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A time function‑based prediction 
model of mining subsidence: 
application to the Barapukuria coal 
mine, Bangla
Xingsheng Zhang*, Shaobin Yan, Haicheng Tan & Jinyu Dong*

Coal mining may lead to ground subsidence in a long term and is widely distributed, which can cause 
environmental damage and other disasters. Predicting the dynamic process of ground subsidence in 
real time is very important for offering theoretical or technical guidance to deal with the consequences 
of mining. In this study, we developed a prediction method for dynamic ground subsidence using a 
time function model that considers two stages of surface subsidence and reflects the law of surface 
subsidence in goaf. We applied the model to the Barapukuria mine, and our simulation shows that 
the prediction results are in good agreement with the monitoring data. Our results suggest that the 
dynamic development of the ground subsidence basin may be an effective measure to assess the loss 
of ground and provide early warning of oncoming hazards.

Coal mining often leads to ground subsidence around mining areas, which can cause problems, such as water 
accumulation, agricultural reduction, road collapse, and deformation or damage to buildings1,2. Underground 
mining causes the ground surface to move downward relative to the initial mining position, which promotes 
subsidence basin3–6. Surface subsidence is a dynamic process that gradually develops with the advancement of the 
mining working face7–9. An arbitrary point on the ground surface continues to subside as extraction is performed 
within a critical area below that point10. It is important to predict the dynamic development of a surface over time.

The prediction of mining subsidence is an important issue for the mining industry, government, and the 
affected people. This is particularly important for towns and engineering projects where mining occurs11. Based 
on the analysis of subsidence monitoring data, influential functions can be used to describe the influence of the 
excavation elementary part of the formation subsidence12–14. The dynamic prediction of mining subsidence can 
be obtained by multiplying the static prediction results with the corresponding time coefficient15,16. Double-
parameter time functions and prediction parameters have been proposed to improve simulation performance17–20. 
Although the Knothe time function can be used to predict the dynamic movement and deformation of the 
ground surface, it is still difficult to determine the coefficient of the influence function because land subsidence 
is affected by geological parameters and geomechanical mechanisms.

In this paper, we first present the major contribution of this study—a prediction model developed with the 
parameters of ground subsidence. Then, with the help of MATLAB programming platform, we simulated the 
surface subsidence process over time in the Barapukuria mining area in Bangladesh. The results show that the 
numerical simulation matches the monitoring data well. We hope that our study offers a dynamic prediction of 
ground subsidence and provides a basis for the early warning of forthcoming hazards.

Subsidence mechanism of coal seam mining
The mechanism of ground movement caused by mining is complex and influenced by the geological environ-
ment of the mine and overlying strata. Although an accurate model is difficult to find, an approximate prediction 
model can also be used to forecast subsidence caused by mining by modifying certain influence parameters. In 
the process of mining, ground subsidence continues to increase and forms a subsidence basin, as shown in Fig. 1 
(vertical section), which indicates that the value of the subsidence and the influence range continue to expand 
from right to left (along the direction of mining). The subsidence will reach a stable maximum value when the 
coal seam reaches full extraction.
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Spatial influence function.  The spatial influence function can predict ground subsidence, which should 
not only take into account the main characteristics such as the depth of the coal seam, maximum possible 
subsidence, and time factor, but also involve the evolution of subsidence in space. Here, we introduce a spatial 
influence function21, the formula is expressed as follows:

where w(x) is the influence function that extends to all mining units of the coal seams so that the subsidence 
at point x on the surface can be computed. Smax is the maximum possible subsidence. H represents the depth 
of mining elements. n and k represent the shape and magnitude of the ground subsidence trough, respectively.

Time influence function.  The subsidence of the surface cannot be completed instantaneously after min-
ing, and always develops over a period of time and even several years to reach a relatively stable state. One of the 
most widely used time functions proposed by Knothe12, assumes that the surface subsidence velocity ∂W(t)/∂t 
is proportional to the difference between the maximum surface subsidence W0 and dynamic subsidence W(t) at 
a given time t .

where c denotes the influence coefficient of the time factor related to the mechanical properties of the overly-
ing strata. Combined with the initial time boundary conditions: t = 0 and W(t) = 0 , by solving the differential 
equation, the relationship between surface subsidence and time can be obtained:

The above relationship represents the subsidence expression of the dynamic prediction of surface movement 
based on the Knothe time function. The accuracy of the Knothe time function depends mainly on parameter c . 
The smaller the c value, the smaller the Knothe time function value. In contrast, the value of the Knothe time 
function increases as c increases. In other words, it takes longer for surface subsidence to stabilize as the value 
of c increases.

Piecewise Knothe time function.  To reflect the dynamic change law of surface subsidence, the Knothe 
time function is improved to meet the need for dynamic prediction of practical projects22. The improved func-
tion includes two functional expressions. First, the surface subsidence velocity gradually increases from zero to 
the maximum value, and the surface points gradually bend owing to mining. The second shows that the surface 
subsidence velocity decreases from the maximum to zero. The functional relationship of the subsidence velocity 
with time is as follows:

(1)w(x) =
Smax

(1+ 4n) · (kH)2
·
[

e−π( x
kH )
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+ n · e−π( x
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Figure 1.   The vertical section sketch of coal seam mining subsidence.
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where t  is the moment of prediction, W(t) is the subsidence value of the surface, W1(t) and W2(t) are the surface 
subsidence values of the first and the second stages, respectively, at moment t  . Vt is the subsidence velocity of 
the surface at moment t  , V1(t) and V2(t) are the surface subsidence velocities of the first stage and second stage 
at the moment t  , respectively. Wk represents the final subsidence value of the surface, and τ is the moment when 
the maximum subsidence velocity of the surface subsidence occurs, which can also be regarded as the moment 
when the inflection point of the subsidence curve appears, where T is the total subsidence time for the two stages 
(shown in Fig. 2).

For a near-horizontal coal seam, the surface subsidence reaches the maximum subsidence velocity Vmax at 
time τ . An inflection point exists in the surface subsidence curve, and the surface subsidence value Wτ is approxi-
mately equal to half of the maximum surface subsidence value Wmax . Thus, the theoretical value of the function 
is 0.5. As shown in Fig. 2, both final function values of ψ(t) are close to, but cannot reach the value of 1, and the 
final function value decreases with a decrease in the c value. Therefore, the piecewise time function for dynamic 
prediction does not match the final ground subsidence curve.

According to the above analysis, the theoretical subsidence value Wτ is not equal to half of the maximum 
surface subsidence value Wmax , and the final function value of ψ(t) is close to 1, but cannot reach 1.

Here, an optimized piecewise Knothe time function23 is given as:

With the optimization of the time function, regardless of parameters c and τ , the function value is equal to the 
theoretical value at moment τ , and the final time function value converges to 1, which can solve some theoretical 
problems of the original piecewise time function.

The algorithm of surface subsidence prediction model
Determination of prediction parameters.  The prediction parameters for mining subsidence in the 
probability integral method have been calculated24,25. The coordinates of the monitoring points in the coordi-
nate system of the working face are 

(

x, y
)

 , and the actual subsidence value is z . Using the least-squares method 
to fit the surface, after multiple iterations, a group of parameters can be obtained to minimize the square sum of 
the deviations between the fitted surface and the measured data. The mathematical model of the least-squares 
method is:

where Q1 is the deviation between the measured subsidence at each monitoring point and the least-squares fitting 
value. QT

1  is the transpose of matrix Q1 . k is the number of monitoring points, Wzk is the measured subsidence 
deformation at each monitoring point, and W

(

x, y
)

 is the least-squares fitting value of the measured subsidence 
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Figure 2.   Piecewise Knothe time function graphic with c at different values (P1, P2 are inflection points of the 
two curves).



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18433  | https://doi.org/10.1038/s41598-022-23303-9

www.nature.com/scientificreports/

deformation at each monitoring point. According to the empirical value of the prediction parameters of the 
mining area, the initial value of the iteration is used for least-squares fitting to obtain the prediction parameters.

Subsidence prediction method for the strike principal section.  First, the mining area should be 
divided into n-equal units along the working face before the dynamic prediction of ground subsidence. The 
mining moment at the open-off cut and speed of the working face of the first mining unit are defined as the 
initial moments t0 and v1 , respectively. The point of the open-off cut is considered as the coordinate origin, and 
the length of the first mining unit is v1t1 . The excavation speed of the second unit is v2 , the length of which is 
v2t2 , and the coordinate value of the terminal point of the second unit is v1t1+v2t2 . The next mining units below 
can be obtained in this manner. The excavation speed of the n-th unit is vn , the length of which is vntn , and the 
coordinate value of the terminal point of the second unit is v1t1+v2t2 + · · · vntn . The influence of each unit on 
the surface static subsidence when the inflection point displacement is considered in the next section.

The ground static subsidence of the first, second and n-th units induced after mining can be expressed as 
follows:

Assuming that the predicted time of surface subsidence is t  , the time function of surface subsid-
ence induced by the first mining unit is k1(t) , the time function of surface subsidence induced by the sec-
ond mining unit is k2(t − t1) , and the time function of surface subsidence induced by the n-th mining unit 
is kn(t − t1 − · · · t2 − · · · tn−1) . According to the superposition principle, it is necessary to multiply the time 
function corresponding to each mining unit by the corresponding static subsidence and then sum it to obtain 
the surface dynamic subsidence prediction formula, as follows:

In the actual mining process, the daily excavation speed and mining time remain constant: 
v1 = v2= · · ·=vn, t1 = t2= · · ·=tn , and the dynamic subsidence prediction formula can be simplified as follows.

According to the above analysis, the formula for the probabilistic integral method is given.

where r is the major influence radius. When the predicted moment is greater than the total mining time, the mine 
was fully mined. We set s3 and s4 as zero if the displacement of the inflection point is ignored.

Subsidence prediction method for the surface of mining area.  During subsidence prediction pro-
cess of the strike principal section, the subsidence of all the affected surface points can be predicted using the 
three-dimensional coordinate system, as shown in Fig. 3. The abscissa of the micro unit and an arbitrary point 
A on the surface are x′ and x , respectively. Thus, the subsidence of point A on the surface caused by this micro 
unit can be determined.

To predict the subsidence of an arbitrary point on the surface of the mining area, a coal seam coordinate sys-
tem is set with the origin and the x′-axis parallel to the coal seam trend and the y′-axis parallel to the coal seam 
inclination. The corresponding origin point of the surface coordinate system is set as O , and the x- and y-axes 
are parallel to the x′ - and y′-axes, respectively, as shown in Fig. 3. If a micro unit B with coordinates 

(

x′, y′
)

 is 
mined, its subsidence effect on point A with surface coordinates 

(

x, y
)

 can be expressed by the following equation:
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Figure 3 shows that the mining area is EO1CD , the length of ED is D3 , and the length of CD is D1s . Using 
Eq. (13), the surface subsidence caused by the mining area can be expressed as:

where, W0 represents the maximum value of the surface subsidence, which can be expressed by the empirical 
formula W0 = mq cosα , and α is the dip angle of the coal seam.

Numerical Prediction
Mining condition of Mumba coal mine.  The mine is located in the northwest of Dhaka26, the capital of 
Bangladesh, with a geographical location of 25°31′–25°34′ N and 88°57′–88°59′ E. The spans of north–south and 
east–west are respectively about 4.9 km and 0.3 ~ 1.9 km about covering an area of 5.8 square kilometers.

The 1210 working face Monitoring data of surface subsidence points.  The coalfield stratum 
belongs to the Carboniferous-Permian, the 1210 working face is located in the south of the mine, and coal seam 
is horizontal with an average thickness of 5 m. The 1210 working face only laid a north–south direction obser-
vation line on the side of the open-off cut, with a total of 32 measuring points and with an average distance of 
approximately 25 m. The 1210 working face mining process lasted for 118 days. The average mining depth of the 
1210 working face is 414 m, mining length is 349 m, and mining speed is 2.96 m/day. The 1210 working face can 
be regarded as a near-horizontal coal seam. The position of the mining area and a comparison diagram of the 
1210 observation stations are shown in Figs. 4 and 5, respectively. Based on the monitoring data of the surface 
subsidence points shown in Fig. 6, the subsidence curves are in line with the law of surface subsidence, and the 
position of the maximum subsidence moves forward with the advance of the working face. At t = 118 days, the 
mining of 1210 working face was completed.

Prediction of surface subsidence of the strike principal section.  According to the empirical value 
of the prediction parameters of the mining area, with the help of Eqs. (7) and (14), we obtained the initial itera-
tive value for least square fitting to obtain q = 0.71,tan β = 1.82 . Using the improved model, we get the ground 
subsidence results (Fig. 7). Figure 7 shows that these dashed and solid curves present the surface subsidence 
of the monitoring and prediction of surface points along the strike principal section, respectively. Because the 
monitoring data were affected by water on the ground, the origin of the coordinates was set at unaffected N16. 
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Figure 3.   Influence of unit mining on arbitrary points on the surface.
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The coal seam mining is carried out from monitoring point N24 to N16 in Fig. 5, starting at N24, until min-
ing at 349 m. It is reasonable to show the subsidence value in the [200, 800 m] interval in Fig. 7, which can be 
considered to have an infinite boundary, but its influence range is limited. The state of the subsidence curve at 
seven different moments is provided in the prediction, and the position of the maximum subsidence point of the 
prediction curve is consistent with the theory. At T = 349 days, the maximum subsidence value of the simulation 
is 1.875 m, and the error with the measured data value of 1.968 is 4.72%. With the advance of the working face, 
the subsidence value of the ground point gradually increases, and the influence range of the surface subsidence 
basins gradually expands. The prediction curve shows that there is no flat base shape in the surface subsidence 
basin, which indicating that the strike direction of the working face does not reach full mining. This is consistent 
with the conclusion obtained from the measured data that the strike direction of the working face did not reach 
full mining. The prediction results of the subsidence using unimproved Knothe time function model is given in 
the Appendix, which can not predict the surface subsidence well with larger errors.

In both the monitoring data and the predicted value of the strike principal section, the overall subsidence rate 
first increased and then decreased, and the subsidence curve conformed to the law of the S curve. The average 
interval of the maximum subsidence value for each monitoring curve is 0.311 m, whereas the predicted curve 
is 0.317 m. After excavation, the number of days experienced for each increase in a certain subsidence value 
decreases and then increases, and the monitoring curve is in good agreement with the prediction.

Figure 4.   The Simplified geological section of Barapukuria Coal Mine.

Figure 5.   Comparison diagram of observation station of 1210 working face of Mumba Coal Mine (The letter N 
represents north–south direction).
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Simulation and prediction of subsidence basin.  Based on the above prediction model described for 
surface subsidence, we solved Eqs. (11) and (14) with the help of MATLAB, and obtained the dynamic develop-
ment of the surface subsidence basin. Here, t represents the duration from the moment of mining, and the total 
mining time was 118 days.

Figure 8 shows the subsidence basin prediction results at different moments, where the red and blue lines 
represent the monitoring data and prediction curves along the strike principal section, respectively.

Figure 8a shows the prediction result of the subsidence basin at t = 24 days, whose development trend of 
subsidence is the direction indicated by the arrow and the shape is funnel-shaped. The maximum subsidence 
values of the subsidence basin from the predicted and monitored data are − 0.101 m and − 0.105 m at t = 24 days, 
respectively. The error between the prediction model and measured data is − 3.23%. The horizontal projection 
of subsidence basin induced by mining can be approximately shown according to the contour lines, revealing 
the extension trend of subsidence.

Figure 8b–g show the different prediction results for the subsidence basin at t = 56, 75, 83, 95, 150, and 
349 days. The maximum prediction values of the subsidence basin are − 0.543 m, − 0.854 m, − 1.189 m, − 1.400 m, 
− 1.702 m, − 2.005 m, respectively, and the extension trend of subsidence is along the arrow direction (min-
ing direction). The maximum subsidence values of the monitoring data are respectively − 0.431 m, − 0.785 m, 
− 1.014 m, − 1.292 m, − 1.586 m, and − 1.968 m, and the red and blue lines represent the monitoring data and 
the subsidence prediction value of the strike principal section, respectively. The results show that the predicted 
values are slightly higher than the monitored data. The average error between the prediction value and the moni-
toring data is 9.49%, which indicates that our model can provide a good dynamic prediction of the subsidence 
caused by coal mining.

The surface subsidence continues to spread after mining, and with the help of our model, we can obtain 
some more predictions for the subsidence basin shown in Fig. 8h–j at different moments, and the bottoms of the 
subsidence basin become flat. The maximum values of the subsidence basin changed from − 2.077 m at 400 days 
to − 2.079 m at 700 days, indicating that the subsidence basin trends to be stable. The results in Fig. 8 show that 
the subsidence basin expands continuously and develops along the mining direction. The blue lines represent 
the predicted subsidence values for the strike principal section.

Figure 6.   Monitoring data of surface subsidence of the strike principal section.

Figure 7.   Prediction curve of surface subsidence of the strike principal section.
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(a) t=24 days (b) t=56 days

(c) t=75 days (d) t=83 days

(e) t=95 days (f) t=150 days

(g) t=349 days (h) t=500 days

(i) t=600 days (j) t=700 days

Figure 8.   The subsidence basin at different moments (a–j) represent the subsidence basin at different time, the 
red and blue lines represent the monitoring data and prediction value of subsidence, respectively).
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Discussion
Surface subsidence caused by mining often produces subsequent disasters, the prediction of which may help 
to assess subsequent disasters. Based on the monitoring data of the Barapukuria mine, we developed a predic-
tion model based on the optimized piecewise Knothe time function and prediction parameters from the actual 
monitoring results, which can determine the subsidence prediction curve of the strike principal section and 
subsidence basin at arbitrary points on the surface through simulations.

Our simulation shows that the prediction results and monitoring data are very similar, as shown in Fig. 8a–f. 
The blue lines prediction results do not completely coincide with the red lines monitoring data, which may be due 
to the following reasons: (1) The overlying lithology varies at different positions because the physical parameters 
of overburden strata constantly change, which directly affects the subsidence prediction. (2) For convenience, 
we ignored the influence of the inflection point offset distance. (3) There are some influences of mining-out on 
both sides in the actual mining process.

Conclusion
In this study, we developed a time influence function to model surface subsidence caused by mining. These 
subsidence equations are implemented in MATLAB for the numerical prediction of surface subsidence in Bara-
pukuria mining. The results of our simulation allow us to show how the subsidence basin extends at different 
times during the mining process. Our simulation shows that the predicted results agree well with the monitoring 
data. Our simulation provided the final shape of the subsidence basin. This may provide an early prediction of 
ground subsidence caused by mining.

The present simulation ignores the influence of the physical parameters of the overburden strata. In the next, 
we will give more consider the physical parameters of overburden strata and the inflection point offset distance 
to obtain a more accurate prediction model.

Data availability
All data generated or analysed during this study are included in its supplementary information files and available 
from the corresponding author on reasonable request.
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