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The Balangu (Lallemantia iberica) species have a high gastronomical impact in the Middle East and 
Balkan region. It is widely used in the local food industry, such as confectionery, edible oil, and protein 
food. In this study, 49 ecotypes were collected from different regions of Iran. 37 agronomic traits 
were measured during the growing season and at harvest time. To find the correlation between the 
grain yield per unit area, grain yield per single plant (GYSP), oil percent (OP), and protein percent 
(PP) with other measured traits, which these were utilized as the labels of different machine learning 
(ML) procedures including Linear Regression (LR), Support Vector Regression (SVR), Random Forest 
Regression (RFR), and Gradient Boosting Decision Tree Regression (GBDTR). It was observed that 
there is a linear relationship between the measured agronomic traits and the considered labels. So, 
the LR, RFR, and GBDTR models showed the lowest mean absolute error, mean square error, and 
root mean square error than SVR models and good prediction ability of the test data. Although, the 
RFR and GBDTR have naturally lower bias than other methods in this study, but the GBDTR scheme is 
preferred because of the over-fitting shortcoming of the RFR technique. The GBDTR method showed 
better results rather than the other ML regression methods according to the RMSE 3.302, 0.040, 
0.028, and 0.060 for GYUA, GYSP, OP, and PP, respectively.

The Balangu (Lallemantia Iberica) species are cultivated in the different regions of Iran with historical roots 
in the gastronomic culture1–3. This plant also has been used for medical applications4. In a new development, 
Lallemantia species are being used to synthesize gold and silver nanoparticles without hazardous materials5. 
Recently, effective symbiosis under drought stress has been reported for Lallemantia iberica6. Clearly, it could 
be used in soils with high salt concentration and improve the characteristics of the soil after harvest. Similarly, it 
has been found that one of the Lallemantia species could be used in wastewater treatment effectively and envi-
ronmentally, especially in the semi-arid regions7. Accordingly, this plant family has great adaptability to various 
environmental conditions and could be used as ecosystem services to improve the soil health and quality of the 
water resources of the cultivated region.

The Lallemantia iberica contains protein and oil in its structure which is the reason for the gastronomical uses 
of this plant. Unfortunately, insufficient data are available about the agronomic characteristics of these species 
and the effect of ecotype on extracted compounds such as protein and oil. Therefore, studies about the agronomic 
parameters of the Lallemantia iberica are required.

In the state of the art, machine learning (ML) has been used in the data analysis to predict yield responsive-
ness to nitrogen fertilization in maize8 and predicting grain arsenic concentration in rice under deficit irrigation 
system and use of organic amendments9, and crop yield forecasting10,11. However, to our best knowledge, there 
is no such investigation to study the relationship of the agronomic characteristics with the grain yield. The ML 
procedures could be used to solve classification, clustering, and regression problems.10 The regression is one of 
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the supervised applications of the ML methods that could provide a reliable result in the prediction of a complex 
dataset11. The regression application can use various algorithms such as linear regression with a diversity of 
modifications, such as random forest regression (RFR), support vector regression (SVR), and gradient boosting 
decision tree regression (GBDTR)12–14.

The present work provides a four-year dataset for the agronomic properties of Lallamentia iberica and the 
metrics such as morph-physiological traits of 49 different ecotypes from various regions of Iran with the diversity 
of extracted materials percent’s such as protein and oil. Machine Learning is used for data analysis. The predic-
tion for the grain yield performance was the main subject of this analysis. In this respect, linear, support vector 
machine regression, random forest regression, and gradient boosting decision tree have been utilized.

Results and discussion
The measured traits of the Lallamentia iberica ecotypes and their descriptive data, including the mean, standard 
deviation, minimum, maximum, and quartiles, averaged over four years, are shown in Tables 1 and 2. Based on 
the descriptive data, the mean of 49 ecotypes for oil and protein content was 38.59% and 21.20%, respectively, 
indicating that Lallamentia iberica is rich in oil and protein. Likewise, the grain yield per unit area could reach 
the maximum value of 169 g/m2 (1690 kg/ha) in this experiment.

Table 1.   The measured traits of the Lallemantia iberica ecotypes with corresponding abbreviations, and units 
of measurement.

Trait Abbreviation Unit

Biomass per unit area BYPUA g m−2

Straw yield per unit area SYUA​ g m−2

Grain yield per unit area GYUA​ g m−2

Biomass yield per plant BYP g

Straw yield per plant SYP g

Grain yield per plant GYP g

Number of seeds per plant NSP –

Plant height PH cm

Stem diameter SD mm

Number of nodes in the main stem NNMS –

Number of leaves in the main stem NLMS –

Number of fertile sub-branches NFSB –

Fertile branch length FBL cm

Number of nodes in the fertile sub-branch NNFSB –

Number of leaves per fertile branch NLFB –

Number of capsules in the main stem NCMS –

Number of capsules in each sub-branch NCSB –

Number of flower cycles in the main stem NFCMS –

Number of flower cycles in the sub-branch NFCSB –

Number of capsules per cycle in the main stem NCCMS –

Number of capsules in each cycle in the sub-branch NCCSB –

Number of seeds in the main stem NSMS –

Number of seeds per branch NSB –

Number of seeds per the main cycle NSMC –

Number of seeds per sub-cycle NSSC –

1000-grain weight per unit area TGWUA​ –

Harvest index per unit area HIUA –

Oil percentage OP %

Oil yield per unit area OYUA​ –

Protein percentage PP %

Protein yield per unit area PYUA​ –

Oil extraction index per unit area OEIUA –

Protein extraction index per unit area PEIUA –

Chlorophyll index CHI –

Leaf area index LAI –

Oil yield per plant OYP –

Protein yield per plant PYP –
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In this study, four labels, grain yield per unit area (GYUA), grain yield per plant (GYP), oil percent (OP), and 
protein percent (PP) of the Lallamentia iberica ecotypes were separately used for the sake of prediction purpose 
via other agronomic traits based on regression. The results and discussion for each label are briefly stated here.

GYUA​.  The prediction results of the GYUA through the ML-based regression methods are depicted in 
Table 3 and Fig. 1. According to Table 3, the LR, SVR Linear Kernel, RFR, and GBDTR methods had much lower 
mean absolute error (MAE), mean square error (MSE), and root means square error (RMSE) than SVR Gaussian 
Kernel, SVR Polynomial Kernel, and SVR Sigmoid Kernel. Figure 1 demonstrates the predicted values versus the 
experimentally evaluated values of the GYUA label for the LR, SVR Linear Kernel, RFR, and GBDTR methods 
had good prediction results. The main goal of this sequence of the ML methods was to eliminate possible overfit-
ting and the potential bias in the learning process linear regression and increase the accuracy of the analytical 
information. Although the LR and SVR Linear Kernel methods showed a slightly better prediction ability than 
the other two methods, their higher biases may affect the objectivity of the results in this case. The Random 
forest and gradient boosting decision tree regression are used to import the random states to avoid the created 
bias of the linear ML regression algorithms. While the RFR may better handle the bias, under-fitting might be 
a problem15. On the other hand, the GBDTR as a hybrid method avoids the issues of the previous methods. 

Table 2.   The descriptive data of the Lallemantia iberica ecotypes, evaluated during the 2014–2017 growing 
seasons. 1 The abbreviations are based on Table 1; The units for the measured traits can be found in Table 1.

Trait1 Mean Standard deviation Minimum

Quartile

Maximum25% 50% 75%

BYUA​ 274.42 80.80 120.00 215.93 261.10 318.35 565.32

SYUA​ 187.36 62.45 58.96 143.51 175.64 218.34 446.42

GYUA​ 87.07 24.16 15.32 70.51 83.96 102.86 169.30

BYP 2.03 0.65 0.65 1.58 1.95 2.42 4.55

SYP 1.35 0.45 0.42 1.03 1.30 1.59 3.40

GYP 0.68 0.22 0.12 0.53 0.67 0.82 1.55

NSP 122.09 40.71 25.20 93.05 116.15 146.23 277.71

PH 30.30 4.89 19.40 26.76 30.00 33.52 43.10

SD 2.01 0.42 1.11 1.72 1.96 2.22 4.75

NNMS 13.31 1.54 8.40 12.30 13.50 14.40 16.90

NLMS 26.24 2.98 16.80 24.40 26.60 28.20 45.00

NFSB 2.40 1.14 0.00 1.60 2.30 3.00 7.40

FBL 10.51 3.42 0.00 8.12 10.34 12.74 22.17

NNFSB 5.23 1.10 0.00 4.50 5.30 6.00 8.37

NLFB 10.08 2.08 0.00 8.80 10.01 11.61 16.75

NCMS 36.61 6.79 13.70 32.38 36.75 40.90 59.40

NCSB 8.72 3.36 0.00 6.42 8.50 10.87 24.04

NFCMS 8.21 1.16 4.20 7.70 8.21 8.90 11.89

NFCSB 4.00 1.01 0.00 3.49 4.00 4.66 6.74

NCCMS 5.36 0.52 3.68 5.09 5.36 5.61 7.26

NCCSB 2.78 0.68 0.00 2.47 2.78 3.12 4.92

NSMS 2.86 0.60 1.02 2.44 2.81 3.20 5.40

NSPMS 102.00 26.92 38.67 87.70 102.00 111.38 227.22

NSB 21.22 9.12 0.00 15.46 21.22 24.08 54.19

NSMC 14.66 2.92 7.16 12.99 14.66 15.67 29.90

NSSC 7.61 2.41 0.00 6.25 7.61 8.53 17.27

TGWUA​ 4.98 0.34 3.80 4.80 5.00 5.20 5.90

HIUA 32.25 5.38 10.80 29.20 32.29 35.10 51.52

OP 38.59 1.72 32.81 37.67 38.59 39.41 45.77

OYUA​ 31.26 7.11 13.44 26.93 31.26 34.44 59.93

PP 21.20 2.47 15.64 19.82 21.20 21.76 34.38

PYUA​ 17.35 4.33 7.36 14.72 17.35 18.90 32.68

OEIUA 38.59 1.72 32.81 37.67 38.59 39.41 45.77

PEIUA 21.20 2.47 15.64 19.82 21.20 21.76 34.38

CHI 20.02 4.92 9.40 16.98 20.02 21.13 39.35

LAI 1.27 0.43 0.38 0.98 1.27 1.40 3.06

OYP 0.22 0.04 0.07 0.22 0.22 0.22 0.51

PYP 0.12 0.02 0.04 0.12 0.12 0.12 0.29
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The RFR and GBDTR methods are used to import the random states to avoid the created bias of the linear ML 
regression algorithms16.

There was a linear relationship between the indicator features and the label. In this respect, the effect of differ-
ent features was evaluated in the ML process. For example, BYUA, OYUA, and HIUA were the most important 
features for predicting GYUA in RFR, respectively (Fig. 2). Hence, BYUA, OYUA, and HIUA can be regarded as 
good predictor indicators of GYUA. Similar results were reported for sesame (Sesamum indicum L.) in another 
study17.

GYSP.  The grain yield of a single plant is an important trait in crop yield evaluation and genetic assessments18,19. 
The results of the assessment of different ML methods in the prediction of GYSP by MAE, MSE, and RMSE are 

Table 3.   The mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), and 
area under curve (AUC) of receiver operating characteristics (ROC) of the applied machine learning (ML) 
regression methods in predicting the grain yield per unit area of the Lallemantia iberica ecotypes with the 
training of other traits, using the K-fold cross-validation as the data splitting method.

ML method AUC-ROC MAE MSE RMSE

Linear regression 0.9969 0.176 0.760 0.871

Support vector regression (SVR); linear kernel 0.9979 0.120 0.681 0.825

SVR; Gaussian kernel 0.8157 11.981 250.224 15.818

SVR; polynomial kernel 0.8404 11.068 243.275 15.597

SVR; sigmoid kernel 0.2229 22.008 829.985 28.809

Random forest regression 0.9540 2.537 15.648 3.955

Gradient boosting decision tree regression 0.9695 2.097 10.907 3.302

Figure 1.   (a) Linear (b) Support vector, (c) Random forest, and (d) gradient boosting regressions of the grain 
yield per unit area of the Lallemantia iberica ecotypes based on machine learning regression.
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shown in Table 4. Although LR had slightly better performance than RFR and GBDTR in the prediction of GYSP 
(Table 4; Fig. 3), the bias in this method makes it partially unreliable20, as previously mentioned. Despite the fact 
that the RFR and GBDTR methods demonstrated higher error rather than LR and SVR Linear Kernel21 and the 
generated random states in the learning process could disturb the prediction, the results are more reliable due 
to the reduced bias.

As an example of the importance of the indicator in the prediction of GYSP, the results for the RFR method 
were depicted in Fig. 4. The features BYSP, NSPP, and NSMS were the most effective features on GYSP in the 
RFR method, respectively. Besides, NSPSC had a small impact on this label.

OP.  Oil percentage is an essential trait with respect to the gastronomic point of view22. Lallamentia iberica’s 
oil is healthy in food production and other uses in the cultivated region. The efficiency of different ML methods 
in the prediction of the OP was compared in Table 5. The GBDTR method showed the best performance in pre-

Figure 2.   The importance of the traits in the random forest machine learning regression process for the 
prediction of the grain yield per unit area of the Lallemantia iberica ecotypes.

Table 4.   The mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), and 
area under curve (AUC) of receiver operating characteristics (ROC) of the applied machine learning (ML) 
regression methods in predicting the grain yield per plant of the Lallemantia iberica ecotypes with the training 
of other traits, using the K-fold cross-validation as the data splitting method.

ML method AUC-ROC MAE MSE RMSE

Linear Regression 0.9667 0.010 0.001 0.018

Support vector regression (SVR); linear kernel 0.9302 0.038 0.002 0.048

SVR; Gaussian kernel 0.8775 0.069 0.007 0.086

SVR; polynomial kernel 0.8862 0.070 0.007 0.086

SVR; sigmoid kernel 0.3099 4.346 33.50 5.788

Random forest regression 0.9372 0.031 0.002 0.044

Gradient boosting decision tree regression 0.9503 0.030 0.002 0.040
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dicting OP followed by RFR and SVR Linear Kernel. Figure 5 shows the predicted values versus the tested values 
of the OP label for the LR, SVR Linear Kernel, RFR, and GBDTR methods. All four methods were acceptable in 
predicting OP. However, the different conditions should be considered to achieve an appropriate approach with 
the corresponding practical state. For example, if OP needs to be predicted for a specific ecotype, the gradient 
boosting decision tree would be a good choice. At the same time, in the particular condition with the features, 
the SVR could be used efficiently.

PP.  Lallamentia iberica is a protein reach plant that contains 21% protein on average with a maximum of 
34%23,24. In this respect, the protein content of this plant was another subject of this work. The results of the 
prediction of PP by other agronomic characteristics for the LR, SVR Linear Kernel, RFR, and GBDTR methods 
are demonstrated in Fig. 6. A very high efficient prediction has been achieved with ML regression methods. 
The results were similar to previous labels. A linear relationship was observed between PP and the measured 
characteristics of this species. The estimated MAE, MSE, and RMSE in the prediction of PP are given in Table 6. 
The GBDTR method was the most effective procedure in predicting PP followed by RFR and SVR Linear Kernel 
methods. GBDTR trains the data with random decision trees and also performs a linear regression based on 
these data. So, the predicted PP by this method would be more reliable than the other methods.

Conclusions
The descriptive data showed that Lallamentia iberica is rich in oil and protein with the four-year average of 
38.59% and 21.20%, respectively. Furthermore, it was shown that the grain yield per unit area could reach up to 
1690 kg/ha in this experiment. The ML regression methods showed that there was a linear relationship between 
the indicator variables and GYUA, GYP, OP, and PP. ML Linear Regression, SVR Linear Kernel, RFR, and GBDTR 
had generally lower MAE, MSE, and RMSE than other SVR method and showed good fitting to the data set. 
Although both RFR and GBDTR have inherently lower bias than other utilized methods, the GBDTR method 
is a better choice since over-fitting is regarded as a disadvantage for the ML RFR.

Figure 3.   (a) Linear (b) Support vector, (c) Random forest, and (d) gradient boosting regressions of the grain 
yield per plant of the Lallemantia iberica ecotypes.
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Materials and methods
During years 2014–2017 an agronomic study has been implemented to evaluate the Balngu’s different agronomic 
properties. A machine learning approach is used to assess the evaluated agronomic properties. The whole pro-
cess has been illustrated in Fig. 7. The detail of the measurement, data collection and data processing have been 
given in the next sections.

Characteristics of the experimental site.  This research was carried out in the research station of the 
Faculty of Agriculture, University of Tabriz, Tabriz, Iran. The experimental site was located at the longitude of 
46° 17′, latitude of 38° 05′, and altitude of 1360 m. The annual rainfall was about 285 mm, averaged over four 
years. The average temperature was recorded about at 10 °C, with Tmax = 16.6 °C and Tmin = 4.2 °C. The physical 
properties of soil are given in Table 7. The soil type was silty loam with the pH of 7.75.

Figure 4.   The importance of the traits in the random forest machine learning regression process for the 
prediction of the grain yield per plant of the Lallemantia iberica ecotypes.

Table 5.   The mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), and 
area under curve (AUC) of receiver operating characteristics (ROC) of the applied machine learning (ML) 
regression methods in predicting the oil percentage of the Lallemantia iberica ecotypes with the training of 
other traits, using the K-fold cross-validation as the data splitting method.

ML method AUC-ROC MAE MSE RMSE

Linear regression 0.9998 1.145 1.851 1.360

Support vector regression (SVR); linear kernel 0.9987 0.047 0.003 0.056

SVR; Gaussian kernel 0.5987 1.178 2.875 1.696

SVR; polynomial kernel 0.6076 1.169 2.847 1.687

SVR; sigmoid kernel 0.4847 4.685 39.60 6.292

Random forest regression 0.9970 0.023 0.002 0.054

Gradient boosting decision tree regression 0.9963 0.014 0.0007 0.028
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Plant material and experimental design.  In the present investigation, 49 ecotypes were evaluated in 
four years (2014–2017), using the 7 × 7 triple design. The codes and locality of the ecotypes are listed in Table 8. 
Permission to collect the seeds of ecotypes was obtained from the farmers of each region before sampling. This 
study complies with relevant institutional, national, and international guidelines and legislation.

Each plot consisted of five rows of 1.5 m in length, with the between-row distance of 20 cm and within-row 
spacing of 1 cm. The planting density was 500 seeds per m2. The planting date each year was the 4th of May. 
Standard cultural practices, such as soil fertilization, irrigation, and weed control were performed during the 
growing season. The harvesting date in each year was the 26th of July. The harvested area was 0.5 m2 of the plot 
center. During the growing season and at the harvest, 37 traits were measured in each plot.

To estimate leaf area index (LAI) the green leaf area per unit area of ground surface was determined25. Also, 
leaf chlorophyll index at the full-flowering stage using three random plants in each plot. In each plant, the 
chlorophyll index was measured from three parts (bottom, middle, top), using CCM-200 Plus (Opti-Sciences 
Inc., NH, USA).

Data analysis.  In this study, different ML regression methods were considered to predict the four labels, 
namely GYUA, GYP, OP, and PP by other measured traits. The ML regression methods included ML Regression, 
SVR Linear Kernel, SVR Gaussian Kernel, SVR Polynomial Kernel, SVR Sigmoid Kernel, RFR, and GBDTR 
were used to analyze the four-years data set26–31,32,33. The K-fold cross-validation was used to split the training 
and the test data sets. Furthermore, MAE, MSE, and RMSE were utilized to compare the efficiency of the ML 
regression methods.

Machine learning regression.  Linear regression.  Supervised learning is the base of the linear regression 
in the machine learning method with a target prediction of the independent variable34.

(1)y = θ1 + θ2x

Figure 5.   (a) Linear (b) Support vector, (c) Random forest, and (d) gradient boosting regressions of the oil 
percentage of the Lallemantia iberica ecotypes.
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In this equation, x is input training data (univariate—one input variable (parameter)), and y is labeled to 
data (supervised learning). In the training process, model the best line to predict the value of y for a given value 
of x is fitted. The process would provide the best deals for the θ1 (intercept) and θ2 (coefficient of x) after fitting. 
Afterward, the coefficient would predict the y value with a given x data in the test process. A cost function of 
linear regression is used to minimize the Root Mean Squared Error (RMSE) between predicted y value and 
experimental y value (y).

Ridge regression.  Linear regression with a tuning model is the Ridge regression method. It is used where multi-
collinearity is observed. Unbiased least-square and significant variance are the results of multi-collinearity. The 
second-order linear regularization was used in the Ridge regression35. The cost function is shown by:

Figure 6.   (a) Linear (b) Support vector, (c) Random forest, and (d) gradient boosting regressions of the protein 
percentage of the Lallemantia iberica ecotypes.

Table 6.   The mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), and 
area under curve (AUC) of receiver operating characteristics (ROC) of the applied machine learning (ML) 
regression methods in predicting the protein percentage of the Lallemantia iberica ecotypes with the training 
of other traits, using the K-fold cross-validation as the data splitting method.

ML method AUC-ROC MAE MSE RMSE

Linear regression 0.9971 1.020 1.522 1.233

Support vector regression (SVR); linear kernel 0.9909 0.045 0.004 0.064

SVR; Gaussian kernel 0.6624 1.871 9.539 3.088

SVR; polynomial kernel 0.6982 1.855 9.318 3.052

SVR; sigmoid kernel 0.5528 4.339 31.841 5.643

Random forest regression 0.9952 0.037 0.020 0.143

Gradient boosting decision tree regression 0.9983 0.022 0.003 0.060



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19237  | https://doi.org/10.1038/s41598-022-23335-1

www.nature.com/scientificreports/

LASSO regression.  The Ridge regressions are replaced with the LASSO regression with first-order linear regu-
larization where some of the variables do not contribute effectively to the prediction task. Then the coefficients 
of the corresponding variables would be zero. It led to reforming the model function to a selective model and 
enhanced the prediction task36.

Elastic Net regression.  Where, the ridge and lasso regression are both limited to L1 and L2 norms, the elastic 
net could be used without these limited conditions ignoring the penalties of ridge and LASSO regressions. Ulti-
mately, the elastic net regression could be used efficiently for linear regression. The elastic net could be applied 
in complex regression problems with simplicity37.

Support vector machine (SVM).  The reduction of the elastic net to linear regression with support shows effi-
cient results in the optimization problems. A training dataset with linear SVM learns and separates the data in a 
classification setting and parameterizes it by a weight vector for a unique solution38.

Decision tree.  IT is a powerful ML method for regression and classification of complex datasets to perform 
multi-output tasks. Also, the foundation of random forest regression is a more complex method for regression 
that would be explained. The most critical parameter in this method is the depth or layer of the decision tree. It 
could be used to perform regression and as a predictor to evaluate the optimized value of the label with the cor-
responding selected features with more bias and lower variance concerning the other methods39.

Gradient boosting decision tree regression.  This method is considered in this research. It is an ensemble learn-
ing method that is coupled with a decision tree. It uses the shrinkage regularization technique. This method 
also supports a subsample hyper-parameter that specifies the fraction of training increases to train the trees. As 
could be deducted, this technique is a higher bias for lower variance. The main advantage of this method is the 
speeded-up training process40.

(2)min

[

(

y − θx
)2

+ �θ2)

]

Figure 7.   The schematic of the methodology has been implemented to study Balangu’s agronomic properties.

Table 7.   The properties of soil in the experimental site.

Absorbable potassium 
(ppm)

Absorbable 
phosphorous (ppm) Nitrogen (%) Organic matter (%) Soil type Sand (%) Silt (%) Clay (%) Acidity Conductance (µS cm−1)

304 61 0.08 0.76 Sandy loam 65 20 15 7.75 475
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Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to [REASON 
WHY DATA ARE NOT PUBLIC] but are available from the corresponding author on reasonable request.
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