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Closed‑loop vagus nerve 
stimulation for heart 
rate control evaluated 
in the Langendorff‑perfused rabbit 
heart
Max Haberbusch1,2*, Bettina Kronsteiner1,2,3, Anne‑Margarethe Kramer3, Attila Kiss2,3, 
Bruno K. Podesser2,3,4 & Francesco Moscato1,2,4

Persistent sinus tachycardia substantially increases the risk of cardiac death. Vagus nerve stimulation 
(VNS) is known to reduce the heart rate, and hence may be a non-pharmacological alternative for 
the management of persistent sinus tachycardia. To precisely regulate the heart rate using VNS, 
closed-loop control strategies are needed. Therefore, in this work, we developed two closed-loop 
VNS strategies using an in-silico model of the cardiovascular system. Both strategies employ a 
proportional-integral controller that operates on the current amplitude. While one control strategy 
continuously delivers stimulation pulses to the vagus nerve, the other applies bursts of stimuli in 
synchronization with the cardiac cycle. Both were evaluated in Langendorff-perfused rabbit hearts 
(n = 6) with intact vagal innervation. The controller performance was quantified by rise time (Tr), 
steady-state error (SSE), and percentual overshoot amplitude (%OS). In the ex-vivo setting, the 
cardiac-synchronized variant resulted in Tr = 10.7 ± 4.5 s, SSE = 12.7 ± 9.9 bpm and %OS = 5.1 ± 3.6% 
while continuous stimulation led to Tr = 10.2 ± 5.6 s, SSE = 10 ± 6.7 bpm and %OS = 3.2 ± 1.9%. Overall, 
both strategies produced a satisfying and reproducible performance, highlighting their potential use 
in persistent sinus tachycardia.

Cardiovascular diseases are still the major cause of death worldwide. One condition with serious implications 
for patient health is persistent sinus tachycardia. Persistent sinus tachycardia is the chronic elevation of the 
resting heart rate which leads not only to reduced patient quality of life but also to secondary diseases such as 
cardiomyopathy1,2.

Treatment of persistent sinus tachycardia can improve left ventricular function3 and prevent the development 
of secondary diseases. Typically, the heart rate can be reduced to a physiological level by pharmacological inter-
vention, e.g., by prescription of beta blockers4 or antiarrhythmic drugs3,5. However, pharmacological therapies 
are associated with undesired side effects like tiredness, dizziness, or hypotension. Moreover, patients taking 
beta-blockers may also have an impaired heart rate response to physical activity. Finally, there is a number of 
patients that are not eligible for pharmacological therapy due to contraindications, raising the need for alterna-
tive treatment options.

Vagus nerve stimulation (VNS) is already a well-established therapy for diseases such as refractory epilepsy6–10 
or treatment-resistant depression11–14. More recently, VNS has also been getting into focus of cardiovascular 
applications such as the treatment of heart failure15–17. Multiple studies have shown that open-loop vagus nerve 
stimulation (VNS) can also effectively reduce the heart rate in animals and humans18–26 and hence may pose 
an alternative therapy for the treatment of persistent sinus tachycardia. However, to maintain the heart rate at 
the desired level and to improve the therapeutic efficacy of VNS, closed-loop control strategies are needed27–29.

The goal of this study was to develop and evaluate closed-loop control strategies for the regulation of the heart 
to manage persistent tachycardia by stimulating proximal to the superior cardiac branch of the vagus nerve. The 
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controller was developed using an in-silico model of the cardiovascular system and its autonomic control. A 
virtual study population was generated to assess and optimize the control strategy performance in the presence 
of interindividual variabilities in parameters associated with the cardiovascular system and autonomic cardio-
vascular control. Finally, the control strategy was implemented using hardware-in-the-loop tools and evaluated 
based on standard controller performance metrics in a series of experiments with Langendorff-perfused isolated 
rabbit hearts with intact vagal innervation.

A preliminary version of this work has been reported30.

Methods
This chapter is structured into five parts. First, a brief outline of the employed in-silico model is given. This part 
is followed by an overview of the closed-loop control strategy development. Then, we describe the assessment 
and optimization of the control strategy based on a virtual study population. Finally, we depict the ex-vivo 
experiments using the Langendorff-perfused rabbit heart setup to evaluate the control strategy performance.

Outline of the in‑silico model.  For the development of the control strategy, we used an in-silico model of 
the acute cardiac effects of vagus nerve stimulation that has been developed previously by our group31,32. In brief, 
the model comprises a lumped-parameter representation of the cardiovascular system with its systemic and 
pulmonary circulation, realized as modified Windkessel models, and the heart chambers modeled as non-linear 
time-varying elastances. It integrates autonomic cardiovascular control pathways including the arterial barore-
flex and pulmonary stretch reflex. The acute cardiac effects of vagus nerve stimulation were modeled on the level 
of the electrode-nerve interface by a multi-axon multi-compartment Chiu-Ritchie-Rogart-Stagg model33 and at 
the level of vagal cardiac neuroeffector junctions by a model of acetylcholine dynamics34.

Closed‑loop control strategy development.  Based on the in-silico model, a closed-loop control strat-
egy was developed which uses classical continuous stimulation and cardiac-synchronized stimulation as previ-
ously described by Ojeda et al.35 and Schwartz et al.36. In cardiac-synchronized stimulation, bursts of stimuli are 
applied with respect to the cardiac cycle (Fig. 1a). For both stimulation types, charge-balanced cathodic-anodic 
pulses were used. Continuous stimulation is defined by three main parameters, including the current amplitude 
(C), pulse width (PW), and frequency (F). In the case of cardiac-synchronized stimulation, there are two more 
parameters, namely the number of pulses per burst (NP) and the delay between the trigger event and stimulation 
burst onset (D). The onset of isovolumic ventricular contraction was used as a trigger event for the synchroniza-
tion.

A sensitivity analysis of the main stimulation parameters to select the proper control variable was conducted. 
Sobol’s variance decomposition37 was employed to identify the influence of the stimulation parameters on the 
provoked heart rate reduction in the case of open-loop VNS.

A proportional-integral (PI) controller was used that minimizes the error between a desired set heart rate 
and the measured instantaneous heart rate by adjustment of the stimulation amplitude (Fig. 1b). The stimula-
tion amplitude was limited to 6 mA, since from our experience of previous in-vivo experiments, at this level, 
side effects like contraction of neck muscles started to occur. The remaining stimulation parameters were fixed 
(PW = 500 µs, F = 30 Hz, NP = 8, D = 0 ms).

Figure 1.   Overview of the stimulation paradigm and the control strategy implementation. (a) Cardiac-
synchronized stimulation, as is defined by its five main parameters: current amplitude, C, pulse width, PW, 
frequency, F, number of pulses per burst, NP, and stimulation onset delay, D, electrocardiogram (ECG), 
stimulation signal (STIM). (b) Block diagram of the proportional-integral controller as used during in-silico 
development. Reference heart rate, HRref, measured heart rate, HR(t), integral gain, Ki, proportional gain, Kp, 
calculated error, e(t), current amplitude, C(t).
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Quantification of control strategy performance.  Similarly to the work of Ugalde et al.28, the control 
strategy performance was quantified concerning the rise time (Tr), the percentual overshoot (%OS), and the 
steady-state error (SSE). The rise time was defined as the time that is required for the heart rate to go from base-
line to 90% of the final value. The percentual overshoot was expressed as a percentage of the steady-state value, 
and the steady-state error was defined as the mean squared error calculated from the beat in which the system 
arrived at the steady state. Based on the three performance indicators a cost function was defined as the arithme-
tic mean of each performance indicator normalized to its respective worst-case requirement:

The limits for Tr, %OS, and SSE were defined as T̂r= 15 s, %̂OS=10% and ŜSE=10 bpm, respectively. Finally, 
to find the controller gains leading to the best performance in terms of Tr, SSE, and %OS, the cost function was 
minimized using Bayesian optimization with 100 evaluations of the cost function starting at the initial values 
Kp,0 = 0.1 and Ki,0 = 0.1.

In‑silico control strategy evaluation and optimization.  To generate the virtual study population, 
n = 50 unique value combinations for relevant model parameters were generated. The parameters were selected 
based on a previously conducted sensitivity analysis of the vagal cardiac control pathways32. Additional model 
parameters that may potentially exhibit inter-individual variations leading to changes in the cardiac response 
to VNS were included. The additional model parameters are associated with the sympathetic cardiac control 
pathway and the cardiovascular system. Eventually, this led to a total of 19 model parameters. A summary of the 
selected model parameters can be found in Table 1.

The parameter values were varied in a range of ± 25% which ensured that they remained in a physiologically 
meaningful range. To ensure proper coverage of the parameter space, Latin Hypercube Sampling (LHS) was 
employed. Thereby, n = 50 unique points were generated in a 19-dimensional unit hypercube which was then 
scaled using the previously defined limits of the respective model parameters. The value ranges used for each 
model parameter can be found in Table 1.

To better understand the control strategy performance in the presence of variations in the relevant model 
parameters, the influence of the controller gains on the previously defined performance indicators was investi-
gated in the whole virtual study population. Therefore, different value combinations for the controller gains Kp 
and Ki in a pre-defined range were tested. Hence, a total of n = 5000 different value combinations for parameter 
space (Kp, Ki) were generated, again using LHS to ensure proper parameter space exploration. The ranges for Kp 
and Ki were assigned based on the optimal controller gains initially found in the in-silico model of the single 
individual. The value ranges have been chosen in a trade-off between the size of the parameter space and suf-
ficient coverage using the 5000 combinations. The ranges that have been used for the generation are Kp = [2·10–5, 
0.01], Ki = [2·10–5, 0.01] and Kp = [2·10–5, 0.07], Ki = [2·10–5, 0.07] for the continuous and the cardiac-synchronized 
control strategies, respectively.

F =

1

3

(
SSE

ŜSE
+
%OS

%̂OS
+
Tr

T̂r

)

Table 1.   Summary of the computational model parameters that were varied to generate the virtual population.

Parameter Description Range Unit

GaTv Arterial baroreflex gain 0.022–0.037 mmHg−1

GpTv Pulmonary stretch reflex gain 0.27–0.45 L−1

DC,symp Time delay of sympathetic chronotropic control 2.25–3.75 s

τC,symp Time constant of sympathetic chronotropic control 1.35–2.25 s

Ras,0 Systemic vascular resistance 0.73–1.21 mmHg⋅min⋅mL−1

µfdia Mean vagus nerve fiber diameter 1.17–1.43 µm

σfdia Std. of vagus nerve fiber diameter 0.08–0.1 µm

µeldis Mean distance from stimulation electrode to vagus nerve fiber 4.4–5.4 mm

σeldis Std. of distance from stimulation electrode to vagus nerve fiber 0.22–0.28 mm

Gc,vns Gain factor of [Ach]stim 4.5–7.5 –

k1 Rate constant of acetylcholine release into cardiac-vagal synaptic cleft 0.012–0.019 s−1

kH Rate constant of acetylcholine hydrolysis in cardiac-vagal synaptic cleft 0.23–0.39 s−1

DD,vns Time delay of vagal dromotropic control 0.375–0.625 s

GD,vns Gain of vagal dromotropic control 144.4–240.6 –

PR0 Baseline atrioventricular conduction time 0.065–0.12 s

DE,max Time delay of inotropic control pathway 1.5–2.5 s

τE,max Time constant of inotropic control pathway 0.9–1.5 s

GE,max Inotropic effector gain 0.375–0.625 –

P*lv
Parameter influencing end-systolic pressure–volume relationship to adjust left ventricu-
lar contractility 202.5–337.5 mmHg
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Then, for every individual in the virtual study population and each of the controller gain combinations a step 
response test was conducted (set-value for the heart rate reduced from the respective baseline by 20 bpm). To 
quantify the performance of the control strategy, from each of the simulated step-responses in every individual, 
three performance indicators (Tr, %OS, SSE) and a cost function (F) were calculated for every point in the con-
troller gain parameter space and both control strategies.

Using these data, contour plots were generated, illustrating the average performance of the control strategy 
on the whole study population. From these plots, controller gains were identified that are potentially superior 
to the ones initially found based on the single virtual individual.

All simulations were performed in MathWorks SIMULINK 9.1 (R2019a).

Ex‑vivo control strategy evaluation.  Finally, the control strategy was evaluated in ex-vivo isolated rab-
bit hearts (n = 6) with intact cardiac vagal innervation testing both sets of controller gains identified in-silico. All 
experiments were approved by the Institutional Animal Care and Use Committee of the city of Vienna (BMBWF 
2020-0.016.858-GZ 2020-0.016.858) and conducted following relevant guidelines and regulations. The experi-
ments were performed and reported in accordance with the ARRIVE guidelines. All surgical procedures were 
carried out under deep anesthesia (sevoflurane 4%) in ventilated animals.

Surgical procedure and isolated heart experiment setup.  In brief, the right vagus nerve has been 
dissected starting from the nodose ganglion and moving down to the heart taking special care of cardiac 
branches given off by the vagus nerve44. The innervated-heart preparation was mounted on an erythrocyte-
perfused isolated heart system45. The heart was perfused under constant pressure (80 mmHg) in Langendorff 
mode. During the experiment, the vagus nerve was immersed in isotonic sodium chloride to maintain the nerve 
vital and excitable.

Two wire electrodes (MyoStim® Bipolar Bifurcated) were implanted into the right atrium (Fig. 2a) to acquire 
the electrocardiogram (ECG) which was high-pass filtered at 1 Hz, low-pass filtered at 1000 Hz, and pre-amplified 
with a gain of 1000 using a differential amplifier (Warner DP-304A).

Two needle electrodes were inserted into the vagus nerve with the cathode and anode approximately 2 mm 
and 5 mm cephalad to the superior cardiac vagal branch, respectively (Fig. 2b). The needle electrodes were 
connected to a linear isolated stimulator (Biopac® STMISOLA) which was operated in current-control mode.

Control strategy evaluation experiment.  The control algorithm was implemented using a rapid pro-
totyping system (DSPACE MicroLabBox) whose input and output were connected to the bioelectrical amplifier 
and the stimulator, respectively, to close the loop (Fig. 2c). For the synchronization of the stimulation with the 
cardiac cycle, the R-peaks of the ECG were used as the trigger event. Therefore, the ECG was rectified, and the 
signal maxima were calculated for windows of 5 s. The threshold for R-peak detection was calculated as 75% of 
the magnitude of the peaks identified from the preceding five windows.

Heart rate reduction steps of 20 bpm from baseline were performed analogously to the in-silico experiments. 
The stimulation was on for at least 30 s and the stimulation intervals were separated by at least 30 s or until the 
heart rate returned to baseline. The baseline heart rate was determined from the first 5 min after the heart was 
mounted to the isolated heart system and Langendorff perfusion had been started.

All data were post-processed calculating the previously described performance indicators.

Statistical analysis.  First, all step responses obtained from the isolated heart experiments were visually 
inspected, and records exhibiting potential issues such as major arrhythmic events, loosening of electrodes, 
or changes in stimulability due to nerve degeneration were excluded from the analysis. For all remaining step 
responses, the respective performance indicators were calculated as previously described and stored in a data-
base for further statistical analysis. Mean and standard deviations were calculated for all performance indicators 
in the virtual population and the ex-vivo experiments. The performance indicators for initial and optimized 

Figure 2.   Overview of the experimental setup. (a) Isolated heart preparation with needle electrodes inserted 
into the vagus nerve for stimulation and wire electrodes inserted into the base of the right atrium to measure 
the electrocardiogram. (b) Zoomed-in image of the needle electrodes inserted into the vagus nerve next to 
the superior cardiac branch with the cathode caudal and the anode cephalad. (c) Schematic overview of the 
hardware-in-the-loop implementation of the control strategy. Reference heart rate, HRref, measured heart rate, 
HR(t), calculated error, e(t), current amplitude, C(t), control voltage for the isolated stimulator Vc(t).
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controller gains were tested for differences using a two-tailed Student-t test at a significance level of 0.05. All data 
analysis was performed using Mathworks MATLAB (R2019a).

Results
Control strategy development.  For the control strategy development, it was vital to select the proper 
stimulation parameter. Therefore, the influence of main VNS parameters on the provoked heart rate response 
was investigated in a sensitivity analysis of the in-silico cardiovascular system model. The main effects show that 
the current amplitude has the greatest influence on the heart rate response, explaining 51.8 ± 1% of the observed 
variability. It is followed by the pulse width and number of pulses explaining 23.2 ± 0.7% and 8.3 ± 0.2% of the 
variability in the heart rate responses, respectively. The stimulation frequency and -delay play only a negligible 
role, explaining only 0.4 ± 0.01% and 0.1 ± 0.01% in the observed variability. Based on these results, the current 
amplitude has been chosen as the control variable.

Control strategy evaluation and optimization in the virtual study population.  The previously 
developed controls strategy has been evaluated with respect to three performance indicators, rise time (Tr), 
steady-state error (SSE), and percentual overshoot (%OS). The overall controller performance was quantified by 
a cost function (F), calculated as the mean value of Tr, SSE, and %OS normalized to their respective maximum 
acceptable values. Figure 3 shows the contour plots for the average model performance indicators for the whole 
virtual population. The acceptable limits for the performance indicators are highlighted by the black contour 
lines. In Fig. 3, we can see a domain of controller gains in the parameter space that all satisfy these limits. In the 
case of continuous stimulation (Fig. 3a), the initially found controller gains all satisfy the constraints. For the 
cardiac-synchronized stimulation, the %OS is violated (Fig. 3b).

For the cardiac-synchronized stimulation, the best performing values for Kp and Ki that were found based on 
a single virtual individual were 0.01 and 0.05, respectively which led to Tr = 5.1 s, SSE = 3.6 bpm, and %OS = 0.1%. 
These gains were tested on the entire virtual population, for which the performance indicators were Tr = 1.3 ± 1.7 s, 
SSE = 7.3 ± 3.4 bpm, and %OS = 20.5 ± 12.9%.

Based on the results of the analysis of the cardiac-synchronized control strategy performance on the whole 
virtual study population, an arbitrary gain combination was chosen from the identified optimal domain that 
potentially performs better than the initially found combination. The selected gains were Kp = 0.008 and Ki = 0.01 
which, in the virtual population, resulted in Tr = 9.7 ± 12.4 s, SSE = 4.4 ± 1.5 bpm and %OS = 0.2 ± 0.5%.

For the continuous stimulation, the best performing values for Kp and Ki that were initially found based 
on a single virtual individual were 0.001 and 0.005, respectively, resulting in Tr = 4.7 s, SSE = 2.8 bpm, and 
%OS = 8.2%. For the test on the virtual population, these gains led to a mean Tr = 3.9 ± 0.4 s, SSE = 4.6 ± 3.4 bpm, 
and %OS = 7 ± 5.4%.

Also, for the continuous control strategy, gain values were chosen from the identified optimal domain that 
should lead to improvements in the performance indicators compared to the initially found controller gains. 
The selected gains were Kp = 0.0005 and Ki = 0.003 which led to a mean Tr = 6.4 ± 0.7 s, SSE = 3.5 ± 3 bpm, and 
%OS = 3.8 ± 4.2%.

Figure 3.   Contour plots of average performance indicators for the whole virtual study population in 
parameter space (Kp, Ki) for (a) continuous stimulation and (b) cardiac-synchronized stimulation. Initial 
gain combinations found based on single individual simulation are depicted as point marker and optimized 
gain combination selected on virtual population are depicted as triangle marker. The acceptable limits for all 
performance indicators are highlighted by the black contour lines. In the panels where no black contour line is 
visible, the entire parameters space is part of the optimal domain.
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Ex‑vivo control strategy evaluation.  Finally, the control strategy performance was evaluated for the 
continuous and cardiac-synchronized stimulation and both respective sets of controller gains in isolated Lange-
dorff-perfused rabbit hearts (n = 6) with intact vagal innervation. Figure  4 shows exemplary step responses 
obtained in one ex-vivo experiment for the initially found gain combinations and the gains optimized based on 
the virtual population for continuous stimulation (Fig. 4a,b) and cardiac-synchronized stimulation (Fig. 4c,d).

For the cardiac-synchronized stimulation, the optimized controller gains led to a major improvement in the 
steady-state error at the cost of an increased Tr. In the case of continuous stimulation, however, one can see that 
the initially found gains already perform very well and that the optimized gains did not lead to a major improve-
ment in control strategy performance. Qualitatively, this behavior was consistent across all ex-vivo experiments 
which are quantitatively analyzed in the following.

The control strategy performance was quantified in terms of Tr, SSE, and %OS which were calculated for the 
step responses in all ex-vivo experiments. In every experiment, on average, three step responses were performed. 
During offline analysis, step responses exhibiting potential issues such as major arrhythmic events or substantial 
reduction in nerve stimulability were removed. In total, 13 records were excluded, resulting in 15 step responses 
that were used for the analysis below.

For cardiac-synchronized control, in the ex-vivo setting, the initially found gain combination (Kp = 0.01, 
Ki = 0.05) led to Tr = 4.9 ± 2.9 s, SSE = 44.2 ± 26.5 bpm and %OS = 7.3 ± 3.2% (Fig. 4f–h). Overall, the substantially 
increased SSE resulted in the exceedance of the limit of the predefined cost function. The optimized gain com-
bination (Kp = 0.008, Ki = 0.01) resulted in Tr = 10.7 ± 4.5 s, SSE = 12.7 ± 9.9 bpm and %OS = 5.1 ± 3.6%, leading to 
a cost function value well within the predefined limit (Fig. 4e–h). Overall, the optimization led to a substantial 
improvement of the control strategy performance, leading to a significant reduction in the cost function by 
71.3% (Fig. 4e, two-tailed t-test, p = 0.011). This reduction was mainly achieved by a vast decrease of the SSE by 
31.5 bpm (Fig. 4g, two-tailed t-test, p = 0.006). The reduction in SSE was achieved at the cost of Tr which was 
concurrently increased by about 5 s (Fig. 4f, two-tailed t-test, p = 0.031). There was also a slight decrease in %OS 
by 2.2% which, however, was not statistically significant (Fig. 4h, two-tailed t-test, p > 0.05).

For the continuous control, the initially found gain combination (Kp = 0.001, Ki = 0.005) resulted in 
Tr = 10.2 ± 5.6 s, SSE = 10 ± 6.7 bpm and %OS = 3.2 ± 1.9% and F = 0.6 ± 0.2 (Fig. 4e–h). Hence, with this param-
eterization, all performance indicator constraints were satisfied. The optimized gain combination (Kp = 0.0005, 
Ki = 0.003) resulted in a very similar but slightly worse performance compared to the initial gain set. With these 
controller gains the performance indicators were Tr = 12.5 ± 6.7 s, SSE = 12.6 ± 9.3 bpm and %OS = 2.4 ± 2.7% and 
F = 0.7 ± 0.3, which, despite the SSE, all are also well within the desired limits (Fig. 4e–h). A two-tailed Student 
t-test was performed which showed there were no statistically significant differences between performance 
indicators for the initial and optimized controller gains at a significance level of 0.05.

Discussion
Persistent sinus tachycardia leads to impaired patient quality of life, possible secondary disease, and a substan-
tially increased risk of cardiac death. It is typically treated by prescription of beta blockers4 or antiarrhythmic 
drugs3,5. However, pharmacological treatment is not only associated with various side effects, but also it is often 
not even possible due to counterindications. Since VNS is known to have a pronounced bradycardic effect, it has 

Figure 4.   Exemplary heart rate response along with the corresponding stimulation signals for a step reduction 
of 20 bpm from baseline for (a) Kp = 0.01, Ki = 0.05 and (b) Kp = 0.008, Ki = 0.01 using the continuous control 
strategy, and for (c) Kp = 0.001, Ki = 0.005 and (d) Kp = 0.0005, Ki = 0.003 using the cardiac-synchronized control 
strategy recorded in one isolated heart. Overview of the strategy performance on the whole study population 
as quantified by (e) the cost function, (f) rise time, (g) steady-state error, and (h) percentual overshoot for the 
initial and optimized controller gains. Differences in the mean performance indicators were tested using a two-
tailed Student-t test.
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the potential as a non-pharmacological treatment alternative to offer patients that are not eligible for conventional 
therapy. Other non-pharmacological approaches that are already used in clinics include the Medtronic AT500 
pacemaker for anti-tachycardia pacing to treat atrial and ventricular tachycardias48. Although based on a differ-
ent effect mechanism this highlights the clinical need for treatment alternatives to traditional pharmacological 
intervention. In comparison to anti-tachycardia pacing, VNS can be considered a more physiological way to 
reduce the heart rate since it unfolds its effects through increased parasympathetic efferent cardiac outflow which 
may also evoke additional cardioprotective effects49.

For the application of VNS to manage persistent tachycardia, it is crucial to elicit a reasonable bradycardic 
response. An inappropriate decrease of the heart rate that does not correspond to an individual’s physiological 
needs for a given level of physical activity might potentially lead to negative effects like an insufficient blood sup-
ply of peripheral tissues resulting in hypoxia. Recent studies of VNS therapy for cardiovascular diseases like atrial 
fibrillation or hypertension often apply “low-level” vagus nerve stimulation with stimulation intensities below 
the threshold at which bradycardic effects start to occur46,47. In both cases, a bradycardic response is considered 
an undesired side-effect that should be mitigated if possible.

The goal of the present study was to reduce the heart rate in persistent tachycardia, for which it is explicitly 
desirable and necessary to apply VNS at an intensity that elicits a substantial bradycardic effect. To lower the heart 
rate and accurately maintain it at the appropriate level using VNS, it is necessary to employ closed-loop control 
concepts. The appropriate set heart rate that is attained by the controller may be defined by a physician based on a 
patient’s physiological condition. In contrast, although open-loop stimulation is often used for neuromodulation 
therapies, especially for the treatment of neurological disorders, it does not permit precise continuous control of 
a physiological parameter like the heart rate. This is particularly important to avoid possible negative physiologi-
cal implications of a bradycardic heart rate that does not match the physiological activity. Moreover, changes in 
nerve fiber activation thresholds, e.g., from connective tissue formation at the electrode-nerve interface, may 
lead to inconsistent heart rate responses for given stimulation intensities. Also, the required intensity to elicit a 
desired heart rate reduction will vary depending on the level of concurrent sympathetic activity and circulating 
catecholamines. Hence, the application of open-loop VNS for the treatment of persistent tachycardia requires 
continuous titration through a physician in very short time intervals. Otherwise, there is the risk of either under- 
or overstimulation resulting in low therapeutic efficacy or adverse events. This titration therefore becomes a 
process that will not always be feasible in practice. In our opinion, these circumstances justify the preference for 
closed-loop- over open-loop stimulation for the treatment of persistent sinus tachycardia.

In this work, we developed two control strategies based on an in-silico model, which we validated in the ex-
vivo isolated rabbit heart with intact vagal innervation. Since this setup eliminates the chronotropic influence of 
the autonomic nervous system, it allowed us to quantify the pure performance of the controller.

To select the proper control variable, an in-silico sensitivity analysis of the main VNS parameters has been 
performed. The sensitivity analysis showed that the current amplitude has the greatest influence on the provoked 
chronotropic effect, followed by pulse width, number of pulses, frequency, and delay in this order. These results 
are consistent with the findings of Ojeda et al.35. In their study, a similar sensitivity analysis was performed 
based on data collected from VNS experiments in anesthetized sheep showing the same order of importance of 
stimulation parameters with quantitatively similar results for Sobol’s first-order indices. Because of its preemi-
nent influence on the provoked heart rate response, we selected the current amplitude as the control variable. 
However, depending on the employed implantable stimulator, pulse width might pose a better target concerning 
energy efficiency.

For the evaluation of the in-silico developed and optimized closed-loop VNS control strategy, a novel 
approach was pursued by using ex-vivo isolated rabbit hearts with intact vagal innervation38. This allowed 
evaluation of the controller performance in the complete absence of possible confounding mechanisms such as 
anesthetic effects or physiological feedback loops like the arterial baroreflex. Although Ng et al. have previously 
used the in-situ isolated rabbit heart with intact vagal innervation to study the acute cardiac effects of vagus nerve 
stimulation39–43, to the best of our knowledge, that is the first study that uses this model for the investigation of 
closed-loop VNS strategies for heart rate control in a novel fully ex-vivo setting.

In the past decades, acute chronotropic effects of open-loop VNS have been extensively studied in anesthe-
tized animals50–53 and in-situ isolated rabbit hearts39–43. Previous investigators have also evaluated closed-loop 
VNS for heart rate control in acute in-vivo experiments in anesthetized animals18,27–29,54–57 The disadvantage of 
the in-vivo model is that anesthetic effects and physiological variations cannot be excluded, which may potentially 
affect the assessment of the control strategy performance28.

Previous studies demonstrated the cervical vagus nerve as a stimulation target for closed-loop heart rate 
control18,27–29,54–57. Since the cervical vagus nerve contains afferent and efferent nerve fibers innervating virtually 
any organ, stimulation at this level is potentially accompanied by side effects like contraction of neck muscles, 
hoarseness, or hiccups10. By stimulating proximal to the superior cardiac branch, we may improve the selectivity 
of the stimulation maximizing the chronotropic response while reducing side effects associated with stimulation 
at the cervical level. This novelty represents a major improvement to standard cervical VNS, though, at the cost 
of increased invasiveness of the implantation procedure. However, this drawback might not be relevant with the 
steady advance in minimally invasive techniques.

For cardiac-synchronized stimulation, the analysis conducted on the virtual study population shows that the 
controller gains that were initially found based on the in-silico model of the single individual were part of the 
optimal domain of controller gains leading to satisfaction of the predefined limit for the cost function. According 
to the results of the virtual study population, however, there was the possibility to further increase the control 
strategy performance by using the optimized controller gains. Based on the in-silico predictions, this reduction 
in controller gains could lead to a 62% improvement in the cost function by a concurrent reduction in SSE and 
%OS at the cost of an increase in Tr. In the ex-vivo experiment, the optimized controller gains indeed led to a 
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vast decrease in the cost function of 56% which was even greater than predicted in the in-silico experiment. This 
decrease in the cost function could be mainly achieved by a strong reduction of about 71% in the SSE. There was 
also a slight concurrent decrease of about 30% in the %OS and an increase in the Tr of about 47%. Overall, the 
in-silico optimized control strategy led to very good overall performance in terms of Tr, SSE, and %OS. Moreover, 
the test in the virtual study population suggests satisfying performance in a broad variety of patients exhibiting 
variations in physiological parameters associated with the cardiovascular system and its autonomic control.

In the case of continuous stimulation, the in-silico analysis in the virtual population shows already excel-
lent controller performance. However, the simulations suggest, that by reducing the Kp and Ki, the %OS could 
be further increased. Looking at the results from the ex-vivo experiments, the %OS could indeed be slightly 
improved by 30% by using the optimized controller gains. However, the overall control strategy performance 
quantified by the cost function could not be improved. Indeed, there was even a slight degradation in the control 
strategy performance when using the optimized controller gains compared to the initially found gains. None of 
the differences in the performance indicators between initial- and optimized gains were statistically significant.

Although the control strategy performance was improved in the ex-vivo experiment in a similar way as sug-
gested by the in-silico model, there is a general discrepancy between our experimental- and simulation results. 
Especially for the cardiac-synchronized stimulation, the ex-vivo experiments showed substantially higher SSE 
than predicted by the computer model. A possible reason is that the employed single-cell model of the sinoatrial 
node might not be able to properly capture the phase sensitivity to vagus nerve stimulation observed experimen-
tally. Therefore, adjustment of the stimulation delay might influence the performance of the cardiac-synchronized 
control strategy and should be investigated in future experiments.

For the proposed control strategies there is the potential risk of reducing the heart rate to a level that does 
not match the individual’s physiological needs for the given state of physical activity. However, through apt 
adjustment of the desired set heart rate, this issue can be properly addressed. Since persistent sinus tachycardia 
is primarily relevant for the resting condition, a physician can define an appropriate resting heart rate corre-
sponding to the patient’s specific condition. For handling the transition to an exercise condition, a mechanism 
of VNS withdrawal similar to rate-responsive pacing can be envisioned. Here sensor data, e.g., from wearable 
accelerometers can be used to estimate the level of physical activity and to provide a proper set heart rate to the 
closed-loop controller that matches the patient’s physiological needs.

The method that was used for the online detection of R-peaks in the ECG is a very simple one, that was 
demonstrated to be sufficient for the very well-controllable ex-vivo experimental condition. Nevertheless, this 
technique might not be able to reliably detect R-peaks with sufficient accuracy in the in-vivo condition, e.g., due 
to potential misdetections caused by changes in signal amplitude. Therefore, for future work, especially in the 
case of long-term in-vivo studies, the implementation of more sophisticated algorithms for R-peak detection, 
like the standard algorithm of Pan and Tompkins58 is planned.

Recent work is directed toward the evaluation of the control strategy performance in the isolated working 
heart setup in which the circulation is closed, and physiological pressure conditions are produced in the heart 
chambers. This will allow us to analyze the concurrent effects of the closed-loop vagus nerve stimulation on 
atrioventricular conduction time and ventricular contractility. Future work will be dedicated to the incorpora-
tion of algorithms for estimation of physical activity to achieve rate responsive-pacing and hence ensure heart 
rates that fit the hemodynamics needs for a given level of physical activity.

To conclude, we applied an in-silico model of the acute cardiac effects of cervical vagus nerve stimulation 
for the development of closed-loop heart rate control strategies. The control strategy performance was assessed 
and optimized based on a virtual study population in which relevant model parameters were varied to resemble 
expected physiological interindividual variations. Finally, the control strategy was evaluated in Langendorff-
perfused rabbit hearts with intact cardiac innervation. The in-silico-developed control strategy resulted in overall 
good and reproducible performance, satisfying all constraints for controller rise time, percentual overshoot, and 
steady-state error.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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