
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18404  | https://doi.org/10.1038/s41598-022-23295-6

www.nature.com/scientificreports

Analytical investigation 
of an incompressible viscous 
laminar Casson fluid flow 
past a stretching/shrinking sheet
Ulavathi Shettar Mahabaleshwar1, Thippaiah Maranna1 & Filippos Sofos2*

This paper presents an analytical approach on capturing the effect of incompressible, non-Newtonian, 
viscous, Casson nanofluid flow past a stretching/shrinking surface, under the influence of heat 
radiation and mass transfer parameter. The governing nonlinear partial differential equations are first 
transformed into a series of associated nonlinear ordinary differential equations with aid of predictable 
transformation, while numerical computations follow. The implied nanofluid here is aluminum oxide 
( Al

2
O
3
 ). The analytical solution is exploited to reveal the accompanying non-dimensional boundary 

value problem and output results are employed to verify the method’s reliability, where it is shown 
that they agree with current findings in the field. An incomplete gamma function is used to solve 
temperature equation analytically. We present various instances of the solution, depicting effects of 
the essential flow factor, the stretching/shrinking parameter, the mass transfer parameter, radiation 
parameter, and Prandtl number.

List of symbols

Latin symbols
a	� Constant
C	� Component of constant velocity
Cp	� Specific heat (J K−1 kg−1)
C1	� Free parameter (–)
d	� Stretching/shrinking parameter
f 	� Similarity function
F	� Algebraically decaying variable
k∗	� Mean absorption coefficient (cm−1)
Nr	� Radiation factor
Pr	� Prandtl number
qr	� Radiative heat flux (W m−2)
T	� Fluid temperature (K)
Tw	� Temperature of the surface (K)
T∞	� Ambient temperature (K)
u	� Component of velocity along x-axis (m s−1)
v	� Component of velocity along y-axis (m s−1)
Vc	� Mass transfer variable
x	� Horizontal axis
y	� Vertical axis
�	� Casson fluid parameter(
ρCp

)
	� Heat capacitance of fluid (J kg−1 K)
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Greek symbols
η	� Similarity variable
µ	� Dynamic viscosity (N s m−2)
ν	� Kinematic viscosity (m2 s−1)
ρ	� Fluid density (kg m−3)
ϕ	� Volume fraction (–)
θ	� Fluctuating temperature (K)
ψ	� Stream function (K)
σ ∗	� Stefan–Boltzmann constant (W m−2 K−4)

Subscripts/superscripts
f 	� Base fluid
nf 	� Nano fluid
ur	� Reference velocity

Non-Newtonian fluids have been exploited in numerous applications nowadays, such as the flow of nuclear 
fuel slurries, liquid metal and alloy flows, plasma flows, mercury amalgam flows, and flows for lubrication with 
heavy oil and greases, coating of papers, polymer extrusion, and numerous other processes. It is of particular 
importance that, understanding non-Newtonian fluid dynamics, whether with or without heat transfer, can 
lead to better acquiring of concepts like food freezing and polymer injection, and others. A broad range of 
fluids, such as salt solutions, melted sauce, custard, toothpaste, starch syrup, paints, blood, or shampoo, exhibit 
remarkable properties due to highly viscous behavior. The fundamental theory of stress and strain velocity that 
applies well in Newtonian fluids cannot be applied in such cases, and the term non-Newtonian has long been 
incorporated1. Benefits that stem from the exploitation of non-Newtonian fluids, apart from drag reduction2, 
are their advanced thermal properties.

During the last decades, a lot of research has been made on the nanofluid flow and heat transfer with water 
as a base fluid. Among them, nanofluids, as introduced by Choi et al.3, have been recommended in suspending 
nanoparticles in a base fluid such as water, oil, or ethylene glycol. Tiwari et al.4, have proposed various nanofluidic 
concepts, which can aid in understanding convective recirculation and flow processes induced by a nanofluid. 
Hwang et al.5 have investigated nanofluids in terms of thermal conductivity and come to the conclusion that the 
volume fraction of nanoparticles, its characteristics, and the base fluids’ thermal properties are significant factors 
that affect thermal conductivity. Arash et al.6 have implemented a model of a nanofluid inside a microchannel 
under the effect of a magnetohydrodynamic field. By considering a Cu–H2O nanofluid, it has been also found 
that Cu nanoparticles lead to higher nanofluid temperature upon heating7.

Further studies include nanofluid research across a stretched/shrinking sheet with an impact of radiation and 
mass transpiration8–11. By adopting a dual transpiration approach, a precise method for entropy production in a 
magnetohydrodynamic flow of nanofluid caused by stretched/shrinking surface was developed by Freidoonimehr 
et al.12. In tunnels with turbulent flow, Xuan et al.13, have measured properties relevant to the nanoparticle flow 
and heat transfer. As stated by their experimental findings, increasing the volume fraction, as well as the Reyn-
olds number of nanostructures, can improve heat transfer by convection and the Nusselt number of nanofluids. 
An exponential stretched surface affected by a magnetic field, chemical processes, heat flux, as well as viscous 
dissipation, produce steady movement of the boundary layer of nanofluid, and mathematical formulation of this 
problem is proposed by Reddy et al.14.

Recently, Sneha et al.15 have investigated carbon nanotubes (CNTs) characteristics, in terms of their water-
based nanoparticles and dusty hybrid nanofluid flow for the Darcy-Brinkman model under conditions of radia-
tion and mass transpiration. Anusha et al.16 have studied how the application of MHD has affected the flow of 
nanofluids, dusty hybrid nanofluids at its stagnation point through permeable stretching/shrinking surfaces, 
under the effects of mass transpiration and heat flux. Fang et al.17 have analyzed the performance of stable 
boundary layer flow transfer of an inviscid and viscoelastic fluid approaching porous stretching/shrinking sheets. 
Mandal et al.18 have examined the impact of convective heat, viscosity dissipation generated by nanomaterials, 
and the induced magnetic field.

Casson fluid is classified as a non-Newtonian fluid due to its rheological characteristics in relation to the 
shear stress–strain relationship. It behaves like an elastic solid at low shear strain and above a critical stress value, 
it behaves like a Newtonian fluid. A Casson fluid can better described as a shear thinning liquid with infinite 
viscosity at zero shear rate, and zero viscosity at an infinite rate of shear. Some common examples of liquids 
that exhibit Casson fluid characteristics include tomato sauce, honey, soup, orange juice and human blood. 
Recently, exact solutions have been established by a novel technique for the effects of heat and mass transfer 
on the peristaltic flow of non-Newtonian Casson fluid inside an elliptic conduit, studied by Akhtar et al.19 The 
physiological stream of Casson fluid in a vertical elliptical duct with heated, ciliated surfaces has been estimated 
analytically by Fuzhang et al.20.

On the other hand, several studies have been conducted to analyze the Magnetohydrodynamic Cas-
son fluid, such as Casson nanofluid flow over a nonlinear slanted extending/shrinking surface, oscillating 
disk in Darcy–Forchheimer medium under the effect of heat and mass transfer, thermal energy in terms of 
heat source/sink, thermal radiation and chemical reaction, while a numerical analysis has been conducted 
for the three-dimensional flow of a hybrid nanofluid under/over a stretching surface using supervised Neural 
Networks21–24. More recently, the injection of water-based nanoparticle (NP) suspensions has received attention 
as a recovery enhancement technique. Awais et al.25 has theoretically studied the influence of Hall and slip with 
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temperature-dependent viscosity, by conceptually exposing the rheological behavior of copper water nanofluid 
peristaltic flow through generalized flexible surfaces. Furthermore, recent studies have reported nanofluidic 
effects and enhanced heat transmission in dispersion of micropolar fluids utilizing the KKL model, entropy 
generation and rate of heat transfer in steady flow of (Al2O3–Cu/H2O) hybrid nanofluid due to radially stretch-
ing disk by imposing convective-type thermal conditions, and the three-dimensional Oldroyd’s-B fluid with 
nonlinear thermal radiation past over the stretched surface (see Awais et al.26–28).

The present article aims at investigating the following aspects:

•	 the steady laminar boundary layer flow and heat transfer of a viscous and an incompressible non-Newtonian 
fluid over a linearly stretching/shrinking surface.

•	 Casson fluid model is utilized to describe the non-Newtonian fluid behavior. This type of fluid has wide 
applications in food processing, in metallurgy, drilling operation and bio-engineering operations.

•	 The nanofluid, that is, Al2O3-water is studied.
•	 The thermal radiation effect in such configuration is also studied.
•	 Dimensionless expressions of velocity and temperature are solved analytically.
•	 The presented plots illustrate the behavior of pertinent parameters such as stretching/shrinking parameter, 

mass transpiration, Prandtl number, radiation and free parameter on the velocity and temperature.
•	 The novelty of this work is to evaluate the effect of thermal radiation on laminar boundary layer flow of Cas-

son nanofluid through a stretching/shrinking sheet. The physical quantities like skin friction and Nusselt 
number are also evaluated. Finally, we hope that the results of this study will be applicable to processes like 
extrusion, cord depiction, copper spiraling, heat progressing, and melts of high molecular weight polymers.

Methods
Model and mathematical formulation.  We consider the steady, two-dimensional non-Newtonian flow 
of an incompressible viscous fluid past a stretching/shrinking sheet with mass transfer in a stationary fluid, as 
shown in Fig. 1. Here, the stretching surface moving velocity is given by uw(x) = bx + C, where the stretching 
rate is for b > 0, and shrinking rate for b < 0 , and C is the constant velocity component. There is a constant mass 
transfer velocity at the wall is Vw together with Vw > 0 for suction, while, for injection we have Vw < 0 . At Tw , 
surface temperature is constant with fixed temperature of the ambient fluid at T∞ . The x-axis is measured along 
the stretching surface and y-axis is perpendicular to it.

The rheological model for the flow of a Casson fluid can be written as

Here µB is plastic dynamics viscosity of the Casson fluid, py is the yield stress of fluid, the product of the 
component of resultant deformation rate with itself is π . Namely, π = eijeij , eij is the 

(
i, j
)
 th components of the 

deformation rate, and product’s critical value is denoted as πc.
The basic two-dimensional boundary layer momentum and energy equations are defined as29–32

(1)τij =





2

�
µB +

py√
2π

�
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eij , π < πc .

(2)
∂u

∂x
+

∂v

∂y
= 0,

.

. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .

. . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . .

. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .

y

x

nanoparticles

uw(x)=bx+c

Vc>0

shrinking/stretching membrane

. . . . . . . . . . . ..

.. .

. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .

. . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .

. . . . . . . . .

. .. .. .. .. .. .. .

. . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .

Vc<0

. . . .. . . . .. . . . . .. . . . . . . .. . . . . . . .. . . . . . . ..
.. .. .. .. ...

..
.

. . .

. . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . .

. . .. . . . .. . . . . .. . . . . . . . .. . . . . . . . .... .. . . . . . . .
.

.
. . . . . .. . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . .. . .. . . . . . . . . . . .. . . . . .. . . . . .. . . . . .

.

.
.

. . . . . .. . . . .. . . . .. . . . . .. . . . . .. . . . . .

.

.

. . . . . .

....

slot

Figure 1.   Schematic representation of the implied problem.
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where u and v are the x - and y-components of velocity, respectively, p : pressure, ρnf  : nanofluid density, vnf  : 
nanofluid kinematic viscosity, χ = κnf

(ρCp)nf
 : nanofluid thermal diffusivity, with κnf  the nanofluid thermal con-

ductivity, fluid temperature is T , 
(
ρCp

)
nf

 is nanofluid heat capacitance and, finally, the Casson parameter is �.
The unsteady basic governing equations’ boundary constraints are

Similarity variables.  The advantages of the similarity transformation are to convert the Partial Differential 
Equations into highly non-linear Ordinary Differential Equations. In order to simplify the analysis of the prob-
lem, we proposed the correct self-similarity variables mentioned below17,29

where a is constant (always positive for this condition), the reference velocity is represented as ur(x) = ax , 
and u = ur(x)

∂f
∂η

+ Cg(η) . We present the following expression for the pressure p using Eq. (4) and the bound-
ary conditions (6),

where stagnation pressure is p0.
By using Rosseland’s diffusion approximation for radiation and following methodology shown in33–36, the 

radiative flux qr is of the form

where σ ∗ and κ∗ are Stefan–Boltzmann values and the mean absorption factor. It is assumed that temperature 
variations within the flow are minimal enough to interpret the radiative flux’s fourth-power term as a linear 
function of temperature, as

Now, by differentiating Eq. (9) with respect to y, we get

and by substituting Eq. (7) into Eq. (3), (4), and (5), we have following ordinary differential equations,

where

(3)u
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∂x
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,
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1
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1

�

)
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,

(5)u
∂T

∂x
+ v
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∂2T

∂y2
−

1(
ρCp

)
nf

∂qr

∂y
,

(6)
u = uw(x) = bx + C, v = vw , T = Tw at y = 0,

u = 0, T = T∞, as y → ∞

}
,

(7)
u = ax

∂f
∂η

+ CF(η), v = −√
avf f (η), η =

√
a
vf
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}
,
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v2

2
+ ρv
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,
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3κ∗
∂T4
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(11)
∂qr

∂y
= −

16σ ∗T3
∞

3k∗
∂2T
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1
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)2
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1
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f (η)
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and Prandtl number is Pr =
vf (ρCp)f

kf
, while the expression for this nanofluid can be denoted as37–40.

where the base fluid dynamic viscosity is µf  , nanofluid dynamic viscosity is µnf  , thermal conductivity of the base 
fluid is κf  , heat capacitance of fluid is 

(
ρCp

)
f
 , nanofluid volume fraction is ϕ.

The transformed boundary conditions are

where Vc is the mass transpiration constant, with suction case Vc > 0 and Vc < 0 for case of injection, d is the 
stretching/shrinking factor, giving d > 0 for stretching and d < 0 for shrinking.

Thermophysical properties.  The experimental values of Cp (specific heat), ρ (density), and κ (thermal 
conductivity), for the base fluid (water), and nanofluid (Al2O3) are given in Table 1, according to41–43.

By using non-dimensional transformation (Eq. 7), the physical quantity of interest is the dimensionless skin 
friction factor is defined as

where τw is the skin friction or shear stress and is described as

and when we use the similarity variable, we get the local skin friction coefficient as follows

where Rex = urx
v  is the local Reynolds number.

Streamlines normalized for this flow are defined as

where ψ = ψ

(av)
1
2

 , with ψ interpreted in the normal way as u = ∂ψ
∂y  with w = −∂ψ

∂x .

Obtaining the velocity solution.  Exact solution of the momentum equation is considered in the follow-
ing form:

(15)A1 =
µnf

µf
, A2 =

ρnf

ρf
, A3 =

κnf

κf
, and A4 =

(
ρCp

)
nf(

ρCp

)
f

,

(16)
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(1− ϕ)2.5
,
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(
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(
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ρf

))
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κnf =
κf
((
κs + 2κf

)
− 2ϕ

(
κf − κs

))
((
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)
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(
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s(
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,
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�
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�
η= 0

= b
a = d, F(η)η= 0 = 1,

�
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�
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
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,

(19)τw = µ

(
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)

y=0

,

(20)Re
1
2
x Cf =

(
∂2f

∂η2

)

η= 0

+
C

ur

(
∂F

∂η

)

η= 0

,

(21)ψ = xf (η)+
C

a

∫ η

0
F(s)ds,

(22)f (η) = β + (Vc − β) exp[−βη] = β −
d

β
exp[−βη] ,

Table 1.   Thermophysical properties of fluids and nanofluids studied here.

Nanoparticles/base fluid ρ (kg m−3) k (W m−1 K−1) Cp (J kg−1 K−1)

Water (H2O) 997.8 0.604 4076.4

Aluminum oxide (Al2O3) 3970 40 765
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with its first order derivative is follows

Now Eq. (12) becomes,

which is a second-degree algebraic equation, and gives two pair of real roots, such as

The roots can be rewritten as

Consequently, Eq. (13) takes the form

There seems to be a novel solution for F(η) = ∂f
∂η

= d exp[−βη], and the complete solution to Eq. (25) is

in which Ei(x) = −∫∞−x

(
exp[−t]

t

)
dt is a function of exponential integral, since A and B are two constants of 

integration. When η → ∞, F(η) → 0 . B = 0 and A = 1 are found. Hence, the equation to F(η) is

Consequently, the velocity components appear as follow

with

Non-dimensional stream function is now transformed into modified form given by

Next, an algebraically decaying solution follows, produced from the momentum Eq. (12) and the boundary 
conditions from Eq. (17).

in association with

It becomes clear that only shrinking sheets (as a consequence of d < 0 ) are impacted by the algebraically 
decaying function, therefore mass suction at the surface is

We rewrite Eq. (13) as
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The complete general solution for Eq. (35) is

as η → 0 , F(0) = 1 , Eq. (36) is simplified into another form as

For a given value of d , there exists an enormous number of possible solutions for F(η) , and each one has 
an algebraically decaying function. Here C1 is the independent variable, and the velocity components are then 
presented as

For the algebraic expressions decaying condition, the non-dimensional stream function yieldscondition, the 
non-dimensional stream

Obtaining the temperature solution.  Through integration, we resolve the temperature from Eq. (14) as

The relationship between thermal flux at the wall and the thermal efficiency at the wall reads

and after simplification we obtain

As shown below, the definite integral in the denominator can be represented as,
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where the incomplete gamma function is taken as Ŵ(a, x) . In this equation, it is critical to determine the integrals 
for the temperature profile. Using a variable transformation technique, a different method to the problem might 
be taken. A parameter ξ = Pr

(
exp[−βη]

β2

)
, is exploited in order to resolve this problem. Thus, Eq. (14) becomes

and the boundary constraints being

Now, the thermal solution yields

with respect to η , Eq. (47) differentiates as

Furthermore, the rate of heat transfer at the wall is given by

Here, we observe that Eq. (49) is similar to Eq. (43), and this is further evidence of the reliability of the 
proposed method.

Results and discussion
The precise solution extracted in this work provides a comprehensive explanation for phenomena occurring due 
to the stretched/shrinking surface. The surface velocity has been extended beyond purely linear conditions to 
more typical circumstances, with uniform wall transforming velocity. Both positive and negative values of C (the 
component of constant velocity) are possible to appear. As a result, the sheet motion may initiate by shrinking 
up to a specified distance from the slit and keep on changing either to stretching or shrinking. By employing the 
similarity transformation to the nonlinear PDEs, nonlinear ODEs are constructed. This transformation generates 
several physical variables, each of which is altered. Here ϕ shows the presence and absence of the volume fraction 
of the fluid. A detailed description of the velocity and temperature distribution follows.

Velocity profiles.  It is shown that for the upper branch solution (Fig. 2a), alpha constant varies from − 0.5 to 
the single value for Vc = 5 , which corresponds to d = −4 . Velocity profiles reveal that the fluid perforates more 
easily the surface for lower values of alpha. Nonetheless, its lower solution branch (Fig. 2b), differs significantly 
from the upper solution branch (Fig. 2a). Another point worth mentioning is that there are velocity profiles that 
do not follow a pattern as d decreases from − 0.5 to − 4, but cross to each other. Furthermore, for the same Vc and 
stretching/shrinking parameter value, the upper branch solution has dramatically less momentum penetration 
than the lower branch solution.

For the stretching layer ( d > 0) problem depicted in Fig. 3a,b, for both Vc > 0 and Vc < 0 , when there is mass 
suction, velocity profiles reveal that fluid penetration is relatively small, and the stretching/shrinking parameter 
effect on the penetrated length are less apparent. However, according to Eq. (33), under specific Vc > 0 and for 
larger d values, the penetrated distance is reduced (Fig. 3a). In similar manner, for larger d values, the penetrating 
distance decreases for Vc < 0 (Fig. 3b), but there exist cross-sections in the velocity profiles.

Figure 4 presents the solution domain β versus mass transpiration Vc for various d values. Here we observe 
that as the mass suction length increases, the upper branch result produces a higher value of β for negative values 
of d . There is only a single solution for positive values of d , and this solution pertains to both mass injection and 
suction. The value of the domain of β is altered inversely to the boundary layer thickness. Moreover, the upper 
branch β solution decreases and falls in a negative value of d for a particular value of Vc > 0 , denoting greater 
rate of sheet contraction.
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Figure 2.   The tangential velocity patterns for the (a) upper branch and (b) lower branch solution, for various d 
values.

Figure 3.   Axial velocity profiles for various values of d , for (a) Vc > 0 and (b) Vc < 0.

Figure 4.   Solution region of β vs. Vc for various values of d.
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In comparison to the exponential decaying solution shown in Fig. 4, the algebraically decaying solution, F(η) , 
in Fig. 5 is considerably different.

It can be seen that the velocity profiles exhibit rather substantial flow penetration to the surrounding fluid. 
Interesting findings are made for function F’s flow due to the wall’s constant velocity component. Based on 
Eq. (36), when C1 , the solution reduces to very simple form:

Positive values of C1 and d have an impact on the velocity distribution, as shown in Fig. 6. The steep velocity 
increase close to the wall is an interesting result. This phenomenon takes place for higher positive values of C1 
and d.

On the other hand, when C1 is negative (Fig. 7a,b), there is analogous steep velocity decrease towards the 
negative direction, with reverse flow in the boundary layer. This is a novel outcome, which has not been observed 
before for the algebraically decaying solution. In order to analyze the variation characteristics of the profile, the 
derivative of algebraically decaying solution can be obtained as follows

(50)F(η) =

(
−6

(
1+ 1

�

)

dA1

) 3
2

(
ηA2 + A1

√
−6

(
1+ 1

�

)

A1d

)3
,

Figure 5.   The axial velocity profiles for the algebraically decaying solutions for various values of d.

Figure 6.   F(η) vs. the similarity variable for (a) various values of d and (b) various positive values of C1.
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Therefore, it is revealed that a negative velocity overshoot for a negative value of C1 might develop.
To conclude on velocity profiles presented in this Section, we have demonstrated that velocity values are 

significantly affected by various physical parameters in the modeled system, such as the stretching/shrinking 
parameter and the suction/injection parameter.

Temperature profiles.  The effect of the Prandtl number on temperature distribution is shown in Fig. 8a,b. 
Here we depict the non-dimensional temperature distribution for both the two solution branches for the shrink-
ing layer design with d = −2 and Vc = 4 , for various values of Pr. More specifically, the thermal boundary layer 
thickness decreases as Pr increases for both solutions. The lower branch solution (Fig.  8b) has a marginally 
broader thermal boundary layer compared to the upper branch solution (Fig. 8a).

Comparisons between suction ( Vc > 0 ) and injection ( Vc < 0 ) cases for the stretching boundary problem are 
presented in Fig. 9a,b. The wall boundary layer is blasted away by mass injection (Fig. 9b), and this fact results 
in significantly low heat flow at the surface. Even when the Pr gets higher values, the boundary layer thickness 
still remains small. Another point worth mentioning is the shape of the temperature profile as Pr increases; the 
wall heat transfer rate decreases because of a thinner heated wall, and the temperature falls steeply to ambient 
temperature.
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Figure 7.   F(η) vs. the similarity variable for (a) various values of d and (b) various negative values of C1.

Figure 8.   Temperature distribution for the (a) upper branch solution and (b) lower branch solution, for the 
shrinking sheet case and various value of Pr.
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We further investigate the effect of the mass transfer variable value on the temperature profiles in Fig. 10a–c. 
Figure 10a presents both mass injection and suction cases as Vc changes from -4 to 4, for sheet stretching. The 
wall heat flux decreases as Vc increases, for Pr = 0.7, Λ = 0.5, and Nr = 0.1. As the fluid reaches the boundary layer, 
we observe an increase in its thickness. We can obtain solutions only for Eq. (31), that is  Vc ≥

√
−6A1d

(
1+ 1

�

)
 

for a diminishing surface problem, unfortunately. Heat flow at the wall and the boundary layer thickness are 
comparable for both solution branches. In Fig. 10a–c, it is observed that the boundary layer gradually decreases 

Figure 9.   Temperature distribution for the (a) upper branch solution with suction and (b) lower branch 
solution with injection, for the shrinking sheet problem and various Pr values.

Figure 10.   The effect of Vc on temperature profile for (a) upper branch solution and d > 0 , (b) upper branch 
solution and d < 0 , (c) lower branch solution and d < 0.
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for both branches and temperature values fall rapidly as mass suction increases. Although this is not observed 
for the upper branch solution, for the lower branch solution there are some overlaps between temperature pro-
files, in Fig. 10c.

Figure 11a–d show how the wall strength can expand or contract. Both the upper (Fig. 11a) and lower solu-
tions (Fig. 11b) present similar behavior for the shrinking problem. Confirmed cross-over positions across the 
few different temperature patterns are for the lower solution branches. For the stretching sheet, the behavior is 
different for suction (Fig. 11c, Vc > 0 ) and injection (Fig. 11d, Vc < 0 ). With an increase in stretched strength 
at the wall and a corresponding rise in surface heat transfer rate, the boundary layers for mass injection and 
suction become both smaller, while wall heat flux increases.

Figure 12a,b illustrate some instances of the algebraically declining temperature field. Under a specific 
decreasing strength, the boundary layer thickness decreases for higher values of Pr (Fig. 12a). Moreover, it is 
observed that the boundary layers become wider as d increases from − 5 to − 1.

The impact of temperature on the radiation parameter Nr is shown in Fig. 13, where temperature values 
increase as Nr increases from 1 to 5. This is attributed to the fact that an increase in the radiation parameter 
allows for more heat transfer through the fluid.

Our investigation has shown that when there is a high fluid flow rate, fluid particles tend to collide with each 
other, decreasing the boundary layer thickness when the temperature increases.

Flow streamlines.  Figures 14 and 15 present the flow field of the dimensionless stream functions for vari-
ous values of the stretching/shrinking factors, Ca  . For the shrinking problem (Fig. 14), it is observed that when 
the fluid is expanded towards the edge of both solution branches, the Ca  value is negative. The sheet moves away 
from the slot for positive values of Ca  , before moving back towards the slot after a particular distance. There is a 
point with u = 0 on the sheet for both solution branches at x = C

b .
On the other hand, the stretching surface problem is depicted in Fig. 15a–d. Flow patterns for various mass 

injection/suction are depicted. There is a point for u = 0 , with a combination of a positive a and negative Ca  under 
mass suction. The fluid is initially stretched in the direction of the slot, then after it has passed that point, it is 
extended outward from the slot. When Ca  is positive and negative, the fluid is always extended away from the 
slot. At a particular distance from the wall, the vertical velocity becomes zero, when mass injection is applied.

Figure 11.   Temperature profiles for (a) shrinking sheet, upper branch solution, (b) shrinking sheet, lower 
branch solution, (c) stretching sheet, suction, and (d) stretching sheet, injection case.
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The flow field analysis can enhance our understanding on how a fluid moves over a stretching/shrinking sheet. 
And this is a significant step towards increasing productivity, operational effectiveness and work conditions, by 
removing irrelevant or ineffective processes.

Conclusions
The objective of this paper has been the investigation on the effect of radiation on the flow of viscous Casson 
nanofluids over a linear stretching/shrinking surface, with mass transfer parameter. Aluminum oxide is con-
sidered as the nanoparticle additive in the flow model. The governing partial differential equations have been 
transformed into ordinary differential equations via similarity transformations, and accurate analytical solutions 
have been provided, to promote our understanding on the physical processes hidden behind these expressions.

Current findings have revealed numerous solutions for the flow field. Exponential and algebraically decaying 
solutions have been illustrated. We have presented a number of solution branches for flow field as well as velocity 
overshoots. Velocity and temperature profiles, along with a flow field representation, are extracted in various 
conditions of the problem, such as for suction/injection cases, shrinking/stretching sheet strength, various values 
for the Prandtl number, and the radiation parameter value, and they are found to be significantly affected by each 
one of these parameters. Highlighted results of the present research work are listed as follows:

•	 Stretching/shrinking parameter value decreases with decreasing the momentum of the boundary layer in 
both cases of upper and lower solution branch, while the algebraically solution is also decreasing.

•	 Stretching/shrinking parameter value increases when the momentum of the boundary layer increases in both 
cases of suction and injection, but the exactly opposite behavior occurs in temperature profiles.

•	 The effect of Prandtl number, Pr, is found to reduce the thickness of the temperature boundary layer.
•	 As a result of thermal radiation, the temperature profile values increase rapidly.
•	 For a stretching problem, improved in mass transpiration, the thermal penetration becomes thicker. For upper 

and lower branches, the thermal boundary layer thickness decreases when mass transpiration increases.

To capture the contribution of the present work, we have extended the field of application as:

Figure 12.   Temperature distribution (a) for various Pr values in shrinking case and (b) for various d values.

Figure 13.   Temperature profiles for various values of the radiation parameter Nr.
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Figure 14.   The flow field under the effect of various parameters, for the shrinking sheet.
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(a)	 lim�→∞,qr→0

{
Resultsofpresentwork

}
→ {Results of Fang et al.17,30–32}.

(b)	 On replacing the nanofluid by the hybrid nanofluid in the absence of Casson parameter, we get the result 
of Mahabaleshwar et al.29.
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