
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18997  | https://doi.org/10.1038/s41598-022-23364-w

www.nature.com/scientificreports

Semi‑supervised learning 
for topographic map analysis 
over time: a study of bridge 
segmentation
Cheng‑Shih Wong1, Hsiung‑Ming Liao1, Richard Tzong‑Han Tsai1* & Ming‑Ching Chang1,2*

Geographical research using historical maps has progressed considerably as the digitalization of 
topological maps across years provides valuable data and the advancement of AI machine learning 
models provides powerful analytic tools. Nevertheless, analysis of historical maps based on supervised 
learning can be limited by the laborious manual map annotations. In this work, we propose a semi-
supervised learning method that can transfer the annotation of maps across years and allow map 
comparison and anthropogenic studies across time. Our novel two-stage framework first performs 
style transfer of topographic map across years and versions, and then supervised learning can be 
applied on the synthesized maps with annotations. We investigate the proposed semi-supervised 
training with the style-transferred maps and annotations on four widely-used deep neural networks 
(DNN), namely U-Net, fully-convolutional network (FCN), DeepLabV3, and MobileNetV3. The best 
performing network of U-Net achieves F1

inst:0.1 = 0.725 and F1
inst:0.01 = 0.743 trained on style-

transfer synthesized maps, which indicates that the proposed framework is capable of detecting 
target features (bridges) on historical maps without annotations. In a comprehensive comparison, the 
F1

inst:0.1 of U-Net trained on Contrastive Unpaired Translation (CUT) generated dataset ( 0.662± 0.008 ) 
achieves 57.3 % than the comparative score ( 0.089± 0.065 ) of the least valid configuration 
(MobileNetV3 trained on CycleGAN synthesized dataset). We also discuss the remaining challenges 
and future research directions.

Large-scale scanning and digitization of historical maps in recent year has provided valuable data that enable 
automatic machine learning algorithms to be applied. Topographic maps contain rich information of geographic 
features such as transport networks, population settlement distributions, toponyms, landscape status, etc. These 
maps are valuable for expediting research on geographic changes for numerous aspects including political, social, 
or environmental studies. However, human interpretation and annotation of historical maps take considerable 
time and might require tremendous amount of efforts. The need of automatic map analysis and understand-
ing tools has become an emerging trend. In this work, we develop a semi-supervised learning framework that 
enables the learning of map analytic models (such as the detection and segmentation of features or legends) to 
be transferred and applied across versions of maps. This framework can facilitate geographic study across years 
or different versions and types of map, including historical analysis or political cross-referencing, without the 
need of data re-annotation or cross-annotation.

Automatic extraction and understanding of geographic features is an active research area. With the raise of 
AI and deep learning, deep neural networks have been widely applied to many topics of Geographic Information 
System (GIS), including geospatial or topographic map analysis and historical map study. With the availability 
of large-scale labeled datasets and powerful deep networks such as the Convolutional Neural Network (CNN), 
success has been wildly achieved in topics including road type detection1, mine or mineral extent identification2, 
and the extraction of archaeological features from historical map series3. The ability to automatically identify geo-
graphic features from historical maps can benefit research investigation of the anthropogenic modifications over 
time. For example, Chen et al..4 reconstructed Taiwan land cover categories by applying empirical rules to classify 
attributes of historical maps. They found that the area of urban land is closely related to population expansion.
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The training of fully supervised models on large-scale data typically requires large amount of data, where the 
annotation is laborious and non-scalable. To this end, semi-supervised learning5–7, transfer learning8–11, and self-
supervised learning12–14 can mitigate this issue, however with assumptions and limitations. For the annotations 
in map understanding, the drawing conventions of cartography from different countries and years are usually 
very different in the colors and symbols. The legends or signs can vary considerably from map to map, even if 
they represent the same geographical information. Oftentimes, map annotations are not shareable or transferable 
to another map, even for identical or overlapping geographical locations. This results in insufficient annotations 
in both quantity and quality, to perform supervised machine learning on the maps. In order to overcome this 
issue, semi-supervised learning has been applied in a few early works for obtaining ancillary data for recognize 
geographic symbols in historical maps. Uhl et al.. propose an automated machine learning framework15–17 to 
extract human settlement symbols from contemporary geospatial data. Duan et al..18,19 address the misalignment 
problems of contemporary vector data using deep learning methods. These works rely heavily on the available 
contemporary vector data, which imposes strong limitation on the year of the historical maps used for feature 
extraction. For instance, these models might align a non-existent road or fail to identify a human settlement on 
a historical map, if these features have disappeared in the contemporary vector data. Thus, performance of the 
learned analytical models is affected by the geographical variations among different years of the historical maps.

In this paper, we formulate the historical map analysis as a research problem of applying semi-supervised 
learning to enable the sharing of cross-year annotation data. We assume that geographic information changes 
gradually over time on the historical map series, and such information can be leveraged via map information 
fusion. We present a novel two-stage framework with focus on the specific problem of bridge segmentation on 
maps, with the transferring and blending of annotations across historical maps. This way, we can solve the anno-
tation misalignment issues mentioned in the previous paragraph. The first stage of our framework is map image 
style transfer, which can transfer the content of a map into the style of a desired year that enables map feature 
sharing across years. The second stage is the training of a deep neural network based on the synthetic map data 
and augmented annotations that are transferred from other maps. Figure 1 overviews the proposed framework.

Our contributions are summarized as follows:

•	 Problem formulation We formulate the cross-year historical map analysis as a data fusion and semi-supervised 
machine learning problem.

•	 Approach We propose a novel two-stage framework, where map image style transfer and annotation fusion 
can effectively deal with the insufficient label issue. We show that model trained this way can detect and seg-
ment geographic features across different versions of historical maps.

•	 Dataset We assemble a multi-year historical map dataset consisting of contemporary and historical map tiles, 
which come with bridge segmentation groundtruth masks covering northern Taiwan.

•	 Evaluation Extensive experiments are conducted for evaluating the performance of three state-of-the-art 
style transfer networks and four semantic segmentation networks in the proposed framework.

Figure 1.   The proposed two-stage framework for cross-year historical map analysis based on semi-supervised 
learning of map style transfer and bridge segmentation. † The maps in this figure are provided by Taiwan 
Historical Maps System (https://​gis.​sinica.​edu.​tw/​tiles​erver/) with permission.

https://gis.sinica.edu.tw/tileserver/
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Methods
Problem formulation.  We formulate the geographic map analysis tasks (e.g. legend recognition or land 
segmentation) across different versions of maps with partial annotations as a problem of semi-supervised learn-
ing for semantic segmentation. The input images consist of map tiles of in all versions or time periods, however 
the annotations for each version of map might be distinct, lacking in different aspects, or even inconsistent. The 
problem is then on how best to perform annotation alignment and fusion, such that labels across years can be 
transferred for used in analysis or model training.

In our semi-supervised setting, groundtruth annotations including the target feature segmentation contours 
are only available in the contemporary map, while our goal is to train a model that can recognize the target fea-
tures on maps from different versions or years with distinct styles or legends. Specifically, let X = {xi}

N
i=1 denote 

the images of the N map tiles, and Y =
{

yi
}N

i=1
 denote the groundtruth map annotations of X. Let X ′ =

{

x′i
}N

i=1
 

denote the map tiles of the targeted year without annotations that we desire to perform analysis on. Figure 2 
shows a conceptual illustration of the proposed semi-supervised learning of models that can analyze geographic 
features on maps across versions and time.

Our semi-supervised learning framework for enriching and transferring map annotations is based on an 
assumption, that maps of across multiple versions or years are available, such that the annotations across versions 
can be transferred for the enrichment of annotations. Our study on the georeferencing of maps across versions or 
time can bring valuable research insight. For example, the study of a city or country across years can provide valu-
able information for understanding the chronological development at a larger scale. The analysis across versions 
of maps provides a way to effectively study the geographical (spatial) and chronological (temporal) relationships.

We hypothesize that data-driven models can be trained using only annotations of a specific map versions, 
and that such annotations are transferable for model training on other versions of maps. Specifically, our goal is 
to find a function M using the contemporary map tiles X with annotations Y, together with the historical map 
tiles X ′ , and predict Y ′ the geographic features on the historical map tiles, M :

{

X,Y ,X ′
}

�→ Y ′.
In this study, we focus on the analytic segmentation of bridges from maps. We choose the bridges as the tar-

geted feature to extract, as the bridges serve as a crucial role in the basic infrastructure and urban development. 
Bridges are essential constructions crossing diverse geographic barriers in many countries, especially in Taiwan. 
There were more than 30,000 bridges20 recorded in Taiwan in 2015. Identifying the locations and connectivity of 
bridges from historical maps can greatly assist the geographical researchers in the investigation of the function-
ality and migration of bridges over time. The proposed method provides an effective approach to train a bridge 
segmentation model that can identify and localize bridges on the historical maps, where the annotations of are 
not available and not required.

The two‑stage framework for bridge segmentation.  The proposed framework for cross-year map 
geographic feature segmentation consists of two stages. The first stage aims to synthesize maps with the style 
of the historical map, using the contents from the contemporary map. Since the geographic features of the syn-
thesized historical map are transferred from the contemporary map, we expect that the contemporary vector 
data probably fits the features of the synthesized map. In the second stage, semantic segmentation models can 
be trained using these image pairs with partial supervision to analyze geographic features on historical maps.

Stage 1: Map content transfer and synthesis across versions and years In the presence of the misalignment issue 
shown in Fig. 3, we resolve this issue by transferring the content of contemporary maps across versions and years. 

Figure 2.   An illustration of supervised vs. semi-supervised learning concepts for applying machine learning for 
contemporary and historical map analysis. Here the analysis is on automatic bridge detection and segmentation. 
† The maps in this figure are provided by Taiwan Historical Maps System (https://​gis.​sinica.​edu.​tw/​tiles​erver/) 
with permission.

https://gis.sinica.edu.tw/tileserver/


4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18997  | https://doi.org/10.1038/s41598-022-23364-w

www.nature.com/scientificreports/

Since the contemporary vector Y does not align with the historical maps X ′ , a style transfer model, Contrastive 
Unpaired Translation (CUT)21, was chosen to synthesize historical maps with contemporary content.

The CUT is a Generative Adversarial Nets (GAN)22 based image-to-image translation model that learns a 
cross-domain similarity function by maximizing mutual information23. The GAN model consists of a genera-
tor and a discriminator. In our case, the generator G generates a historical-look map tile from a contemporary 
map tile. On the other hand, the discriminator D outputs a single scalar of a given map tile x, representing the 
probability that x is come from historical maps. The loss function of CUT includes an adversarial loss and a 
PatchNCE loss from the CUT paper. For the adversarial loss, the generator is trying to fool the discriminator by 
producing map tiles looked historically, but at the same time the discriminator distinguishes between real and 
fake historical map tiles. The PatchNCE loss maximizes the mutual information between the input contemporary 
map tiles and the output synthesized historical map tiles.

With this CUT model, map tiles with contemporary content and historical style are synthesized by an opti-
mal generator G∗ : X̂ ′ = G∗(X) . Thus, the synthesized historical map X̂ ′ are used to train semantic segmentation 
model with contemporary groundtruth masks Y in the Stage 2.

Stage 2: The training of the bridge segmentation network An U-Net24 was employed to segment the target 
features in the proposed framework. The encoder of the U-Net consists five layers downsampling the input map 
tiles to 64, 128, 256, 512, 1024 channels with two 3× 3 convolutions and one 2× 2 max pooling each layer. Next, 
the decoder also consists five corresponding upsampling layers, and each upsampling layer does 2× 2 up-con-
volution halving the number of channels from the previous layer and concatenates features from the correspond-
ing downsampling layers as known as skip connections. The output is computed by the final layer of the decoder 
with a 1× 1 convolution as the number of classes channels: Ŷ ′ = UNet

(

X̂ ′
)

 . We selected the Lovász-Softmax 
loss25 to calculate the segmentation loss, which improves the accuracy of semantic segmentation. The loss is 
measured on the output of the U-Net Ŷ ′ and the contemporary annotations Y, and the U-Net is optimized by 
minimizing the loss with Adam26 optimizer. That is to say, our model is trained using annotations from a version 
(2017), and when tested, it is expected to work on another version (2001).

Post-processing After masks for the target geographic features are predicted by our model, additional post-
progressing steps transform the masks of map tiles into vector data across all map tiles. First, morphological 
opening operation with ellipse kernel (kernel size 5 pixels) eliminates noisy small pixel groups. Second, morpho-
logical closing operation with the same setting of the opening operation is used to complete the shape of target 
features. The contours of the predicted masks are extracted as vectorized polygons, and final vector data of the 
features is the union of such polygons across all map tiles.

Experimental results
We start this section by explaining how we collect the topographic maps and the processing of them. We next 
describe the evaluation metrics for comparing the performance of bridge segmentation, and present experimental 
results. We will show that the proposed framework is capable of training a bridge segmentation network to seg-
ment bridges on the 2001 historical map, while only uses the contemporary 2017 annotations for training. We 
will also compare across multiple popular network backbones that are used for semantic segmentation.

Data source.  We perform model training and evaluation experiments on the Taiwan historical maps from 
1957 to 2017 provided by the Center for Geographic Information Science (GIS), Research Center for Humanities 
and Social Sciences (RCHSS) at Academia Sinica (http://​gis.​rchss.​sinica.​edu.​tw). These maps available through 
the Web Map Tile Service (WMTS) (https://​gis.​sinica.​edu.​tw/​tiles​erver), a standard protocol published by the 
Open Geospatial Consortium. Since the 2017-2019 maps tiles of southern Taiwan is still under construction, 
we conduct experiments on the northern portion of historical maps. Figure 4 shows examples the map tiles in 
scale of 1:25,000 from 2017-2019, 1999-2001, 1992-1994, 1985-1989, and 1957-1969. Observe the difference of 
legend used in the maps across years, for example, the thickness and color of line symbols for different types of 

Figure 3.   An example of misalignment of geographic features between a contemporary map and a historical 
map. In (a), an example map tile published in 2001 shows some possible misalignment between bridges 
in contemporary vector data (green strokes) and on historical maps (red strokes), and (b), (c), and (d) are 
subregions in (a) to emphasize the misalignments. In (b) bridges had changed greatly by 2001, while in (c) 
the Baan Bridge wasn’t opened until 2007, and Zhangfu Bridge shrank in 2001. † The maps in this figure are 
provided by Taiwan Historical Maps System (https://​gis.​sinica.​edu.​tw/​tiles​erver/) with permission.

http://gis.rchss.sinica.edu.tw
https://gis.sinica.edu.tw/tileserver
https://gis.sinica.edu.tw/tileserver/
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roads, and the polygon symbols for different land use. The most obvious legend change is the hash pattern of the 
undeveloped areas including the paddy fields, orchards, grasslands and the unused lands.

In this work, we collected two sets of map tiles from the WMTS server as the training images: (1) the contem-
porary set published in 2017-2019, hereinafter referred to as 2017 version, and (2) the historical set published in 
1999-2001, hereinafter referred to as 2001 version.

We extract the geographic feature annotations of the maps from the open vector data provided by the the 
National Land Surveying and Mapping Center (NLSC) of Taiwan (https://​maps.​nlsc.​gov.​tw). The open vector 
data presents present day (2022) geographic features, including roads, farms, temples, lakes, etc., with points, 
lines, or polygons.

Data preprocessing.  For each map version, we manually select 5,986 map tiles at zoom level 15 and ran-
domly separate the tiles into the training and test sets. The ratio of training vs. test data size is 70 : 30. Next, 
we use the RoboSat27 open-source tool to download the map tiles from the WMTS server at zoom level 15 as 
256× 256 images. This way, we create the contemporary ( X ) and historical ( X′ ) map tiles. Figure 5 shows the 
selected map tiles with bridge annotations and the training/test splitting distribution. Note that some map tiles 
covering the oceans are selected in our experiments for training and testing. We understand there should not be 
any bridge in the ocean; however the experiment can verify the false positive of bridge detectors, and we indeed 
observed zero false-positives of bridge segmentation in our experiment.

We next describe the steps for collecting groundtruth bridge masks from the NLSC open vector data, in order 
to train of a machine learning model for bridge segmentation. The bridge annotations are represented as line 
segments of the bridge starting and ending coordinates in the NLSC vector data. We use the software QGIS28 
to perform the buffer operations on the vector data in transforming the line segments into polygons. The buffer 
operations is performed with parameter of 0.0001 degree, which is determined empirically such that the masks 
are large enough to cover the bridges at the given scale. We next rasterize the bridge polygons and turn them into 
masks on each map tile image. Figure 6 shows an example result of this bridge mask generation. The resulting 
bridge masks for the corresponding map tiles are ready to used for training the semantic segmentation neural 
network. To evaluate the effectiveness of the proposed semi-supervised learning framework, we further annotate 
1, 210 bridge masks for the historical map tiles as the groundtruth for the test set.

We will release this dataset to the public for reproducibility and to facilitate further research of map analysis.

Figure 4.   1:25,000 Topographic maps of the northern Taiwan in 2017-2019, 1999-2001, 1992-1994, 1985-1989, 
and 1957-1969 from the GIS Center of Academia Sinica. The symbol styles of land use such as paddy fields, 
orchards, grasslands and unused land have been adjusted due to cartographic regulations changes between 
releases. The same legend was used in the late 20th century (versions b to d) probably for easing the translations 
between these maps. Refer to the digital version of this paper for detailed zoom-in with full resolution. † The 
maps in this figure are provided by Taiwan Historical Maps System (https://​gis.​sinica.​edu.​tw/​tiles​erver/) with 
permission.

Figure 5.   (a) Bridge vector data on the 2017 contemporary map of northern Taiwan. Green dots show the 
3, 542 annotated bridges from the vector data. (b) Train/test split of the 5,986 map tiles at zoom-level 15.Green 
squares depicts the training tiles and red squares depicts testing tiles. † The maps in this figure are provided by 
Taiwan Historical Maps System (https://​gis.​sinica.​edu.​tw/​tiles​erver/) with permission.

https://maps.nlsc.gov.tw
https://gis.sinica.edu.tw/tileserver/
https://gis.sinica.edu.tw/tileserver/
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Evaluation metrics.  To evaluate the per-pixel segmentation performance, we adopt the widely-used Inter-
section-of-Union (IoU) Precision-Recall (PR) as the metrics for semantic segmentation as binary classification in 
computer vision. The IoU-PR metric can be measured at both the per-pixel and object instance levels.

Map tile pixel-level PR Given the per-pixel bridge annotation groundtruth, the pixel-level precision ( Ppx ), 
recall ( Rpx ), F1-score ( F1px ), and intersection-over-union ( IoUpx ) can be calculated between the predicted bridge 
masks and the groundtruth masks for each map tile or for all map tiles. Scores are obtained by classifying all pixels 
of 1,796 map tiles of testing set into different error types. Figure 7 shows a visual example. A correctly predicted 
bridge pixel represents true positive ( TPpx ); On the contrary, if a bridge pixel is predicted as background, it is 
counted as false negative ( FNpx ). On the other hand, if a background pixel is predicted as a bridge pixel, the case 
is a false positive ( FPpx ). Finally, the precision-recall analysis does not consider the true negative ( TNpx ), which 

Figure 6.   Converting the NLSC open vector data of bridge annotations into masks of the corresponding map 
tiles. (a) shows an example map tile of the labeling from the buffer operation, which generates buffers around 
points, lines, and polygons within a given distance. (b) shows a close-up of (a), where the vector data of bridges 
is drawn in red dotted lines, and the corresponding buffering regions are drawn in green strokes. (c) shows the 
extracted bridge masks of (a). † The maps in this figure are provided by Taiwan Historical Maps System (https://​
gis.​sinica.​edu.​tw/​tiles​erver/) with permission.

Figure 7.   The results made by the U-Net model trained with fully labeled data of the contemporary dataset. 
(a) The contemporary map tiles, (b) The groundtruth of bridges symbols, and (c) The predictions of bridges on 
the map tiles. The model predicts almost every bridge symbol on most map tiles successfully. † The maps in this 
figure are provided by Taiwan Historical Maps System (https://​gis.​sinica.​edu.​tw/​tiles​erver/) with permission.

https://gis.sinica.edu.tw/tileserver/
https://gis.sinica.edu.tw/tileserver/
https://gis.sinica.edu.tw/tileserver/
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occurs very frequently that a background pixel is predicted correctly as background. Accordingly, the pixel-level 
PR metrics are defined as:

Bridge instance-level PR The precision-recall can also be calculated to reflect the performance of how well each 
bridge instance is segmented, when compared with the groundtruth. Here the calculation must be performed 
after map tiles are combined and tiled back, so the complete mask of each individual bridge can be obtained. 
The instance-level precision Pinst:thres , recall Rinst:thres , and F1-score F1inst:thres can then be calculated for each 
bridge. For the next couple lines, we define that if a bridge intersects another bridge, the IoU of these two bridges 
should be greater than a given threshold. If a contour of a predicted bridge intersects with a bridge’s contour in 
the labeled vector data, the contour is regarded as at true positive ( TPinst:thres ). Once again, if it does not intersect 
with any bridge in the vector data, it is considered as a false positives ( FPinst:thres ). If none of the predicted bridges 
intersects a bridge contour in the labeled data, the bridge contour is considered as a false negative ( FNinst:thres ). 
Specifically, the metrics are defined as:

Finally, the mean of the instance-level precision, recall, F1-scores then are calculated for all bridges in the test map 
tiles with IoU threshold is 0.1 (denoted as F1inst:0.1 ). For the purpose of assisting geographers locating potential 
target features, F1-scores with a lower IoU threshold 0.01 ( F1inst:0.01 ) are also provided.

Results of supervised training of bridge segmentation on contemporary maps. 
We evaluate the performance of the method from previous works2,17 on segmentation task for geographic feature 
extraction on historical maps. We will show that semantic segmentation models are effective in detecting and 
segmenting out bridges from topographic maps with a fully labeled dataset. We trained a U-Net with map tiles 
Xtrain and masks Ytrain of the training set on the contemporary map and tested it with the testing set Ytest . We 
obtained F1inst:0.1 = 0.874 . Figure 7 show visual results of such bridge segmentation prediction. All experiments 
are conduct on a NVIDIA GeForce GTX 1080 Ti (11GB Memory per GPU). For U-Net, it takes about 26.9 ms 
(milliseconds) to perform training on an image and 13.2 ms for running the test on an image.

Test on unseen maps of another region with the same style/year To test the generalizability of the bridge 
segmentation model across maps, we test the trained U-Net on an unseen portion of the contemporary map, 
namely a region around the Taichung City of middle Taiwan, which is outside the original training and test set 
of northern Taiwan. Results in Table 1 suggest that the U-Net is generalizable to extract geographic features to 
unseen maps with the same style/year following this supervised training approach.

Test on maps with different style/year We expect that such supervised learning model trained on a contem-
porary map should not work well across maps of different styles or years. Results from the last row of Table 1 
demonstrates this point, where the U-Net trained with the contemporary map X can only identify 3 bridges 
(out of 3,542) in the 2001 historical map X ′ . In other words, the semantic segmentation U-Net cannot learn to 
recognize geographic features across different map styles effectively, unless it is trained explicitly using maps 
with those styles.

Evaluation of semi‑supervised training of bridge segmentation on historical maps.  This exper-
iment validates how well a model can be trained to recognize geographic features from using solely the style-
transferred maps and transferred annotations. We evaluate the proposed two-stage semi-supervised framework 
using the 2017 contemporary map X and 2001 historical map X ′ . We train three style transfer models, which 

(1)

Ppx =
TPpx

TPpx + FPpx
, Rpx =

TPpx

TPpx + FNpx
,

F1px =
2× Ppx × Rpx

Ppx + Rpx
, IoUpx =

TPpx

TPpx + FPpx + FNpx
.

(2)

Pinst:thres =
TPinst:thres

TPinst:thres + FPinst:thres
,

Rinst:thres =
TPinst:thres

TPinst:thres + FNinst:thres
,

F1inst:thres =
2× Pinst:thres × Rinst:thres

Pinst:thres + Rinst:thres
.

Table 1.   Quantitative evaluation of the U-Net model trained on the 2017 contemporary map with full 
supervision. CM Training and CM Testing are the train/test split of the northern Taiwan tiles from 2017 
contemporary map. CM Taichung is a separate test set from middle Taiwan of the 2017 contemporary map. * 
CM stands for contemporary map; HM stands for historical map. #Bridges shows the number of recognized 
bridges.

Trained on Tested on Ppx Rpx F1px IoUpx Pinst:0.1 Rinst:0.1 F1inst:0.1 F1inst:0.01 #Bridges

CM Training

CM Testing 0.845 0.764 0.803 0.670 0.935 0.820 0.874 0.893 960

CM-Taichung 0.986 0.373 0.541 0.371 0.966 0.898 0.931 0.942 1783

HM Testing 0.849 0.003 0.007 0.003 0.000 0.000 0.000 0.005 3



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18997  | https://doi.org/10.1038/s41598-022-23364-w

www.nature.com/scientificreports/

are Pix2Pix29, CycleGAN30, and Contrastive Unpaired Translation (CUT)21, to learn the mapping between X 
and X ′ . The style transfer models are then used to generate a synthesized historical map X̂ ′ from X. With the 
synthetic map X̂ ′ and the contemporary masks Y as annotations, four semantic segmentation models are trained 
in Stage 2: U-Net24, fully-convolutional network (FCN)31, DeepLabV332, and MobileNetV333. We then evaluate 
the performance of the segmentation models for bridge mask prediction Ŷ ′ on the historical map X ′ . Specifi-
cally, we compare Ŷ ′ with the groundtruth Y ′ of the historical map that is manually annotated only for the evalu-
ation purpose. Table 2 summarize the result, where the proposed framework achieved F1inst:0.1 = 0.725 and 
F1inst:0.01 = 0.734 . This result demonstrates that geographic features in historical maps can indeed be learned 
effectively using only style-transferred maps and contemporary annotations in the proposed semi-supervised 
framework.

Comparison of the style transfer models used in Stage 1 We deployed three image-to-image translation models 
in the first stage of the framework to see the effectiveness of different models. Pix2Pix29, CycleGAN30, and CUT​21 
were selected to compare the performance between different transferring strategies. We trained the networks in 
the direction translating from the contemporary map X into the historical map X ′ to produce synthesized histori-
cal map X̂ ′ . Figure 8 shows some synthesized historical map tiles. Clearly, the result of Pix2Pix did not work as 
well as other methods. The results of CycleGAN and CUT showed promising transferred style for synthesizing 
historical maps visually. To quantitatively evaluate performance, we trained U-Net models for each synthesized 
historical map from different translation models and tested the predictions of the U-Nets with the historical 
map. The quantitative evaluation is shown in Table 2, and it turns out that the performance of the model trained 
with CUT synthesized map outperformed the others. Although the U-Net trained with SynHM-CycleGAN with 
higher pixel-level precision Ppx = 0.729 , it failed to find sufficient target features, which is shown in Rpx = 0.248 
and #Bridges = 422 , that it lose to the one trained with SynHM-CUT on both pixel-level and instance-level 
F1-scores. In the training phase, it takes about 15.7 ms for Pix2Pix, 287.2 ms for CycleGAN, and 207.2 ms for 
CUT to train an image, respectively. For the synthesizing phase, it takes 11.7 ms for Pix2Pix, 37.95 ms for Cycle-
GAN, and 15.2 ms for CUT to generate an image, respectively. In summary, the result indicates that CUT learns 
the relationship between the contemporary map and the historical map better than Pix2Pix and CycleGAN do, 
and learns that more efficient than CycleGAN.

Table 2.   Quantitative evaluation of the U-Net models trained on the synthetic historical maps. The synthesize 
historical maps are produced using style transfer models Pix2Pix, CycleGAN, and CUT, respectively. Results 
show that CUT outperforms the other two style-transfer models in generating synthetic historical maps for 
bridge segmentation use. * SynHM stands for synthetic historical map. Significant values are in [bold].

U-Net
Trained on Ppx Rpx F1px IoUpx Pinst:0.1 Rinst:0.1 F1inst:0.1 F1inst:0.01 #Bridges

SynHM-Pix2Pix Training 0.053 0.004 0.008 0.004 0.054 0.003 0.005 0.008 56

SynHM-CycleGAN Training 0.729 0.248 0.371 0.227 0.863 0.315 0.461 0.485 422

SynHM-CUT Training 0.641 0.468 0.541 0.371 0.873 0.619 0.725 0.743 818

Figure 8.   Examples of the synthesized historical maps generated by Pix2Pix29, CycleGAN30, and CUT​
21. Although the map tiles produced by Pix2Pix are obviously broken, CycleGAN and CUT transferred the 
contemporary map tiles to the historical style successfully. If we focus on the bridge symbols in the synthesized 
tiles, we can find that the tiles made by CUT are much more like the historical map than those made by 
CycleGAN. † The maps in this figure are provided by Taiwan Historical Maps System (https://​gis.​sinica.​edu.​tw/​
tiles​erver/) with permission.

https://gis.sinica.edu.tw/tileserver/
https://gis.sinica.edu.tw/tileserver/
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Comparison of the semantic segmentation models used in Stage 2 To determine which segmentation model 
is good at extracting geographic features in semi-supervised circumstances, we employed four semantic seg-
mentation models, namely, U-Net24, fully-convolutional network (FCN)31, DeepLabV332, and MobileNetV333. 
We trained the segmentation models on CUT-synthesized historical map tiles and the contemporary masks. 
In the training phase, it takes about 14.3 ms for MobileNetV3, 40.6 ms for FCN, 53 ms for DeepLabV3, and 27 
ms for U-Net to train an image, respectively. In the testing phase, it takes about 9 ms for MobileNetV3, 17.8 
ms for FCN, 24.3 ms for DeepLabV3, and 13.2 ms for U-Net to predict an image, respectively. Table 3 shows 
the quantitative comparison result. These results show that all the segmentation models except MobileNetV3 
make the prediction correctly with Pinst:0.1 ≥ 0.75 . In particular, the U-Net produces better bridge segmentation 
predictions with Rinst:0.1 = 0.619.

Evaluation of all combinations between style transfer models and semantic segmentation 
models.  Extensive experiments are conducted for the comprehensive comparisons of 12 combinations 
among 4 segmentation models and 3 synthesized datasets for style transfer model training. To make the com-
parisons fair, we fix the training epoch to 400 for all runs, which ensures that the segmentation models perform 
learning on each dataset with the same visibility. In addition, we train each combination for 10 times with dif-
ferent random seed to obtain robust statistical results. Table 4 reports the F1inst:0.1 scores for this comprehensive 
comparison. Additional results and details are available in in the supplementary file. One can clearly observe 
that segmentation models cannot learn well from the Pix2Pix synthesized dataset, which is reflected in the all 
zero outcomes in Table 4. The best scoring combination is still the U-Net trained on CUT synthesized dataset, 
whose F1inst:0.1 score ( 0.662± 0.008 ) is 57.3 % higher than the comparative score ( 0.089± 0.065 ) of the least 
valid combination (the MobileNetV3 trained on CycgleGAN synthesized dataset).

Discussions
In this paper, we demonstrate that the proposed framework can learn target geographic features on historical 
maps without the need of annotations there. Results from Table 1 show that the training of supervised semantic 
segmentation models highly rely on labeled data, and without labeled data the models are unable to extract 
information across years. However, by fusing annotations with the transferred map tiles in the first stage, our 
two-stage framework can eliminate the dependence on labeled data for targeted year. The bridge segmentation 
model trained in our framework on a 2017 map can accurately locate bridges on the 2001 historical map with-
out using annotations on the 2001 map. Finally, this framework can be extended to learn additional geographic 
features including roads, highways, land uses, etc. for geographical study on maps across years.

Performance analysis Table 4 shows that models trained on different synthetic dataset could have significant 
gaps no matter what segmentation model is used. For Pix2Pix style transfer, it is hard to obtain useful semantic 
information for training the segmentation models, as no specific constrains can be enforced on the model output. 
On the other hand, CUT leverages mutual information between source and destination datasets, which leads 
to the superior results in the experiment. We also observe that U-Net models are more stable, as the standard 
deviations of U-Net based combinations are much lower than the ones of other models. The downward and 
upward scaling constrains of U-Net can effectively regularize the semantic segmentation outcomes. In summary, 
refined constrains of the input synthetic dataset and the segmentation capability are the two key factors toward 
the success of the two-stage, semi-supervised, map style transfer analysis approach.

Table 3.   Results from different semantic segmentation models. The U-Net outperforms other state-of-the-art 
segmentation models in this problem on every metrics. Since the dataset suffers from insufficient labels and 
imbalanced classification, the models with higher model complexity can easily overfit the transferred data. 
Significant values are in [bold].

Segmentation Model Ppx Rpx F1px IoUpx Pinst:0.1 Rinst:0.1 F1inst:0.1 F1inst:0.01 #Bridges

MobileNetV3 0.479 0.135 0.211 0.118 0.608 0.149 0.239 0.304 283

FCN 0.617 0.361 0.455 0.295 0.813 0.405 0.541 0.589 578

DeepLabV3 0.625 0.323 0.426 0.270 0.786 0.380 0.513 0.578 560

U-Net 0.641 0.468 0.541 0.371 0.873 0.619 0.725 0.743 818

Table 4.   Comprehensive comparisons from the 12 combinations among the 4 segmentation models and 3 
synthesized datasets for style transfer model training. The statistical F1inst:0.1 are reported as the mean value 
of 10 independent runs with the standard deviation for each configuration. * SynHM stands for synthetic 
historical map. Significant values are in [bold].

Trained on Model SynHM-Pix2Pix Training SynHM-CycleGAN Training SynHM-CUT Training

MobileNetV3 0.000± 0.000 0.089± 0.065 0.143± 0.094

DeepLabV3 0.000± 0.000 0.175± 0.092 0.459± 0.185

FCN 0.000± 0.000 0.341± 0.034 0.567± 0.026

U-Net 0.000± 0.000 0.366± 0.033 0.662 ± 0.008
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Error analysis We next discuss the failure cases of bridge segmentation and point out the source and charac-
teristics of these errors. Results from Tables 2 and 3 suggest that the U-Net trained on SynHM-CUT is the best 
performing bridge segmentation model in the cross-year semi-supervised training experiments, so we focus 
the discussion on the failure cases of the U-Net. Figure 9 shows representative examples of the U-Net bridge 
segmentation trained on the transferred 2017 contemporary map and tested on the 2001 historical map. Most 
erroneous predictions are due to the ambiguous geographic features such as roads or highway segments that 
resemble bridges in the map. Bridge segmentation performance is also affected by the wrongly recognized back-
ground patterns, bridges that appear to be too short or too small, and the mixture of complicated representations 
of geographic features (such as highways cross bridges in the same intersection). The proposed style-transfer of 
maps can degrade the map quality and result in blurry maps with fixed features. In summary, the weaknesses 
are mostly due to the shape imbalance of target features and the low quality of detail of transferred map tiles.

Limitations of the proposed method are summarized in the following. First, the efficiency for learning geo-
graphic features across years is limited by the pairwise style transfer model. Since the style transfer network needs 
to be trained specifically for each pair of source and target map styles, only a pairwise mapping between a source 
style of map and a target style can be learned to perform at a time. Secondly, the effectiveness of understanding 
geographic features across years is temporally dependent. We selected contemporary maps for the map with 
annotations because the vector data for contemporary maps is more available than the ones for historical maps. 
As a result, the newer maps are much easier to be learn.

Future work of this study includes improving the segmentation model which discriminates between noisy 
geographic features and the target features. The model should be ensured that special cases (such as extremely 
long bridges in this study) are included in the dataset. Furthermore, we want to make the style transfer model in 
the framework to be more geographic feature awareness in the future; the style transfer model should learn the 
transformation for the features representing the same geographic meaning across years. We envision a better 

Figure 9.   The examples from the results of the proposed framework. The contours in blue indicate the 
predicted bridges, and the ones in green represent the bridge groundtruth. (a–d) show the true positive 
examples. Although some predictions are influenced by other geographic features (such as borderlines in (c)) 
and some predict only heads of bridges in (d), most predictions intersect bridges successfully like the ones in (a) 
and (b). (e–h) show the false positive examples. Some geographic features are easily confused with bridges, e.g. 
a Chinese character on a river in (e), the dam in (f), and the borderline crossing a waterbody in (g). For some 
false-positive cases, such as in (h), the reasons for being recognized as bridges cannot be identified. (i–l) show 
the false negative examples. Relatively small and special bridges are hard to be detected, as shown (i), (j), and 
(k). In (l), there are two similar bridges but only one is recognized. † The maps in this figure are provided by 
Taiwan Historical Maps System (https://​gis.​sinica.​edu.​tw/​tiles​erver/) with permission.

https://gis.sinica.edu.tw/tileserver/
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representation for geographic features extraction across multiple years can be learned jointly. We plan to expand 
our experiments on the 1992-1994, 1985-1989, and 1957-1969 maps.

Conclusion
In this work, we formulate a two-stage deep learning approach to address the insufficient annotations of super-
vised learning when applying machine learning to historic map study. We leverage state-of-the-art image style 
transfer and semantic segmentation algorithms in studying geographic features using historical maps from 1957 
to 2017 in Taiwan. The image styles are transferred among maps, such that topographic maps together with cor-
responding annotations can be aggregated across years. Image semantic segmentation networks are applied to 
detect and localize bridges in the maps. Our framework based on U-Net trained using the style-transferred CUT 
maps achieves F1-score F1inst:0.1 = 0.725 and F1inst:0.01 = 0.743 for bridge segmentation, which demonstrates a 
case of the feasibility of map information transfer across years.

We envision that our approach can be extended to other research based on geographic and historical map 
analysis. The source of our study and dataset will be released upon paper acceptance. Geographers can use the 
proposed framework as a tool to measure land use changes by extracting geographic features from historical 
maps across years. Furthermore, the organized dataset is a perfect setting for studies of style transfer and semi-
supervised learning. The framework also supports automatic map generation research as an evaluation metric 
that validates the generated maps. In summary, this paper boosts the research for historical maps understanding.

Data Availability
Map tiles used in this paper are collected from Web Map Tile Servi​ce (WMTS) of the Center for Geographic 
Information Science, Research Center for Humanities and Social Sciences at Academia Sinica. The vector data 
for geographic features of Taiwan are downloaded from the Natio​nal Land Surve​ying and Mappi​ng Center of 
Taiwan, and the masks for training and testing are generated from the vector data. Moreover, the datasets used 
in this work are published with the paper as slippy map structures, which can be downloaded from the supple-
mentary files of the paper.
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