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Improved generalized ComBat 
methods for harmonization 
of radiomic features
Hannah Horng1,2, Apurva Singh1, Bardia Yousefi1, Eric A. Cohen1, Babak Haghighi1, 
Sharyn Katz1, Peter B. Noël3, Despina Kontos1* & Russell T. Shinohara2*

Radiomic approaches in precision medicine are promising, but variation associated with image 
acquisition factors can result in severe biases and low generalizability. Multicenter datasets used 
in these studies are often heterogeneous in multiple imaging parameters and/or have missing 
information, resulting in multimodal radiomic feature distributions. ComBat is a promising 
harmonization tool, but it only harmonizes by single/known variables and assumes standardized 
input data are normally distributed. We propose a procedure that sequentially harmonizes for 
multiple batch effects in an optimized order, called OPNested ComBat. Furthermore, we propose 
to address bimodality by employing a Gaussian Mixture Model (GMM) grouping considered as 
either a batch variable (OPNested + GMM) or as a protected clinical covariate (OPNested − GMM). 
Methods were evaluated on features extracted with CapTK and PyRadiomics from two public lung 
computed tomography (CT) datasets. We found that OPNested ComBat improved harmonization 
performance over standard ComBat. OPNested + GMM ComBat exhibited the best harmonization 
performance but the lowest predictive performance, while OPNested − GMM ComBat showed poorer 
harmonization performance, but the highest predictive performance. Our findings emphasize that 
improved harmonization performance is no guarantee of improved predictive performance, and that 
these methods show promise for superior standardization of datasets heterogeneous in multiple or 
unknown imaging parameters and greater generalizability.

Radiomics, defined as the high-throughput extraction of quantitative features from medical images, has emerged 
in recent years as both an alternative and complement to genomic data for applications in precision oncology by 
leveraging standard-of-care images to interrogate the whole  tumor1,2. While such applications of radiomics are 
promising, they often require multicenter datasets to demonstrate sufficient statistical power and generalizability 
for clinical translation. However, imaging acquisition protocols often vary by institution in acquisition param-
eters, reconstruction, and post-processing. The resulting heterogeneous datasets are broadly equivalent clinically, 
but often contain unwanted variation due to technical factors that can interfere with downstream predictive 
analyses, resulting in reduced study  reproducibility3. Examples of this problem include recent studies in com-
puted tomography of the lung (CT) showing that reconstruction kernel and slice thickness as well as subsequent 
predictive analyses, as well as studies in magnetic resonance imaging (MRI) and positron emission tomography 
(PET) indicating acquisition parameters, site, and scanner can result in reduced feature  reproducibility4–9.

Harmonization methods developed to solve this problem can be broadly separated into two groups based on 
their domain: the image domain or the feature  domain10. Approaches in the image domain apply correction for 
differences associated with technical factors prior to feature extraction and include the standardizing protocols, 
developing more robust feature definitions, and image  preprocessing10,11. However, these methods are often 
difficult to implement or require modification of existing guidelines for radiomic feature extraction. Generative 
deep learning approaches that translate images between “batches”, or images grouped by a particular parameter 
(i.e. different scanners) can also be classified as in the image domain. Examples of such methods include STAN-
CT, where a generative adversarial network (GAN) is used to translate CT images by reconstruction kernel 
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and slice thickness, and DeepHarmony, where a U-Net is used to translate MRI images by  site12,13. While these 
approaches are promising, they require large datasets or specialized study designs and the transformations they 
apply are difficult to interpret.

Approaches in the feature domain apply correction after feature extraction, and include feature selection 
and batch effect correction  methods10. Feature selection results in the elimination of features deemed to be non-
robust to technical factors and can help alleviate collinearity, but it also can result in the loss of information that 
could prove useful in predictive analysis. Batch effect correction methods effectively standardize data following 
feature extraction without further loss of information, where batch effects are defined as non-biological factors 
that alter data.

One popular batch effect correction method is ComBat, a statistical harmonization method originally devel-
oped for genomics that can correct variation in imaging features due to imaging parameters by using empirical 
Bayes to estimate location and scale  parameters14,15. Many recent radiomic studies have demonstrated that 
ComBat can harmonize radiomic features from different CT, MRI, and PET protocols and reduce the number 
of features with significantly different distributions attributable to batch  effects14–20. While ComBat is fast, easy 
to use, and effective at small sample sizes, it has several limitations. The first is that ComBat assumes errors 
from standardized input data will follow a normal distribution, an assumption that does not hold when feature 
distributions are multimodal. While it has been claimed that ComBat can be applied to non-Gaussian distribu-
tions, there are not yet sufficient data to demonstrate its efficacy in the context of multimodal  distributions21. 
The second is that ComBat requires all batch effects and clinical covariates be known for effective correction 
or preservation of variation. This problem is not unique to radiomics–recent work in genomics has also sought 
to address the problem of batch effect correction in the setting of unknown  subtypes22. Lastly, the standard 
implementation of ComBat is only able to harmonize by a single batch effect at a time when datasets are often 
heterogeneous in more than one parameter.

In our previous work, we introduced two methods of addressing these limitations–Nested ComBat to har-
monize by more than one imaging parameter and Gaussian Mixture Model (GMM) ComBat to estimate the 
scan groupings associated with an unknown covariate to remove  bimodality23. However, Nested ComBat was 
unable to outperform standard ComBat, likely due to bimodal feature distributions and suboptimal determi-
nation of harmonization  order23. While GMM ComBat did successfully address the problem of bimodality, it 
did not address other batch variables affecting the  data23. Crucially, because the scan groupings attributable to 
an unknown covariate are estimated purely from the shape of the distribution in GMM ComBat, whether the 
covariate is a clinical variable (whose effect must be preserved) or an imaging parameter (whose effect must be 
removed) is unknown.

In this work, we further develop Nested ComBat into OPNested ComBat which selects an optimal batch effect 
harmonization order and results in improved feature performance compared with standard ComBat (Table 1). In 
addition, we explore novel methods of accounting for unknown covariates causing multimodal feature distribu-
tions. To address this, we fully incorporate the GMM grouping from GMM ComBat into OPNested ComBat in 
two distinct approaches: first as an unknown imaging parameter to be corrected (OPNested + GMM ComBat), 
and second as an unknown clinical variable to be protected (OPNested − GMM ComBat). These updated itera-
tive ComBat methods promise better standardization of radiomics data that are affected by multiple batch effects 
and/or exhibit bimodal feature distributions (Table 1). We then demonstrate the utility of these approaches on 
radiomics features extracted from publicly available lung CT images for removing variation associated with CT 
device manufacturer, spatial resolution to reconstruction kernel, and the use of intravenous contrast agents.

Results
Harmonization performance evaluation. The results of standard ComBat, OPNested ComBat, 
OPNested + GMM ComBat, and OPNested − GMM ComBat are shown in Table 2 and Fig. 1. We use the differ-
ence in percentage of features with significant differences in distribution relative to the original data as a measure 
of effect size when evaluating and comparing harmonization performance because correlation between features 
prevents the use of a binomial test for significant differences in proportions. Percentages differences were com-
puted by subtracting the percentage of features with statistically significant differences in distribution attribut-
able to batch effects for one feature set (e.g., features harmonized by OPNested ComBat) from another feature 
set (e.g., original features). Negative differences in percentage are indicative of improved harmonization perfor-
mance. OPNested ComBat generally tended to outperform standard ComBat in harmonization performance 

Table 1.  Summary of methods introduced in this work.

Description Use Case

Optimized Permutation Nested ComBat (OPNested 
ComBat)

Updated version of Nested ComBat that optimizes harmo-
nization order by selecting the permutation associated with 
the smallest number of features with statistically significant 
differences in distribution due to batch effects

Datasets heterogeneous in multiple imaging parameters

OPNested + GMM ComBat
Generalizes OPNested by adding a mixture model group-
ing to the list of imaging parameters for OPNested ComBat 
harmonization

Datasets heterogeneous in multiple imaging parameters 
with bimodality assumed to be associated with an imaging 
parameter

OPNested − GMM ComBat
Generalizes OPNested by adding a mixture model grouping 
to the list of clinical covariates protected during OPNested 
ComBat harmonization

Datasets heterogeneous in multiple imaging parameters 
with bimodality assumed to be associated with a clinical 
covariate of interest
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across all datasets (percentage difference for OPNested ComBat subtracted from standard ComBat: −10.8%, 
−49.8%, −24.5%. −7.6% for Lung3/CAPTK, Lung3/PyRadiomics, Radiogenomics/CAPTK, and Radiogenom-
ics/PyRadiomics, respectively, when split by contrast enhancement). This was an improvement over the previ-
ous version where OPNested ComBat was only able to demonstrate comparable performance when compared 
to standard  ComBat23. The application of OPNested + GMM ComBat resulted in the greatest reduction in the 
percentage of features with significant differences associated with known batch effects across all datasets (per-
centage difference for OPNested + GMM ComBat subtracted from Original: −21.5%, −41.7%, −2.6%, −51.7% for 
Lung3/CAPTK, Lung3/PyRadiomics, Radiogenomics/CAPTK, and Radiogenomics/PyRadiomics, respectively, 
when split by contrast enhancement). OPNested + GMM ComBat also successfully reduced the percentage of 
features with significant differences in distribution due to the inferred GMM grouping (percentage difference 
for OPNested + GMM subtracted from Original: −50%, −59.6%, −42.2%, 65.1% for Lung3/CAPTK, Lung3/
PyRadiomics, Radiogenomics/CAPTK, and Radiogenomics/PyRadiomics, respectively, when split by contrast 
enhancement), a reduction that was much smaller in magnitude in the features harmonized with OPNested-
GMM ComBat (percentage difference for OPNested–GMM ComBat subtracted from Original: −6.9%, −8.4%, 
−3.9%, −6.5% for Lung3/CAPTK, Lung3/PyRadiomics, Radiogenomics/CAPTK, and Radiogenomics/PyRadi-
omics, respectively, when split by contrast enhancement). Harmonization with OPNested − GMM ComBat also 
resulted in a smaller reduction in the percentage of features with significant differences due to the known indi-
vidual batch effects when compared to OPNested + GMM ComBat and OPNested ComBat in all datasets (per-
centage difference for OPNested − GMM ComBat subtracted from Original: −9.8%, −37.2%, −15.7%, −9.6% for 

Table 2.  Percentage of features out of the original number of features with significantly (p < 0.05) different 
distributions attributable to batch effects in the original features and after applying standard ComBat, 
OPNested ComBat, OPNested + GMM ComBat, and OPNested – ComBat. Order indicates order of batch 
effects used in sequential harmonization for multiple batch effects. GMM groupings are generated by selecting 
the best model out of a set of GMMs estimated from each feature, thus GMM feature indicates the feature 
corresponding to the best model used to generate the final GMM grouping for all features. a Nested Order: 
Manufacturer, Spatial Resolution, CE, Nested + GMM Order: Spatial Resolution, GMM, Manufacturer, 
CE, Nested – GMM Order: CE, Manufacturer, Spatial Resolution, GMM Feature: T1_E_GLRLM_
ShortRunLowGreyLevelEmphasis. b Nested Order: CE, Spatial Resolution, Manufacturer, Nested + GMM 
Order: Spatial Resolution, CE, GMM, Manufacturer, Nested-GMM Order: Manufacturer, CE, Spatial 
Resolution, GMM Feature: ldmn. c Nested Order: Manufacturer, CE, Spatial Resolution, Nested + GMM Order: 
GMM, CE, Spatial Resolution, Manufacturer, Nested-GMM Order: Manufacturer, CE, Spatial Resolution, 
GMM Feature: T1_ED_GLRLM_Bins-10_Radius-1_ShortRunLowGreyLevelEmphasis. d Nested Order: Spatial 
Resolution, Manufacturer, CE, Nested + GMM Order: Spatial Resolution, GMM, Manufacturer, CE, Nested – 
GMM Order: CE, Spatial Resolution, Manufacturer, GMM Feature: JointEnergy.

CE Spatial Resolution Manufacturer GMM Class

Lung3/CAPTKa

Original 22.5% 27.5% 56.9% 92.2%

ComBat 15.7% 16.7% 47.1%

OPNested 4.9% 10.8% 31.4%

OPNested + GMM 1% 6.9% 4.9% 42.2%

OPNested − GMM 12.7% 17.6% 50% 85.3%

Lung3/PyRadiomicsb

Original 41.9% 51.2% 65.1% 84.7%

ComBat 51.2% 24.7% 27.7%

OPNested 1.4% 28.8% 26.5%

OPNested + GMM 0.2% 21.6% 22.6% 25.1%

OPNested − GMM 4.7% 20% 42.8% 76.3%

Radiogenomics/CAPTKc

Original 31.4% 52.9% 20.6% 85.3%

ComBat 38.2% 40.2% 50%

OPNested 13.7% 21.6% 56.9%

OPNested + GMM 8.8% 16.7% 11.8% 43.1%

OPNested − GMM 15.7% 31.4% 53.9% 81.4%

Radiogenomics/PyRadiomicsd

Original 57.7% 74% 44.9% 78.6%

ComBat 22.3% 31.6% 36%

OPNested 14.7% 29.8% 22.6%

OPNested + GMM 6% 39.5% 16.5% 13.5%

OPNested − GMM 48.1% 67% 18.4% 72.1%



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19009  | https://doi.org/10.1038/s41598-022-23328-0

www.nature.com/scientificreports/

Figure 1.  (A) Representative kernel density plots for the original features and after applying OPNested 
ComBat. (B) Representative kernel density plots for the original features and after applying OPNested + GMM 
ComBat (C) Representative kernel density plots for the original features and after harmonizing with OPNested 
− GMM ComBat. Kernel density plots represent ComBat results separated by the batch variable manufacturer, 
and plots for representative features whose distributions best visually demonstrate the effects of GMM ComBat 
were selected by screening all the feature distributions before and after harmonization. Harmonization should 
result in more similar feature distributions.
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Lung3/CAPTK, Lung3/PyRadiomics, Radiogenomics/CAPTK, and Radiogenomics/PyRadiomics, respectively, 
when split by contrast enhancement).

The results of statistical testing on the features residualized on the clinical variables with a linear regression are 
shown in Table S1. While the percentages of features with significant differences in distribution due to imaging 
parameters are smaller than the values in the non-residualized features, the trends regarding the best-performing 
harmonization approach remain the same. In addition, statistical testing for significant differences in distribu-
tion due to imaging parameters in the principal component scores used as predictors in method evaluation are 
shown in Table S2. Principal components generated from the OPNested ComBat approach contained no such 
significant differences in two out of the four datasets, while the OPNested + GMM ComBat yielded the same 
result in one of the datasets. OPNested, OPNested + GMM, and OPNested − GMM ComBat better reduced the 
number of principal components with significant differences in distributions due to imaging parameters when 
compared to standard ComBat.

Outcome predictive performance evaluation. The results of survival analyses completed with the 
original and harmonized features are shown in Table 3 and Fig. 2. Both the original and harmonized features 
from all datasets, apart from Radiogenomics/PyRadiomics, resulted in significant (p < 0.05) log rank test p values 
for Kaplan–Meier curve separation. In the Radiogenomics/PyRadiomics data, Kaplan–Meier curves from both 
the original and harmonized data did not result in a significant p value from the log rank test (Fig. 2).

OPNested ComBat and standard ComBat (on a single batch effect, i.e., manufacturer) exhibited the highest 
c-statistic (0.62/p = 0.22, p = 0.24, respectively) in the Lung3/CAPTK dataset, while OPNested + GMM had the 
lowest c-statistic (0.50/p = 0.01) (Table 3). OPNested + GMM also had the lowest c-statistic in the Lung3/PyRadi-
omics (0.61/p = 0.41), while OPNested and OPNested–GMM ComBat had the highest c-statistics (0.65/p = 0.17,  
p = 0.21, respectively). In the Radiogenomics/CAPTK data, ComBat harmonization by manufacturer was associ-
ated with the highest c-statistic (0.58/p = 0.47) to match the c-statistic from the original features, while OPNested 
had the lowest such statistic (0.54/p = 0.29). In the Radiogenomics/PyRadiomics data, OPNested + GMM Com-
Bat had the lowest c-statistic (0.58/p = 0.06), but no harmonization approach was able to match or exceed the 
c-statistic from the original features (0.63).

In addition, survival analyses were performed for both (a) the original features and (b) features harmonized 
using each of the different approaches where features with a statistically significant difference in distribution 
observed with at least one imaging parameter were removed from the dataset (DROP) (Table S3, Figure S1). 
This differs from the analyses outlined above, in which all features were retained regardless of statistical testing 

Table 3.  C-statistics and 95% confidence intervals (CI) (over 2000 iterations) for fivefold cross-validated 
Cox proportional hazard models built exclusively from imaging-based features decomposed with PCA (with 
no added clinical covariates) to predict survival, and log-rank p values for Kaplan–Meier curve separation. 
ComBat (Manufacturer) indicates data was harmonized by manufacturer with ComBat.

fivefold CV c-statistic 95% CI Log-rank p value

Lung3/CAPTK

Original 0.59 [0.53, 0.64] 0.0004

ComBat (Manufacturer) 0.62 [0.56, 0.67] 0.014

OPNested 0.62 [0.57, 0.67] 0.0021

OPNested + GMM 0.50 [0.43, 0.56] 0.027

OPNested-GMM 0.59 [0.53, 0.64] 0.0011

Lung3/PyRadiomics

Original 0.62 [0.57, 0.67] 0.061

ComBat (Manufacturer) 0.64 [0.59, 0.68] 0.0004

OPNested 0.65 [0.60, 0.60] 0.0032

OPNested + GMM 0.61 [0.55, 0.66] 0.0036

OPNested-GMM 0.65 [0.60, 0.69] 0.0019

Radiogenomics/CAPTK

Original 0.58 [0.52, 0.62] 0.015

ComBat (Manufacturer) 0.58 [0.51, 0.64] 0.036

OPNested 0.54 [0.46, 0.61] 0.019

OPNested + GMM 0.56 [0.49, 0.61] 0.012

OPNested-GMM 0.55 [0.47, 0.61] 0.029

Radiogenomics/PyRadiomics

Original 0.63 [0.59, 0.67] 0.082

ComBat (Manufacturer) 0.59 [0.54, 0.63] 0.13

OPNested 0.59 [0.54, 0.63] 0.12

OPNested + GMM 0.58 [0.52, 0.63] 0.41

OPNested-GMM 0.59 [0.54, 0.64] 0.055
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indicating significant differences in distribution attributable to imaging parameters. In the Lung3 dataset, the 
additional dropping of features did not improve c-statistics over the standard ComBat and OPNested − GMM 
approaches in the CapTK and PyRadiomics features, respectively. In the Radiogenomics dataset, dropping fea-
tures did not improve the c-statistics over the OPNested − GMM approach in the CapTK data, but did improve 
the c-statistic in the original features (0.65) to outperform OPNested − GMM ComBat without dropping features 
in the PyRadiomics data.

Figure 2.  In-sample Kaplan–Meier curves fitted on the original features and the harmonization approach with 
the highest c-statistic.
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Associations between batch variables and clinical covariates. Results from the chi-squared test-
ing for independence and point biserial correlation testing to detect associations between clinical variables and 
imaging parameters (including the GMM groupings) are shown in Table 4. In the Lung3 data, survival was sig-
nificantly associated with manufacturer (p = 0.016). In the Radiogenomics data, manufacturer was significantly 
associated with sex (p < 0.001), smoking (p = 0.001), and histology classification (p = 0.011). Spatial resolution 
was also associated with smoking (p = 0.048). In addition, the GMM grouping generated from the CapTK fea-
tures were found to be significantly associated with gender (p = 0.043) and histology classification (p = 0.013).

In addition, results from the chi-squared test for independence to detect associations between imaging param-
eters within each dataset are shown in Table S4. In the Lung3 data, manufacturer was found to be associated 
with spatial resolution (p < 0.001) as well as the GMM groupings generated from the CapTK (p = 0.016) and 
PyRadiomics data (p = 0.01). In the Radiogenomics data, manufacturer was associated with the GMM grouping 
generated from the CapTK data (p = 0.044). Spatial resolution was also found to be associated with manufac-
turer (p < 0.001), contrast enhancement (p < 0.001), and the GMM groupings generated from the PyRadiomics 
data (p < 0.001). In both datasets, the GMM grouping generated from the CapTK data was associated with the 
grouping generated from the PyRadiomics data (p < 0.001 for Lung3 and Radiogenomics). Note that the GMM 
groupings for each dataset were generated from different features, as GMM groupings are generated by selecting 
the best model out of a set of GMMs estimated from each feature.

Discussion
While standard ComBat can effectively harmonize by a single imaging parameter under strong normality 
assumptions, the heterogeneity of imaging datasets in more than one imaging parameter necessitated the devel-
opment of Nested ComBat to sequentially harmonize by each batch  effect23. However, the previous version of 
Nested ComBat failed to surpass standard ComBat in harmonization performance in our two lung CT datasets 
(Lung3 and Radiogenomics), likely due to a combination of bimodal feature distributions and poorly optimized 
harmonization  order23. In this work, we update Nested ComBat into OPNested ComBat to optimize the order 
of batch effects in sequential harmonization by testing all possible orders and selecting the best one, resulting in 
superior performance when compared to the previous version. However, it can be observed that bimodal feature 
distributions remain bimodal following harmonization with OPNested ComBat, violating a key assumption 
made by ComBat that the residuals from the standardized input data will be normally distributed and limiting 
harmonization performance (Fig. 1).

In many instances, bimodality may be due to an unknown variable not measured in the study. This variable 
could be a nuisance imaging parameter or a variable of interest. In our previous study, we introduced the use of a 
GMM to estimate the scan groupings for a hidden variable from the distribution of an imaging  variable23. In this 
work, we use two methods of fully integrating the GMM grouping into OPNested ComBat. In OPNested + GMM 
ComBat, we assume that the hidden variable is an imaging parameter with associated variation that must be 
corrected. Harmonization with OPNested + GMM ComBat resulted in the lowest percentages of features with 
significant differences in distribution due to the known imaging parameters as well as the hidden parameter 
implied by the GMM grouping (Table 2). This is likely because the inclusion of the GMM grouping in the list of 
batch effects for sequential harmonization by OPNested ComBat eliminates bimodality in the feature distribu-
tions, as can be visually observed in Fig. 1. However, while OPNested + GMM ComBat demonstrated the best 
harmonization performance, using radiomic features harmonized with OPNested + GMM ComBat resulted in 
reduced predictive performance when compared to features harmonized OPNested ComBat (Table 3).

These findings indicate that the GMM grouping assumed to be a technical variable unassociated with biologi-
cal variation could in fact be a biological variable. Thus, correcting variation associated with the GMM grouping 

Table 4.  P values from the chi-squared test for independence (between categorical variables) and point 
biserial correlation test (between categorical and continuous variables) to detect association between clinical 
variables and imaging parameters, as well as GMM groupings. Red fill indicates p values below the 0.05 
threshold for significance.

Manufacturer Spatial resolution CE CAPTK GMM PyRadiomics GMM

Lung3

Survival 0.016 0.080 0.611 0.961 0.998

Histology 0.098 0.912 0.059 0.809 0.522

Stage 0.627 0.821 0.448 0.188 0.110

Gender 0.623 0.739 0.988 0.139 0.295

Survival time (months) 0.051 0.101 0.273 0.754 0.622

Radiogenomics

Survival 0.147 0.571 0.295 0.455 0.885

Gender  < 0.001 0.081 0.125 0.043 0.842

Smoking 0.001 0.048 0.082 0.058 0.553

Histology 0.011 0.116 0.601 0.013 0.154

Survival time (days) 0.485 0.647 0.689 0.832 0.729
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resulted in the removal of biological variation of interest and reduced predictive performance. This explanation 
is further supported by the observation that the GMM grouping generated from the Radiogenomics CapTK 
features was found to be significantly associated with the biological variables of gender and histology, and that 
the percentages of features with significant differences in distribution due to technical variables decreased when 
the features were residualized on biological variables (Table 4, Table S1). Another possible explanation is that 
because imaging parameters were generally associated with outcome as a consequence of study design, the 
removal of variation associated with those imaging parameters reduce predictive performance. This hypothesis 
is supported by the finding that manufacturer was significantly associated with survival outcome in the Lung3 
data and gender, smoking, and histology in the Radiogenomics data (Table 4). Future work will include using 
multivariate modeling to estimate the scan groupings associated with unknown covariates as a function of both 
imaging parameters and clinical variables to better determine the true cause of the observed bimodal feature 
distributions. Future work could also involve curation of datasets with more detailed clinical and image acquisi-
tion information to better determine whether the GMM grouping is biological or technical in nature.

The findings from OPNested + GMM ComBat resulted in the development of OPNested − GMM ComBat, in 
which we assume that the hidden variable causing the bimodality and driving the GMM grouping is a biologi-
cal variable with associated variation that must instead be protected during harmonization. OPNested − GMM 
ComBat resulted in worse harmonization performance when compared to OPNested + GMM and OPNested 
ComBat, but consistently demonstrated higher predictive performance than OPNested + GMM ComBat and 
had the highest c-statistic in two out of the four datasets (Table 3). In addition, while there were more principal 
components with significant differences in distribution due to imaging parameters computed from features 
harmonized with the OPNested − GMM approach when compared with the OPNested + GMM approach, the 
features harmonized with the OPNested − GMM approach still demonstrated superior predictive performance 
(Table S2). These findings further support the hypothesis that the generated GMM grouping is in some way 
associated with outcome, potentially biologically or as a technical variable imbalanced across outcome. As an 
example, consider a hypothetical study in which most patients without progression-free survival were imaged 
using a Siemens scanner. Because of this imbalance, the technical variable of manufacturer becomes associated 
with the outcome of progression-free survival.

The hypothesized association between technical factors and clinical covariates is supported by chi-squared 
and point biserial correlation testing for association between the known clinical variables and imaging parameters 
(including the GMM groupings), which indicate that the GMM grouping generated from the Radiogenomics/
CapTK data were significantly associated with two clinical variables (Table 4). In addition, the reduced harmo-
nization performance observed in OPNested − GMM ComBat when compared to OPNested + GMM ComBat 
could be because the unknown covariates estimated by the GMM groupings are also associated with technical 
variables. Statistical testing indicated that GMM groupings in both datasets and toolkits were significantly asso-
ciated with known technical variables (Table 4). This association could result in unwanted variation associated 
with technical variables being preserved when the GMM grouping is listed as a protected covariate, possibly 
resulting in reduced harmonization performance.

Another possible hypothesis for the reduced predictive performance from OPNested + GMM ComBat is that 
the process of iterative harmonization applies too many transformations to the data, resulting in distortion of the 
original signal. Future harmonization algorithms for multiple imaging parameters could address this problem 
by completing harmonization through a single transform as opposed to an iterative procedure.

While removing features with significant differences in distribution associated with imaging parameters is a 
potential method for removing any batch effects that remain post-harmonization, our findings demonstrate that 
this failed to improve predictive performance in two out of the four datasets (Table S3). This is likely because the 
process of dropping features can result in a loss of relevant information, particularly when imaging parameters 
are associated with clinical variables of interest. Future work could include developing superior batch effect 
detection metrics that incorporate biological associations to serve as a better criterion for feature selection.

In addition, while ComBat can remove batch effects impacting the mean and variance of quantitative features 
extracted from medical images, it does not effectively address batch effects in the covariance of these  features24. 
This hypothesis is supported by our finding that principal components from harmonized data still contained 
significant differences attributable to technical factors (Table S2). Chen et al. have developed an improved version 
of ComBat, CovBat, that is better able to address covariance batch  effects24. Future work could include applica-
tion of CovBat to our radiomic feature datasets and development of iterative and mixture model extenstions of 
CovBat to improve harmonization performance.

In this work, we have improved the Nested ComBat algorithm into OPNested ComBat to optimize the order of 
sequential harmonization and improve harmonization performance. We also introduce two new iterative ComBat 
methods, OPNested + GMM ComBat and OPNested − GMM ComBat, that fully integrate the GMM grouping 
introduced in our previous work into OPNested ComBat. While assuming the GMM grouping was attribut-
able to an imaging parameter in OPNested + GMM ComBat resulted in the best harmonization performance, 
assuming the GMM grouping was caused by a clinical variable in OPNested − GMM ComBat resulted in the 
best predictive performance. Both methods show promise for improving performance in secondary analyses and 
improving study reproducibility. However, the disconnect between harmonization and predictive performance 
serves as a reminder to the radiomics community that while harmonization can often improve the performance 
of predictive models by removing unwanted variation due to batch effects, it can also result in reduced predic-
tive performance when a “batch effect” is in fact a “clinical variable” or closely associated with one. In addition, 
studies with additional, larger, datasets are needed to further validate our findings.
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Material and methods
Statistical testing. The Anderson–Darling (AD) test was used to assess for general differences in distribu-
tion associated with imaging parameters. The AD test was selected over the Wilcoxon-Rank Sum and Kruskal–
Wallis tests given that many of the feature distributions appeared multimodal. It was selected over the Kol-
mogorov–Smirnov test because it enables testing of more than two batches associated with a particular imaging 
parameter and its increased weighting on the tails of a distribution. The percentage of radiomic features out of 
the original number of features with detected significant (p < 0.05) differences in distribution associated with an 
individual imaging parameter was used to measure the ability of ComBat and its iterative variations to remove 
variation caused by the corresponding imaging parameter.

In addition, the chi-squared test for independence was used to assess for associations between batch effects 
and categorical clinical variables. Similarly, the point biserial correlation test was used to test for associations 
between batch effects and continuous clinical variables.

OPNested, OPNested + GMM, and OPNested − GMM ComBat. In this study, we refine the methods 
from our previous work to optimize the harmonization order for iterative ComBat methods enabling sequential 
harmonization by multiple batch  effects23. We initialize with a list of batch effects and the original radiomic fea-
tures as the input data, just as in the previous version of Nested  ComBat23. However, in the updated version of 
OPNested ComBat we generate a list of all possible harmonization orders by computing a list of all permutations 
of the initialized batch effect list (Fig. 3). At each iteration, the original input data were sequentially harmonized 
with ComBat with order given by the permutation corresponding to the iteration (i.e. harmonization by the first 
batch effect in the permutation, then harmonizing the resulting harmonized data by the second batch effect in 
the permutation, etc.). The resulting harmonized feature sets, each corresponding to a different order/permuta-
tion, were each assessed for significant differences in distribution attributable to each batch effect using the AD 
test. The harmonized feature set with the lowest total number of features with significant differences in distribu-
tion across all batch effects was selected as the final output.

In our previous work, we introduced GMM ComBat in which a two-component Gaussian mixture model 
(GMM) is used to identify scan groupings likely split by an unknown covariate assumed to be an imaging 
parameter from the observed feature  distribution23. However, we did not add the ability to additionally harmo-
nize by multiple imaging parameters, limiting its performance. In this study, we develop two methods of fully 
integrating GMM ComBat into OPNested ComBat. In OPNested + GMM ComBat, we maintain the assumption 
that the scan groupings estimated by the GMM are caused by an imaging parameter and add them to the list of 
batch effects for sequential harmonization in OPNested ComBat. The data are thus harmonized by both the pre-
specified known imaging parameters as well as the GMM grouping. In OPNested − GMM ComBat, we instead 
assume that the scan groupings estimated by the GMM are caused by a clinical covariate. The GMM grouping is 
consequently added to the list of variables to be protected during OPNested ComBat harmonization to ensure 
the corresponding variation is not affected.

Source code for implementing the updated version of OPNested ComBat algorithm, as well as the new imple-
mentations of OPNested + GMM ComBat and OPNested − GMM ComBat, can be found at https:// github. com/ 
hannah- horng/ opnes ted- combat.

Datasets. We used two datasets publicly available from NCI’s The Cancer Imaging Archive (TCIA) to evalu-
ate the performance of our harmonization methods, Lung3 and  Radiogenomics25–27. Studies for the collection of 
both datasets were approved by the Institutional Review Boards at their respective institutions, and both datasets 
were fully de-identified prior to being made publicly  available26,27. All datasets and methods used in this work 
were compliant with relevant guidelines and regulations. Further information regarding case selection can be 

Figure 3.  Workflow for the OPNested, OPNested + GMM, and OPNested − GMM ComBat implementations 
for sequential harmonization given two batch effects. Red denotes a batch effect, while the dash indicates that 
the data has been harmonized by a particular batch effect (i.e., Data-1 means the data has been harmonized by 
batch effect 1, Data-1-2 means Data-1 has been harmonized again by batch effect 2, etc.).

https://github.com/hannah-horng/opnested-combat
https://github.com/hannah-horng/opnested-combat


10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19009  | https://doi.org/10.1038/s41598-022-23328-0

www.nature.com/scientificreports/

found in our preceding manuscript, while imaging parameter information is shown in Table 5 and Table S5 and 
patient demographics are shown in Table S623,25–27. The 3D tumour volume on these images was segmented by a 
board-certified, fellowship-trained thoracic radiologist with 16 years of clinical experience (S.K.) using the semi-
automated ITK-SNAP software (v 3.6.0)28. Features from lung tumor volumes segmented from both imaging 
datasets were extracted with the Cancer Imaging Phenomics Toolkit (CapTK) (102 features) and the PyRadiom-
ics software library (430 features), resulting in a total of four sets of  features29,30. A table of the extracted features 
can be found in Table S7–S8.

ComBat. All ComBat analyses used the neuroComBat Python package, which harmonizes data by a sin-
gle batch  effect16. The performance of the standard implementation of ComBat was assessed by applying sepa-
rate harmonization by each of the three batch effects (contrast enhancement, spatial resolution, manufacturer) 
(Table 5). In the Lung3 dataset, the clinical variables of death event, histology, stage, gender, and survival were 
protected. In the Radiogenomics dataset, the clinical variables of death event, histology, gender, smoking status, 
and days were preserved.

Method evaluation. Principal component analysis was used to generate ten radiomic principal compo-
nents (PCs) from the original CapTK and PyRadiomics features in the Lung3 and Radiogenomics datasets and 
features harmonized with all harmonization methods. The total number of predictors was capped at 5 out of 10 
in the CapTK features and 4 out of 10 in the PyRadiomics features to capture 85% of the variance, which fol-
lows the statistical rule of thumb of approximately one predictor per event (45 deaths in Lung3 and 40 deaths in 
Radiogenomics) to prevent model overfitting.

Each set of principal components was used in a five-fold cross-validated multivariate Cox proportional haz-
ards model (2000 iterations) to compute the concordance index (c-statistic), which measures the ability of the 
models to predict survival. Confidence intervals were constructed by taking the 2.5% and 97.5% quantiles from 
the 2000 iterations of the cross-validated Cox models. We also built a model on the complete dataset to evaluate 
Kaplan–Meier performance in separating participants above versus below the median prognostic score. The 
log-rank test was used to statistically compare Kaplan–Meier curves. All models included imaging features only 
and did not include additional clinical variables. A bootstrap approach was used to obtain p values indicating 
statistically significant increases and decreases in predictive performance (quantified using the c-statistic) of 
post-harmonized features compared to the original features.

Data availability
The datasets analyzed in this work (Lung3 and Radiogenomics) are publicly available from NCI’s The Cancer 
Imaging Archive (TCIA) [https:// wiki. cance rimag ingar chive. net/ displ ay/ Public/ NSCLC- Radio mics- Genom ics, 
https:// wiki. cance rimag ingar chive. net/ displ ay/ Public/ NSCLC+ Radio genom ics]25–27.
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