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Evidence of air pollution‑related 
ocular signs and altered 
inflammatory cytokine profile 
of the ocular surface in Beijing
Dalan Jing1,2,3, Xiaodan Jiang1,2,3, Peng Zhou1,2,3, Xiaotong Ren1,2,3, Jie Su1,2,3, Ran Hao1,2, 
Mingzhong Zhang1,2, Yu Wan1,2 & Xuemin Li1,2*

We evaluated how different degrees of air pollution affect the ocular surface of a cohort of human 
subjects in Beijing by correlating in‑patient test outcomes with tear cytokines. A cross‑sectional 
study involving 221 volunteers was carried out in different districts of Beijing. Air pollution indices 
were recorded for 7 d (including the visit day). The indices recorded were the air quality index (AQI), 
which is a dimensionless measure that quantitatively describes the state of air quality, concentrations 
of particulate matter smaller than 2.5 μm (PM2.5) and 10 μm (PM10), sulfur dioxide  (SO2), ozone 
 (O3), and nitrogen dioxide  (NO2). The Ocular Symptom Disease Index (OSDI) questionnaire provided. 
Subsequently, subjects underwent slit‑lamp examination, which included meibomian gland 
examination, conjunctival congestion score, conjunctivochalasis grade, tear meniscus height (TMH), 
tear breakup time (TBUT), corneal fluorescein staining (CFS), Schirmer I test, and conjunctival 
impression cytology. The concentrations of vascular endothelial growth factor (VEGF), interleukins 
(IL)‑1β, IL‑6 and IL‑8 in tears were measured by microsphere‑based immunoassay analysis. According 
to the value of the AQI, participants are divided into a slightly polluted (SP) group (n = 103) which the 
AQI value is less than or equal to 100 and a heavily polluted (HP) group (n = 118) whose AQI value is 
more than 100. Air pollution is related to ocular discomfort based on tear cytokine concentrations. 
PM2.5, PM10 and  NO2 were positively correlated with OSDI, MG expressibility, meibum score, 
meiboscore, conjunctival congestion score, Schirmer I test value, TMH, goblet‑cell density, 
concentrations of IL‑6, and VEGF were negatively correlated with TBUT. PM2.5 and PM10 appear to 
be the major risk factors to the ocular surface, with  NO2 being another important risk factor based on 
this study. The symptoms and signs of eye discomfort in the SP group were significantly less severe 
than those in the HP group, and tear cytokine concentrations (IL‑6 and VEGF) were lower. Air pollution 
degrees were significantly correlated with tear cytokine concentrations, indicating an alteration of 
cytokine balance at the ocular surface under different degrees of air pollution.

In recent decades, rapid industrialisation and urbanisation have brought not only economic development but 
also unprecedented air  pollution1,2. Ambient air pollution is a complex of particulate matter (PM) (solid and 
liquid particles suspended in air) and gases e.g., ozone,  NO2 and  SO2, that constitute the dimensions of World 
Health Organisation air quality  assessment2–4. Exposure to air pollution poses an urgent challenge to public 
health because it is everywhere, affects everyone, and has numerous severe adverse effects on the respiratory 
and cardiovascular  systems5–8. Similar to the respiratory system, the ocular surface is constantly exposed to the 
external environment, which is also affected by air  pollution9.

Air pollution is associated with several eye diseases, including conjunctivitis, dry eye disease and age-related 
macular  degeneration10. Residents of heavily polluted areas experience more severe ocular  discomfort11,12. 
Decreased tear film stability, influenced tear film osmolarity and goblet cell hyperplasia have been detected on 
ocular surfaces of individuals living in areas with high degrees of environmental air  pollution9,13–15. Numerous 
studies both in vivo and in vitro have demonstrated the upregulation of cytokines on the ocular surface after 
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exposure to air pollution.  Tau16 found that human corneal and conjunctival epithelial cells incubated with 
diesel exhaust particles showed cytotoxicity and an inflammatory response mediated by the cytokine IL-6.  Li17 
considered rat animal model exposure to airborne carbon black that induced corneal fluorescein staining (CFS) 
increased and upregulation of IL-4 and interferon (IFN)-γ in the anterior segment. Activation of inflammatory 
pathways and oxidative stress are considered potential mechanisms involved in the pathogenesis of ocular surface 
diseases after air pollution  exposure18,19.

Despite these observations, the mechanism of the adverse effects of air pollution on the ocular surface is 
still unclear. This study aimed to measure the concentrations of various tear cytokines in individuals exposed 
to different degrees of air pollution (utilizing AQI) and to analyse correlations between these degrees and clini-
cal test outcomes during ocular surface in-patient examination. Because the ocular surface discomfort caused 
by air pollution is similar to dry eye, we selected four inflammatory cytokines related to dry eye. Although air 
pollution affects the whole eyeball, our focus is on the ocular surface because it is easy to observe and evaluate.

Materials and methods
Subjects. We studied 221 healthy volunteers (221 eyes) who were recruited in different regions of Beijing 
with different pollution degrees from January 2019 to December 2019. The number of volunteers recruited in 
each region was as follows (in order of increasing air quality index [AQI]: Miyun District, 39 people; Yanqing 
District, 64 people; Haidian District, 44 people; Chaoyang District, 51 people; Tongzhou District, 18 people; 
Daxing District, 5 people). The time for recruiting volunteers is concentrated in the heating period in Beijing. 
Miyun and Yanqing districts located on the periphery of Beijing had lower population density, fewer motor vehi-
cles, and higher forest density compared to Haidian and Chaoyang districts which located in the close suburb. 
Tongzhou and Daxing districts were operating large industrial waste gas and automobile exhaust  emissions20–23. 
The inclusion criteria were as follows: human subjects who had lived in the corresponding district for at least 
one year and a place of residence and work within a 5 km radius from the environmental atmospheric monitor-
ing station of this study. All subjects were systemically healthy, not pregnant, noncontact lens users, not under 
any medication, and had no previous history of ophthalmic disease (e.g., allergic conjunctivitis, retinal disease, 
cataracts, etc.). Open men and women in each group, aged between 18 and 80 year. We routinely enrolled the 
right eye. If the right eye did not meet the inclusion criteria, the left eye was enrolled instead.

The study was approved by the institutional review board/ethics committee of the Peking University Third 
Hospital (M2019101) and is in accordance with the Declaration of Helsinki. Informed consent was obtained 
from all participants.

Collection of air quality data. Air component pollution data (PM2.5, PM10,  SO2,  NO2, and  O3) of 
regions were obtained from the China Environmental Monitoring Station. Previous monitoring methods and 
instruments were used to measure air pollutant  data24,25. Daily average concentrations of PM2.5 and PM10 
were determined by a tapered element oscillating microbalance (TEOM).  SO2 and  NO2 were determined by 
ultraviolet fluorescence and chemiluminescence.  O3 was determined by a nondispersive ultraviolet fluorescence 
 photometer25,26. The AQI, which is designed to integrate various pollutant concentrations into a single daily 
value and to reflect the comprehensive status of air quality, was also calculated. The AQI may not be a perfect 
guide that correlates with ocular surface health. Grades 1 and 2 should not be definitive of minimal adverse 
health effects but can crudely be thought of as having good air quality. When the grade greater than 2, symptoms 
of susceptible people are slightly aggravated, and irritation symptoms appear in healthy people (Supplementary 
document 3). The AQI calculation method and classification criteria in China follow the AQI  definition27. The 
process of AQI calculation and evaluation can be roughly divided into three steps: the first step is to calculate the 
individual air quality index (IAQI) based on the measured concentration values of PM2.5, PM10,  SO2,  NO2,  O3, 
CO and other pollutants by comparing the hierarchical concentration limits of various pollutants; the second 
step is to select the maximum value from the IAQI of various pollutants and determine it as the AQI. When the 
AQI is greater than 50, the pollutant with the largest IAQI is determined as the primary pollutant. The third step 
is to determine the air quality level, category, color, health impact and recommended measures according to 
the AQI classification standard. (Detailed classification is shown in Supplementary material.) In order to truly 
study the impact of air pollution on the eye surface and avoid the impact of drastic changes in AQI on the test, 
air pollution data collection was performed for an average of 7 d, including the inspection day. By the definition 
of the  AQI28, grades 1 and 2 represent good air quality with minimal adverse effects on individuals, we included 
individuals at grades 1 and 2 in the SP group (n = 103). However, when the AQI is greater than grade 2, the nor-
mal population and susceptible people have irritation symptoms or aggravation of symptoms. Thus, we included 
individuals with grades greater than 2 in the HP group (n = 118).

Clinical examination. All individuals were evaluated using the OSDI questionnaire, which was translated 
into  Chinese29. The clinical assessments of the enrolled subjects were conducted in the following order: col-
lection of demographic information (including age and sex) and eye signs, including conjunctival  injection30, 
conjunctivochalasis  grade31, tear meniscus height (TMH)32, tear breakup time (TBUT)33,  CFS34, Schirmer I test 
 value35, and meibomian gland (MG)  assessments36 (including MG expressibility and meibum score). Subse-
quently, impression  cytology37 obtained a sample in the superficial layers of the inferior tarsal conjunctiva by 
adhesion to cellulose-acetate filters; subsequently, the adhered tissue was stained for histological analysis. A 
keratograph (Oculus Optikgeräte GmbH, Wetzlar, Germany) was used to observe MG morphology, and the 
meiboscore was defined as described by  Arita38. An interval of 5 min was required between different examina-
tions. Ophthalmologic examinations were performed and assessed by the same ophthalmologist.
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Tear collection. Tear collection was performed before any other test and was limited to a maximum of 
10 min. All tear samples were collected between 10 and 11 AM. Nonirritating tear collection was conducted 
without anesthesia by using 5-µL capillary pipettes. At least 50 µL of tears were collected. The sample was then 
transferred into 0.2-mL Eppendorf tubes (Axygen, USA) and stored at −80 °C until further analysis.

Measurement of inflammatory cytokines. Tear samples were analysed for cytokine concentrations 
(pg/mL) using a published  protocol39,40. This method involves multiplex cytometric bead array (multiplex-CBA) 
for quantitative analysis of IL-1β, IL-6, IL-8, and VEGF (Human ICAM Plex Flex Set, Human IL-6 Plex Flex Set, 
Human IL-8 Plex Flex Set, Human VEGF Plex Flex Set kits, respectively; BD Biosciences, San Diego, CA, USA). 
Multiplex-CBA was performed according to the manufacturer’s instructions. A tear volume of 50 μL per eye 
was used for each analysis. All samples were processed in the same analytical run. Data were acquired on a BD 
FACSCanto II flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA) and analysed using BD FCAP Array 
software (Becton Dickinson, Franklin Lakes, NJ, USA).

Data analysis. All analyses were performed using SPSS software (version 25.0). We verified the normality of 
the data distribution using the Kolmogorov‒Smirnov test. Descriptive parameters are expressed as the number 
of patients (%) or mean ± standard deviation/median with interquartile range, depending on the distribution 
pattern. Pearson and Spearman tests were used for correlation analysis. Statistical significance for intergroup 
differences was assessed by the nonparametric Wilcoxon signed-rank test and Mann–Whitney U test. Statistical 
significance was set at P value < 0.05. To avoid the correlation between these eye parameters, the real correlation 
between air quality parameters and eye parameters will be affected. Partial correlation analysis was performed to 
assess the independence of effective factors. Then, a stepwise regression procedure was performed for multiple 
correlations.

Ethics approval and consent to participate (human ethics). Approved from the institute’s ethics 
committee. Written informed consent was obtained from all subjects.

Results
Subject demographics. A total of 221 subjects with a mean and median age of 58.79 and 63 years, respec-
tively, were recruited in six districts. Of these, 103 cases were included in the SP group, and 118 were included 
in the HP group. There were no significant differences among the groups regarding age (SP: median age 63 
[46, 70]; HP: median age 64 [58, 71]; p = 0.32) or sex (SP: 66% female, 34% male; HP: 86% female, 32% male; 
p = 0.27). The correlations between the degrees of air component pollution and AQI were evaluated, and a higher 
concentration of PM2.5 was positively correlated with the AQI (r = 0.92, p < 0.01) compared with the other air 
components. (See supplementary document 2 for details).

Ocular characteristics of the subjects. The ocular characteristics of the SP and HP subjects are summa-
rised in Fig. 1. A significant difference in all eye examinations (p < 0.05), including OSDI scores, MG expressibil-
ity, meibum score, meiboscore, conjunctival injection, conjunctivochalasis grade, Schirmer I test, TBUT, TMH 
and goblet cell density, but no significant differences in CFS score (p = 0.97) were observed between these groups.

Tear cytokine concentrations. The concentrations of IL-1β, IL-6, IL-8, and VEGF in the tear films of 
each group are shown in Fig. 2. The HP group had significantly increased concentrations of IL-6 (p < 0.01), IL-8 
(p = 0.03), and VEGF (p < 0.01) compared to the SP group.

Correlations between air pollution and tear cytokines. The correlations of cytokine concentrations 
with air pollution, OSDI questionnaire scores and ocular signs are summarised in Table 1. The concentration of 
IL-1β was not significantly correlated with the AQI, PM2.5, PM10 or  NO2 concentration. The IL-6 concentra-
tion was positively correlated with the AQI, PM2.5, PM10 and  NO2 concentrations and negatively correlated 
with the concentrations of  O3. IL-8 was positively correlated with AQI, PM2.5, PM10 and  NO2 concentrations. 
VEGF concentration was positively correlated with AQI, PM2.5, PM10,  SO2 and  NO2 concentrations. However, 
it was negatively correlated with  O3 concentration. However, partial correlation analysis revealed that there was 
no significant correlation between the concentrations of  O3 and IL-6. The IL-8 concentration had no correlation 
with the AQI, PM2.5, PM10, or  NO2 concentration.

Correlations among air pollution, ocular symptoms and signs. Table 1 summarises the relation-
ship between the concentrations of PM2.5, PM10,  SO2,  NO2,  O3 and AQI and all eye parameters, including 
the OSDI score, conjunctival injection, TMH, TBUT, CFS score, Schirmer I test value, MG assessments and 
goblet cell density. The OSDI score showed a positive correlation with AQI, PM2.5, PM10 and  NO2 concentra-
tions but a negative correlation with  O3 concentration. MG expressibility, Meibum score and Meiboscore were 
positively correlated with AQI, PM2.5, PM10,  SO2 and  NO2 concentration. Conjunctival injection was posi-
tively correlated with AQI, PM2.5, PM10 and  NO2 concentrations. Conjunctivochalasis grade was associated 
with AQI, PM10 and  O3 concentration. The CFS score was positively correlated with the  O3 concentration. The 
Schirmer I test was positively correlated with AQI, PM2.5, PM10 and  NO2 concentrations. In addition, TBUT 
was negatively correlated with AQI, PM2.5, PM10,  SO2 and  NO2 concentrations but positively correlated with 
 O3 concentrations. TMH was positively correlated with the AQI, PM2.5, PM10,  SO2 and  NO2 concentrations 
and negatively correlated with the  O3 concentration. Goblet-cell density was positively correlated with AQI, 
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PM2.5, PM10 and  NO2 concentrations and negatively correlated with  O3 concentrations. Partial correlation 
analysis revealed that the  O3 concentration was not correlated with the OSDI score, TBUT, or goblet cell density. 
For other results, these results have been shown to be consistent with normal correlation analysis, but correla-
tion coefficients decreased. Furthermore, we used linear regression analysis to describe the relationship between 
PM2.5 concentration and OSDI scores. The linear equation best fitting the data were y = 0.05 x + 19.12 (R2 = 0.12, 
p < 0.01), where y is the OSDI score and x is the PM2.5 concentration.

Figure 1.  Comparison of ocular characteristics between the slightly (SP) and heavily polluted (HP) groups.

Figure 2.  Cytokine concentrations in tears from the SP and HP groups determined by multiplex cytometric 
bead array.
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Correlations between tear cytokines and eye parameters. The correlations between the concen-
trations of IL-1β, IL-6, IL-8 and VEGF and ocular surface parameters, including OSDI score, conjunctival 
injection, conjunctivochalasis grade, TMH, TBUT, CFS, Schirmer I test value, MG assessments and goblet cell 
density, were evaluated. The concentration of IL-1β was negatively correlated with conjunctivochalasis grade 
(r = -0.17, p = 0.01). The concentration of IL-6 was positively correlated with the OSDI score (r = 0.18, p < 0.01; 
Fig. 3a) and goblet cell density (r = 0.33, p < 0.01; Fig. 3b) and negatively correlated with TBUT (r = -0.20, p = 0.03; 
Fig.  3c). The IL-8 concentration was positively correlated with conjunctival injection (r = 0.19, p < 0.01) and 
goblet cell density (r = 0.18, p < 0.01; Fig. 3d) and negatively correlated with TBUT (r = -0.16, p = 0.02; Fig. 3e). 
The VEGF concentration was positively correlated with the OSDI score (r = 0.30, p < 0.01; Fig. 3f), conjunctival 
injection (r = 0.23, p < 0.01), TMH (r = 0.19, p < 0.01; Fig. 3g), meiboscore (r = 0.24, p < 0.01) and goblet cell den-
sity (r = 0.36, p < 0.01; Fig. 3h) and was negatively correlated with TBUT (r = -0.17, p = 0.01; Fig. 3i). IL-1β, IL-6, 
IL-8, VEGF and other ocular surface parameters showed no statistical significance.

Discussion
Previous studies reported that exposure of the ocular surface to high degrees of air pollution causes ocular 
discomfort, including burning, redness, and  lacrimation11,41. Our findings of increased OSDI scores in the HP 
group agree with those of previous  studies42. Except for ocular discomfort, abnormal ocular signs were also 
increased in high AQI. In our study, lower TBUT, TMH and Schirmer I test values were found in the HP group, 
consistent with the results of previous  investigations9,43. This study found that subjects in highly polluted regions 
have increased MG expressibility, meibum score and meiboscore, which substantiates the findings of previ-
ous epidemiologic  studies44–46. Some studies have indicated that fine particulate air pollution might influence 
MG function not only by absorbing the lipid of tear film but also by entering MG, leading to lipid deficiency 
or  maldistribution47,48. These abnormalities may explain the instability of tear film. In addition, we found an 
increased goblet-cell density in subjects residing in heavily polluted areas, which is consistent with the finding 
in a study by  Priscila14. Conjunctival goblet cells are slow-cycling cells that can proliferate in response to chronic 
inflammatory  stimuli49, which implies that the mechanisms of adverse effects of air pollution on the ocular sur-
face cause inflammatory and immune responses.  Tau116 demonstrated that conjunctival human epithelial cells 
incubated with diesel exhaust particles (DEPs) had increased expression of mucin genes (MUC1, MUC5AC, 
and MUC16). A significant increase in goblet cells and Mucosubstancia might produce an adaptive process that 
contributes to the protection of conjunctiva from adverse effects of air pollution.

Partial correlation analysis revealed a significant correlation between the AQI and eye parameters. Similarly, 
PM2.5 and PM10 were significantly correlated with eye parameters. Combined with those of regression analy-
sis, these findings suggested that PM2.5 and PM10 are the main pollutants in air of what has been measured 

Table 1.  Correlations between air pollution data and all ocular parameters. OSDI, ocular symptom disease 
index; MG, Meibomian gland; CFS, corneal fluorescein staining; TBUT, tear breakup time; TMH, tear 
meniscus height; IL-1β, Interleukin-1β; IL-6, Interleukin-6; IL-8, Interleukin-8; VEGF, vascular endothelial 
growth factor; AQI, air quality index; PM2.5, particulate matter smaller than 2.5 μm; PM10, particulate matter 
smaller than 10 μm;  SO2, oxidation of sulfur dioxide;  NO2, nitrogen dioxide;  O3, ozone. *Significant correlation 
(P < 0.05). **Significant correlation (P < 0.01). –, no correlation was detected during correlation analysis.

Ocular 
parameters

AQI PM2.5 PM10 SO2 NO2 O3

r Corrected r r Corrected r r Corrected r r Corrected r r Corrected r r Corrected r

OSDI 0.439** 0.229** 0.451** 0.201** 0.456** 0.232** 0.081 – 0.312** 0.165**  − 0.178** –

MG express-
ibility 0.245** 0.245** 0.207** 0.207** 0.220** 0.220** 0.184** 0.184** 0.151* 0.151* 0.052 –

Meibum 
score 0.210** 0.210** 0.141* 0.141* 0.135* 0.135* 0.134* 0.134* 0.134* 0.134* 0.022 –

Meiboscore 0.387** 0.387** 0.350** 0.350** 0.361** 0.361** 0.146* 0.146* 0.290** 0.290**  − 0.067 –

conjunctival 
injection 0.296** 0.296** 0.266** 0.266** 0.264** 0.264** 0.131 – 0.251** 0.251**  − 0.087 –

Conjunc-
tivochalasis 
grade

0.191** 0.191** 0.108 – 0.134* 0.134* 0.076 – 0.059 – 0.160* 0.160*

CFS score 0.009 –  − 0.054 –  − 0.071 – 0.015 –  − 0.099 – 0.252** 0.252**

Schirmer 
I test 0.189** 0.189** 0.222** 0.222** 0.214** 0.214** 0.124 – 0.142* 0.142*  − 0.097 –

TBUT  − 0.398**  − 0.257**  − 0.367**  − 0.192**  − 0.306**  − 0.165**  − 0.143*  − 0.141*  − 0.239**  − 0.132** 0.189** –

TMH 0.254** 0.392** 0.280** 0.386** 0.265** 0.372** 0.146* 0.159* 0.301** 0.346**  − 0.189**  − 0.135**

Goblet-cell 
density 0.683** 0.370** 0.586** 0.221** 0.595** 0.247** 0.285**  − 0.173** 0.444** 0.226**  − 0.236** –

IL-1β  − 0.046 –  − 0.017 –  − 0.041 –  − 0.021 – 0.019 –  − 0.061 –

IL-6 0.465** 0.309** 0.448** 0.252** 0.451** 0.338**  − 0.035 – 0.288** 0.164**  − 0.210** –

IL-8 0.259** – 0.247** – 0.219** – 0.032 – 0.156* –  − 0.040 –

VEGF 0.556** 0.378** 0.539** 0.360** 0.538** 0.369** 0.159* 0.191* 0.462** 0.346**  − 0.305**  − 0.182**
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and have greater harm to the eye. According to previous studies on PM in respiratory system, PM10 particles 
deposit mainly in the upper respiratory tract, while PM2.5, known as fine particulate matter, can enter the lung 
alveoli easily and is retained in the body. Due to its small particle size, strong activity, ease of attachment to toxic 
and harmful substances, long persistence in the atmosphere and long transport distance. PM2.5 has a relatively 
large impact on human health and atmospheric environmental  quality50. The PM2.5 concentration had a more 
significant positive correlation with the AQI than pollution. This suggested that the PM2.5 concentration may 
be partially representative of air quality when concentrations of other pollutants are unavailable.

A significant difference in the concentrations of inflammatory cytokines between the two groups was 
observed, also demonstrating that increasing air pollution degrees can cause ocular inflammatory reactions, 
which leads to significantly elevated tear cytokines. Using cultured conjunctival epithelial cells obtained from 
healthy people,  Fujishima51 found that exposure to DEP increased the expression of IL-6 and intercellular adhe-
sion molecules. In addition, an in vitro study suggested that inflammation caused by the DEP response is medi-
ated by IL-6 and not by tumor necrosis factor α (TNF-α) or IL-816.  Lee52 reported increased concentrations of 
IL-1β, IL-6, IL-17, and interferon gamma in a murine model exposed to ozone chambers for one or two weeks. 
 Matsuda53 showed that a high PM2.5 concentration is associated with a decrease in IL-5 and IL-10 concentrations. 
Taken together, these studies suggest that the inflammatory response plays an important role in the response of 

Figure 3.  Correlations between cytokine concentrations and ocular surface parameters.
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the ocular surface to air pollution. Similar mechanisms might be involved in air pollution-induced ocular changes 
as well as in dry eye disease (DED). Air pollution has also been implicated as a cause of  DED9,54. Previous studies 
reported significantly higher concentrations of the tear inflammatory mediators IL-1β, IL-6, IL-8, and VEGF in 
the tears of patients with  DED55–57. Increased tear cytokines may be the cause of irritation symptoms and ocular 
surface disease in  DED58. Symptoms of DED are similar to ocular discomfort due to high air  pollution59. Thus, we 
chose DED-related examinations and cytokines in our study. Inconsistent with the results of a previous  report44, 
there was no difference in CFS between the groups in this study. This may be explained by our recruitment of 
healthy subjects with normal corneal integrity and fast recovery.

In correlation analysis, the OSDI was found to be correlated with IL-6 and VEGF concentrations, suggesting 
that these cytokines may be the cause of ocular discomfort. Concentrations of IL-6, IL-8, and VEGF were sig-
nificantly associated with TBUT and goblet cell density, which indicates that these cytokines play an important 
role in ocular discomfort related to air pollution. A significantly positive correlation was observed between 
VEGF concentration and meiboscore. We speculate that exposure to air pollution results in ocular inflamma-
tory responses, followed by increased cytokine concentrations and the absence of MG. To repair MG, the ocular 
surface induces VEGF production and enhances repair of the vascular system.

As air pollution increased, ocular discomfort occurred, and the OSDI score increased. Air pollution degrees 
(especially the PM2.5) were positively associated with MG score, conjunctival injection, TMH, and Schirmer I 
test value and negatively associated with TBUT. A significantly positive correlation was observed between PM2.5 
and the concentrations of VEGF and IL-6. One possible explanation is that individuals living in heavily polluted 
areas may present an increased inflammatory response of the ocular surface. The concentrations of IL-6 and 
VEGF in tears increase with increasing PM2.5 concentration. The conjunctiva, irritated by inflammation and 
air pollutants, can be congested. Then, ocular discomfort occurs, and tears due to irritation are secreted to wash 
out pollutants and dilute inflammatory cytokines. Hence, the TMH and Schirmer I test values were elevated. 
As previously mentioned earlier, MG expressibility and secretion are altered, which may lead to a reduced lipid 
layer of tear film, further leading to instability of tear film. Long-term stimulation of inflammation and pollut-
ants might result in goblet cell  hyperplasia14. Then, mucin production is enhanced to protect the ocular surface. 
VEGF has a well-known angiogenic  role60. In addition, VEGF expression in tears is increased in some ocular 
chronic inflammatory diseases, such as vernal keratoconjunctivitis (VKC) and DED, which are probably involved 
in the pathogenesis of conjunctival inflammation, remodelling and corneal changes in  VKC56,57. VEGF can act 
as a direct proinflammatory mediator during the pathogenesis of rheumatoid  arthritis63. Then, we hypothesised 
that VEGF may play a similar role in air pollution-related ocular discomfort. IL-6 contributes importantly to 
the pathophysiology of DED. The IL-6 concentration correlated significantly with various tear film and ocular 
surface  parameters64. Tears from dry eye patients contain significantly increased concentrations of cytokines 
that show correlation to severity of the disease. Similarly, the upregulation of IL-6 and VEGF suggest that these 
cytokines play an important role in air pollution-related ocular discomfort. Topical cytokine modulators may be 
explored as a therapeutic approach to treat related discomfort. In fact, our study found correlations between IL-8 
concentration and ocular parameters and suggested that IL-8 is not a major component of the ocular inflamma-
tory pathway in air pollution, which is consistent with a recent report by  Tau65.

This study is the first many-sided study of the effects of air pollution on ocular surface-related inflammation, 
symptoms and signs. The protective measures for people against air pollution may therefore include not only 
masks but also goggles.

Despite these findings, there are limitations in this study. First, we recruited only elderly individuals to reduce 
the effects of age on ocular inflammation, symptoms and signs. Future research may include the recruitment 
of participants of different ages. Second, while it is best to be able to use a personal contaminant monitor, it is 
unrealistic and costly. We only separately evaluated the impact of various pollutants on the ocular surface, but 
in real life, PM is a mixture of tens of thousands of chemical species, and they work together to cause changes in 
the ocular surface. And the sources of aerosols in different districts. We did not discuss these aspects. Third, the 
correlation coefficients among PM2.5, IL-6 and VEGF concentrations were small but of importance because the 
mechanism of ocular surface damage caused by air pollution is similar to but not completely the same as that of 
dry eye. Future research should include more types of inflammatory cytokines to explore the mechanism. Based 
on the results of the effects of pollutants on the ocular surface parameters, whether it is possible to redefine a 
new AQI to evaluate the effects of air pollutants on the ocular surface, which is different from the effects on 
the heart or lung. Moreover, gene expressions are more concrete evidence of mechanisms compared to protein 
concentrations. Future research should focus more on gene expression.

In this study, we found increased IL-6 and VEGF concentrations in subjects living in heavily polluted areas. 
The air pollution degrees, especially PM2.5, were significantly correlated with tear cytokine concentrations. 
Therefore, tear cytokines may be an effective approach to characterise the human response to ambient degrees 
of air pollution and alead to a novel breakthrough in treatment.

Data availability
All data generated or analyzed during this study are included in this published article.
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