposed nonlinear model and the ML linear model are compared. This model was 
found to be more reliable than the ML linear model.

Methods
Cascading failure propagation model for interdependent networks. 

1. Build subnet topology

Based on complex network theory, the elements in the sub-network are regarded as nodes, and the relationship 
between elements is abstracted as edges, then the subsystem can be represented by a graph as

where V = {vi|i = 1, 2, . . . ,N } is the set of all nodes in the network, and E = {ek = (vi , vj)|k = 1, 2, . . . , z } is 
the set of all connected edges of the network. 

2. Define the coupling relationship

(1)G = (V ,E),

Figure 5.  Comparative analysis of influence node identification methods.
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The betweenness indicates the ratio of the number of paths passing through the node among all the shortest 
paths in the network to the total number of shortest paths. It reflects the importance of passing through the node 
between all pairs of nodes. The degree denotes the number of all edges connected to the node. But the degree 
treats all connected edges as equivalent, which is not practical. For example, in the power system, in addition to 
geographical factors, the betweenness of nodes can better reflect the voltage load of the transformer. The traffic 
in the network is transmitted according to the shortest path, which can save cost and reduce transmission loss. 
Therefore, choosing the node betweenness to characterize the importance of system elements will be better. The 
node betweenness bi can be expressed as

where σst is the shortest path of s → t ; σst(i) is the shortest path of s → t through node i.
There are three main types of coupling relationships based on the degree of nodes, namely assortative link 

(AL), disassortative coupling (DL), and random link (RL). Sort all nodes in network A and network B accord-
ing to the degree value. Assortative link refers to selecting nodes with high degree values in network A and 
network B to link in sequence. Disassortative link refers to linking nodes with high degree values in network A 
to nodes with low degree values in network B. Random link refers to randomly selecting one node in each of the 
two subnets to link. Similarly, this paper uses the betweenness of nodes as the coupling basis to construct the 
relationship, and the steps are as follows: 

(1) Calculate the node betweenness of subnet A and subnet B, respectively, expressed as bAi and bBi;
(2) Arrange the betweenness of nodes in subnet A and subnet B in descending order, namely: 

bA1 > bA2 > · · · bAi > · · · > bAN  , bB1 > bB2 > · · · bBj > · · · > bBN  . If there are nodes with the same 
betweenness, they are sorted randomly.

(2)bi =
∑

s �=i �=t

σst(i)

σst
,

Figure 6.  Model comparison.
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(3) Select a certain proportion of nodes, and construct an interdependent network according to assortative 
link, disassortative link, and random link.

3. A cascading failure nonlinear model

In the interdependent network, the cascading failure propagation mechanism mainly includes two aspects: on 
the one hand, the redistribution of the load of nodes within each subnet causes adjacent nodes to fail due to 
overloaded loads, which in turn causes cascading failures within the subnet. On the other hand, the failure of 
sub-network nodes leads to the removal of coupled nodes, which in turn causes cascading failure propagation 
between networks. These two propagation mechanisms work together to facilitate the propagation of cascading 
faults in the interdependent network.

The load is the amount of traffic such as resources and information that a node carries when the network is 
running, and the capacity reflects the inherent ability of the node to handle the load. Based on the one-to-one 
interdependent network, the interaction between nodes in the sub-networks when cascading failures occur is 
considered. Taking subnet A as an instance, this paper redefines the initial load of a node as follows:

where LAi represents the initial load of node i in subnet A, and bAi and bBj are the betweenness of the dependent 
node pair i ↔ j , respectively. θ denotes the load adjustment parameter, and η reflects the degree of influence of 
node j in subnet B on node i in subnet A, 0 < η < 1 . The larger the η is, the more influenced by the dependent 
node.

The load and capacity of most practical networks, such as transportation networks and power grids, show a 
nonlinear relationship. Nodes with smaller capacity in the network instead have larger idle  capacity26. Therefore, 
the relationship between node capacity and initial load can satisfy the following nonlinear relationship:

where Ci is the capacity of node i, and α,β are the capacity adjustment parameters. The model degenerates to 
the  ML20 linear model when α = 1.

Assuming that node i in network A fails due to attack or overload, the load of the failed node needs to be 
distributed to neighboring nodes. If node j is a neighbor node of node i, according to the principle of partial load 
 redistribution46, the load received by node j from failed node i can be described as

where m denotes all neighbor nodes of node i, and Ŵi is the set of all neighbor nodes of node i.
When the load of the node satisfies

the node works fine. Otherwise, the node is overloaded, and the load of the node is redistributed according to 
the above principles.

Node influence identification. 

1. Classic centrality evaluation indicators

Degree centrality. Degree centrality symbolizes the ability of a node to interact with its neighbors. It describes 
the immediate impact of this node on a local scale. Nodes with greater centrality are generally considered to be 
more important. Degree centrality is defined as the ratio of the number of nodes directly connected to node i to 
the maximum possible number of nodes connected to node i.

where ki represents the degree of node i, and N represents the number of nodes in the network.

Betweenness centrality. Betweenness centrality reflects the ability of nodes to control the network flow along 
the shortest path in the network. Betweenness centrality is expressed as

where bi denotes the betweenness of node i, and N(N − 1)/2 is used to normalize the betweenness value.

Eigenvector centrality. The definition of eigenvector centrality considers both the quantity and quality of neigh-
bor nodes. The way a node increases its importance is to connect many other important nodes.

(3)LAi =
(

(1− η)bAi + ηbBj
)θ
,

(4)Ci = Li + βLαi ,

(5)�Lj = Li
Lj

∑

m∈Ŵi
Lm

,

(6)Li +�Li < Ci ,

(7)DC(i) =
ki

N − 1
,

(8)BC(i) =
2bi

N(N − 1)
,
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where aij is an element of the adjacency matrix A. � is the largest eigenvalue of A. xj represents the jth largest 
eigenvector sorted after the eigenvectors of A are normalized.

Cloneseness centrality. The closeness centrality of a node can be expressed as the inverse of the total length of 
the shortest path from node i to all other nodes in the network. The larger the centrality value, the closer the 
node i is to the center of the network, and the node i occupies an important position in the network.

where dij represents the shortest path length from node i to node j.

K‑shell decomposition. The K-shell (Ks) decomposition  method47 recursively removes nodes with degrees less 
than or equal to K, and the removed nodes simultaneously obtain a corresponding Ks value. The sub-network 
consisting of nodes with Ks value equal to K is called the K-shell of network G. K-shell decomposition can deter-
mine the position of a node in the network. It peels off the peripheral nodes layer by layer, and the node in the 
inner layer has a greater impact. 

2. Influential node identification method

Main idea. The influence of nodes is closely related to the heterogeneity of the network. Researchers have pro-
posed many centrality measurement methods for node influence identification, which characterize the impor-
tance of nodes from different perspectives. However, these methods are all aimed at a single network, and the 
network structure in the real world is complex and interdependent. It is hard to use a single metric to describe 
how important a node is in an interdependent network. Based on the idea of multi-attribute decision-making, 
multiple centrality indexes are adopted for a comprehensive evaluation, which makes up for the one-sidedness 
of a single index evaluation. Different attributes often have different effects on nodes. In order to avoid the sub-
jectivity of artificially assigning weights to centrality indicators, the entropy weight method solves the problem 
of weight distribution of different centrality indicators well. From the perspective of information dissemination, 
information entropy can represent the value of information. Generally, when a message has a high probability of 
occurrence, it means that it is widely spread. The entropy weight method can measure the size of the data differ-
ence within the index. The greater the difference, the greater the information content of the indicator. The com-
bined centrality is obtained by fusing the weight assigned to each attribute with the normalized centrality value. 
To overcome the deficiency of the interaction between adjacent nodes, a new node influence is obtained based 
on the principle of nearest and next nearest neighbors. In the interdependent network, the influence of a node is 
affected not only by the sub-network structure where the node is located but also by its coupled nodes. Therefore, 
it is essential to construct a linear function to map the influence of nodes to the other side of the subnet.

As shown in Table 2, three important features that affect the influence of nodes are summarized from five 
classic importance identification methods, namely locality, globality and node location. In this paper, the above 
five centrality indexes are adopted to compute the centrality of multi-attribute decision-making.

Computational process. Suppose a sub-network with N nodes, consider each node in the sub-network as 
a scheme and regard multiple centrality indicators for evaluating the influence of nodes as attributes of the 
scheme. Furthermore, the problem of node influence evaluation is transformed into a multi-attribute decision-
making problem. The set of all decision-making schemes can be represented as U = {u1, u2, . . . , uN } . If there 
are M centrality indicators for evaluating the influence of each node, the corresponding scheme attribute set is 
denoted as F = {f1, f2, . . . , fM} . 

(1) Establish a multi-attribute decision matrix, which consists of N nodes and M centrality indicators, denoted 
as X = (xij)N×M . 

(9)EC(i) =
1

�

N
∑

j=1

aijxij ,

(10)CC(i) =
N − 1
∑N

j=1 dij
,

(11)X =











x11 x12 · · · x1M
x21 x21 · · · x2M
...

...
. . .

...
xN1 xN2 · · · xNM











,

Table 2.  Influential node identification methods for different node attributes.

Category Locality Globality Location

Centrality methods DC, EC BC, CC Ks
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 where xij(i = 1, 2, . . . ,N; j = 1, 2, . . . ,M) in the decision matrix X represents the jth attribute of the ith 
node.

(2) Normalize the decision matrix. The value of each evaluation index varies greatly due to different dimen-
sions. Before evaluating the influence of nodes, it is necessary to eliminate the different dimensions of the 
index. The normalized matrix is denoted as Y = (yij)N×m . 

(3) Compute the information entropy of each centrality index. Suppose p = (p1, p2, . . . , pn) is a probability 
vector, 1 ≤ pi ≤ 1 and 

n
∑

i=1
pi = 1 . Information  entropy48 is defined as 

 On this basis, the information entropy of each centrality index can be calculated as follows: 

 where K = 1/lnN , Pij = yij/
∑M

j=1 yij ; if Pij = 1 , Pij = (1+ yij)/(
∑M

j=1 (1+ yij)).
(4) Compute the entropy weight of each indicator. Generally, the smaller the information entropy value is, the 

more information the index provides, and the larger the weight is. The weight assigned to each attribute is 

(5) Compute the combined centrality of nodes. The entropy weight assigned by each centrality is fused with 
the normalized centrality value, and the combined centrality of each node is obtained as 

(6) Determine the influence of a node. Based on the principle of nearest and next nearest  neighbors49, the 
degree is substituted by the combined centrality of nodes: 

 where CL(v) is the combined centrality of node v, Ŵ(u) is the set of first-order neighbor nodes of node u, 
and N(w) is the number of first-order and second-order neighbor nodes of node w. The resulting one-sided 
subnet influences are denoted by ϕA(vi),ϕB(vj) , respectively.

(7) Construct a linear mapping function. In an interdependent system, the influence of a node is related to the 
network topology where it is located and the topology of the coupled network. Taking the power system 
as an example, assume that A and B are the power grid and the communication grid, respectively. Usually, 
the power node and the communication node are not completely one-to-one coupled, and the coupling 
relationship matrix is represented as: 

 where P and Q are the number of nodes in the power grid and communication network, respectively. 
wij represents the connection relationship between the nodes of the power grid and the communication 
network. If node i is connected to node j, wij = 1 ; otherwise wij = 0.

Mapping the node influence of the communication network to the power grid is a critical link. Under the 
premise of known dependencies, the ratio of the number of edges that a single communication node interacts 
with the power side accounts for the total number of dependent edges as the degree of influence of the com-
munication node on the power node. Figure 7 shows the mapping relationship between dependent network 
layers. A and B represent the communication network and the power grid respectively. The red line represents 

(12)yij = xij

/

√

√

√
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2,

(13)I(p) = −

n
∑
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N
∑
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.
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M
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∑
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the interaction edge between node i in the A network and the node in the B network. The number of red edges 
accounts for the total number of interactive edges, which is the degree of influence of node i on network B.

Knowing the influence of the network nodes on both sides and the degree of influence between the two 
networks, this paper takes the control degree of the power node depending on the information communication 
node as the parameter of the mapping function and uses a linear mapping function to map the influence of the 
communication node to the connected nodes on the power node. Therefore, the influence of a power node is 
defined as

Evaluation indicator. After a cascading failure occurs, the robustness of the dependent network is meas-
ured by the ratio of the number of nodes in the largest connected graph to the total number of nodes, which is 
computed as follows:

where NA and NB represent the initial number of nodes in network A and network B, and N ′
A and N ′

B represent 
the number of nodes in the maximum connected graph in network A and network B after cascading faults, 
respectively.

According to the above formula, the ranking result Rank[vi ,MAFC(vi)] of the influential nodes is obtained. 
The node influence identification method is shown in Algorithm 1.

(20)FA−B =

∑P
i wij

∑Q
j

∑P
i wij

.

(21)φA(vi) = ϕA(vi)+ FA−B ∗ ϕB(vj).

(22)p =
N ′

A + N ′
B

NA + NB
,

Figure 7.  The diagram of interlayer relationship mapping in interdependent networks.
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