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Parallel functional annotation 
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Using exome sequencing for biomarker discovery and precision medicine requires connecting 
nucleotide-level variation with functional changes in encoded proteins. However, for functionally 
annotating the thousands of cancer-associated missense mutations, or variants of uncertain 
significance (VUS), purifying variant proteins for biochemical and functional analysis is cost-prohibitive 
and inefficient. We describe parallel functional annotation (PFA) of large numbers of VUS using 
small cultures and crude extracts in 96-well plates. Using members of a histone methyltransferase 
family, we demonstrate high-throughput structural and functional annotation of cancer-associated 
mutations. By combining functional annotation of paralogs, we discovered two phylogenetic and 
clustering parameters that improve the accuracy of sequence-based functional predictions to over 
90%. Our results demonstrate the value of PFA for defining oncogenic/tumor suppressor functions 
of histone methyltransferases as well as enhancing the accuracy of sequence-based algorithms in 
predicting the effects of cancer-associated mutations.

Functional annotation of cancer-associated mutations is challenging1,2. Most missense mutations occur in posi-
tions with no known function, preventing identification of driver vs. neutral (passenger) mutations. Current 
functional annotation methods use nucleotide and amino acid (aa) sequence conservation to predict muta-
tional pathogenicity3–5. Validation relies on mutant divergence in aa side chains compared to wild-type and 
statistically estimating the probability of positive selection relative to the background mutation rate6. However, 
changing a conserved aa does not always change function. Algorithms incorporating structural and thermo-
dynamic information into functional predictions7,8 are limited by the paucity of structural information for 
protein conformational and liganded states. Predicting the impact of aa substitution on function is difficult for 
proteins in complexes. Predictions improve for well-characterized proteins, but such information requires costly, 
time-consuming protein purification and characterization. Knowing which mutations drive cancer is crucial 
for prioritizing cell- and animal-based studies, but functional prediction programs cannot reliably guide these 
high-cost experiments6,9.

We describe parallel functional annotation (PFA) for high-throughput characterization of cancer-associated 
missense variants of uncertain significance (VUS) without protein purification. We demonstrate the value of 
PFA with three Mixed Lineage Leukemia (MLL) family histone H3 lysine 4 (H3K4) methyltransferases that 
are among the most frequently mutated genes in cancer (Fig. S1A)10–20. Mutations in MLL family enzymes are 
associated with genome-wide aberrations in the patterns of H3K4 methylation, which are linked to abnormal 
transcriptional programs that promote malignancy18,21–23. Of hundreds of MLL1-3 VUS, most are at amino acid 
positions without known function (Fig. S1B). We screened 99 cancer-associated missense mutations in or around 
catalytic Suppressor of Variegation, Enhancer of Zeste, Trithorax (SET) domains, comparing results with two 
widely used functional prediction programs. Using functional annotation of three MLL paralogs, we discovered 
that combining two phylogenic and clustering parameters improved sequence-based functional prediction accu-
racy to > 90%. These results provide a foundation for improving computational methods to predict functional 
effects of cancer-associated mutations for biomarker discovery and precision medicine.
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Results
Computational predictions of mutations.  To better understand how well predictive tools categorize 
clinically relevant missense mutations in frequently mutated enzyme families, we functionally analyzed VUS in 
the catalytic SET domains of MLL1-3 (Fig. 1), comparing results with three widely used computational predic-
tion programs. MLL enzymes catalyze histone H3 lysine 4 (H3K4) methylation24. Alterations are associated with 
genome-wide aberrations in methylation linked to malignancy. MLL1-3 are among the most commonly mutated 
genes in multiple cancers25,26. Of hundreds of MLL1-3 VUS, most are at amino acid positions without known 
function (Fig. S1).

We compiled a list of 99 VUS in the last 260 aa of MLL1-3 within or near the catalytic SET domain, (29 
in MLL1, 44 in MLL2, 26 in MLL3, Supplementary File 1) from the Catalog of Somatic Mutations In Cancer 
(COSMIC) database27 and from exome sequencing of 308 tumors of various origins at the Mayo Clinic28. We 
calculated functional impact scores for each mutation using the cancer-specific option of Functional Analysis 
Through Hidden Markov Models (v2.3) (FATHMM)29, the Polymorphism Phenotyping v2 (PolyPhen-2) func-
tional prediction server, which incorporates structural information into annotations7, and CancerVar’s Oncogenic 
Prioritization by Artificial Intelligence (OPAI) server30. Using default disease thresholds, FATHMM predicted 
4 mutations resulting in cancer; 96% were inferred as passenger mutations (Supplementary File 1). PolyPhen-2 
scores suggested 89 mutations were probably damaging, 5 possibly damaging and 1 benign. The programs 
agreed on 1 benign/passenger and 4 cancer/probably damaging inferences (5%), but with high discordancy in 
functional inferences for the remaining ~ 95% of missense mutation positions (Fig. 2A)—the true functions of 
which are unknown. We also used CancerVar to predict the oncogenic potential of the 99 VUS (Supplementary 

Figure 1.   Workflow for the Parallel Functional Annotation (PFA) assay. (1) Recombinant expression plasmids 
for wild-type (WT) and mutants (MT) in Escherichia coli were induced in 5-ml cultures. (2) Culture pellets were 
lysed and clarified. Crude extract was normalized for equal amounts of recombinant protein using Coomassie-
stained SDS-PAGE and/or western blotting. E. coli does not methylate histones, so substrates were not modified 
without recombinant protein and lysates were the enzyme source in assays. (3) Assays with lysates in PCR strip 
tubes were initiated with a temperature-equilibrated mixture containing subunits required for active histone 
methyltransferase complexes (WRAD), biotinylated histone H3 peptides (amino acids 1–20) as substrate, 
and radiolabeled S-adenosylmethionine (3H-SAM). (4) Reactions were transferred to commercially available 
streptavidin/scintillant-coated 96-well FlashPlates34 containing quenching reagent (step 4). Quenching times 
for end-point assays were determined using WT enzyme to ensure signal-to-noise within the linear range of 
the timecourse. (5) A plate reader detected signal for methylated biotinylated peptides captured by streptavidin 
near scintillant making removal of unincorporated 3H-SAM unnecessary. (6) Results were analyzed. H3K4me0, 
unmethylated H3; H3K4me1, monomethylated H3.
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Figure 2.   Parallel Functional Annotation (PFA) of cancer-associated histone methyltransferase variants of uncertain 
significance (VUS). (A) Venn diagram of FATHMM and PolyPhen-2 functional prediction of Mixed Lineage Leukemia 
(MLL) VUS: 5 of 99 mutations had overlapping predictions. (B) Top, catalytic SET domain secondary structure map from 
PDBsum based on PDB 5F59, amino acids 4754–4911. Shown are alpha helices (H1-3), beta sheets (β1-10) beta hairpin 
sturns (red coloured hairpin sturns), and ligand/metal binding residues: H3/SAH binding (red filled square), SAH binding 
(blue filled triangle), zinc ion binding (blue filled square/green filled triangle). Bottom, representative PFA of MLL3 VUS 
mutations by scintillation counting. Quenching was after 30 min with data normalized against WT. Pink and purple, assays 
initiated with H3K4me0, H3K4me1. Dashed lines and corresponding shaded regions, average and standard deviation (1σ), 
respectively, for all variants with activity > 50% of WT. Error bars, standard deviation from 2 independent experiments. 
(C) Representative results from PFA for MLL3 VUS mutations by fluorography of SDS-PAGE. Upper, Coomassie-
stained gel of quenched enzymatic reactions; middle, signal from reactions with H3K4me0 (unmethylated) or H3K4me1 
(monomethylated) peptides; bottom, expression of MLL3 variants by Coomassie-stained SDS-PAGE. Assays were as 
described for Fig. 1, limiting the recombinant subunits required for full enzymatic activity31–33 to minimize activity variation 
from differing MLL expression. Rates of monomethylation and dimethylation were determined using unmodified or 
monomethylated substrates. Activity depended on recombinant expression (no activity in uninduced control, UIC, lane 1). 
Lanes 2–11 show representative wild-type (WT) and variant MLL3 complexes, demonstrating that activity variation cannot 
be explained by differential expression. An uncropped version of Fig. 2C is shown in Fig. S11.
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File 1), and found that the majority (82%) have an uncertain probability of oncogenicity (OPAI score < 0.95). 
The disagreement among the programs led us to develop a high throughput functional assay to aid predictive 
tools in understanding the role of SET domain mutations in disease.

PFA of mutations.  To determine the true functional impact on enzymatic activity, we developed a cost-
effective, high-throughput PFA platform for rapidly comparing enzymatic activity in variant and wild-type pro-
teins. PFA involves parallel expression of wild-type and variant genes in small cultures (Fig. 1). We used charac-
terization of all 99 VUS histone-methylation enzymes as a model, expressing wild-type or variant SET domains 
from recombinant plasmids in Escherichia coli. After cell lysis, assays were initiated by combining crude, nor-
malized extracts with 3H-S-adenosylmethionine (3H-SAM), biotinylated histone peptide substrate, and cofac-
tors or interacting proteins, in our case, purified recombinant subunits required for full enzymatic activity31–33. 
At specific timepoints, reactions were transferred to commercially available streptavidin/scintillant-coated 
96-well FlashPlates34 containing quencher. A plate reader detected reaction signals, in our case for methylated 
biotinylated peptides captured by streptavidin proximal to scintillant. Data were normalized against wild-type 
enzyme activity (Fig. 2B and Figs. S2,S3,S4). All steps used 8-channel pipettors in a standard PCR thermocycler, 
allowing high-throughput parallelization.

To validate results, reactions were visualized by fluorography (Fig. 2C). Methylation activity depended on 
recombinant expression, with no activity in uninduced control (lane 1). Wild-type and variant MLL3 complexes 
demonstrated that activity variation was not explained by differing catalytic domain expression (lanes 2–11 and 
lower panel). Variation in enzymatic activity by fluorography qualitatively matched scintillation-counting results 
(Fig. S5). Furthermore, observed changes in relative activity for the subset of previously characterized mutations 
were consistent with the literature12,13,32,33,35–39, validating the assay. Of the 99 VUS characterized by PFA, 62% 
demonstrated loss-of-function (LOF) (activity < 50% of wild-type), 3% showed gain-of-function (GOF), and 
35% showed no significant change (Fig. 3A).

Biochemical consequences of VUS.  To gain structural and biochemical insight into the variants, we 
used CLUSTAL-Omega sequence alignment40 annotated for aa conservation and secondary structure, and map-
ping onto X-ray structures of isolated SET domains (Fig. 3B,C, Figs. S2,S3,S4)41–44.

Most LOF variants clustered around five primary structural elements (Fig. 3B): Cluster 1 mapped to 
β-strands that, with an intervening loop, form part of the SAM-binding pocket at the “palm” of the SET domain 
(Fig. 3C,D,E). Mutations here likely alter β-sheet packing against the domain and disrupt the SAM-binding 
pocket. Positions of cluster 1 LOF variants had varying degrees of aa conservation among SET domains and in 
only 2 of 3 MLLs (Fig. 3B). Several neutral mutations, some in highly conserved positions, demonstrated that 
aa conservation was not always sufficient for functional predictions.

Cluster 2 encompassed residues between β-strands at a region thought to determine substrate specificity45 
(Fig. 3B–E). Several LOF mutations mapped to opposite surfaces of the region (Figs. S2,S3,S4). LOF variants 
near the active site likely disrupted histone or cofactor binding. One mapped putative GOF variant showed 
increased dimethylation without changing monomethylation activity. The same position was mutated in another 
MLL without changing enzymatic activity (Fig. 3B, Figs. S2,S3). A different GOF variant increased dimethyla-
tion without changing monomethylation, mapping to a histone peptide-binding surface (Fig. S3). The same 
position was mutated in another MLL without changing activity (Fig. 2B, Fig. S4). Some cluster 2 LOF variants 
mapped to a nonactive-site surface where we demonstrated that mutations impair core complex assembly and 

Figure 3.   Structure–function annotation of methyltransferase cancer-associated variants of uncertain 
significance (VUS). (A) Proportions of neutral (wildtype [WT]-like), loss-of-function (LOF), and gain-of-
function (GOF) variants from parallel functional annotation of 99 Mixed Lineage Leukemia (MLL) VUS. (B) 
Clustal Omega sequence alignment of the SET (active site-containing) domains of three MLL paralogs. Gray, 
neutral; green, GOF; red, LOF; pink, MLL1 mutations eliminating histone H3 lysine 4 (H3K4) dimethylation 
but not monomethylation. Annotation with PDBSum secondary structure is based on MLL1. Cluster 1–5 bars 
show putative missense mutation clusters. (C) Surface representation of the MLL1 SET domain (PDB code 
2W5Z) showing mutation clusters, colored as in B). Cluster 2 LOF variants mapping to the nonactive-site 
surface of the SET-I lobe include mutations associated with human Kabuki syndrome when in MLL248–53,39,54,55. 
Mutations impair complex assembly and enzymatic activity by disrupting a surface required for interaction with 
the RBBP5/Ash2L heterodimer necessary for catalysis39. Cluster 3 encompasses α-helix 5 through β-sheet 7 with 
the highly conserved “NHS” signature motif essential for SET activity44,61–64 in all 6 human MLLs33 near the 
fulcrum of the bilobed structure with direct contacts to S-adenosylmethionine at the coenzyme-binding pocket 
base. Cluster 4 LOF variants encompass residues in β-sheets 8–10 on a contiguous surface along the domain 
base. Mutations affect buried amino acids on the nonsolvent-exposed surface of β-sheets 8 and 9 (predicted 
to destabilize). One GOF-variant in MLL3 replaced tyrosine 4884, which inserts at the “Phe/Tyr switch” active 
site position and determines product specificity with cysteine32,63,66–72. This variant dimethylated but did not 
monomethylate, similar to a cancer-causing Y-to-C substitution in the polycomb SET domain EZH2 active 
site71. Cluster 5 encompasses the post-SET domain with the zinc-binding lobe (thumb) of the SET domain with 
3 of 4 cysteines coordinating the zinc atom (fourth from cluster 3). Zinc is crucial for the adenine-proximal 
portion of the coenzyme-binding pocket. Gray text, SET-I and post-SET lobes (critical for methyltransferase 
activity) and Kabuki interaction surface; histone H3 and ball-and-stick model, active site position on the SET-I 
lobe. (D) Enlarged view of VUS mutation clusters converging on the active site with positions of substrate and 
co-factor product S-adenosylhomocysteine (SAH) indicated. (E) Positions of domain features.
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enzymatic activity (Fig. 3C)39, an interaction confirmed by cryo-EM (Fig. S6)55–57. These observations emphasize 
the importance of incorporating functional information from multiple family members that may be different in 
their assembly with homologous subunits33,38.

Cluster 3 included a highly conserved NHS-motif essential for enzymatic activity33,42,59–62 that directly con-
tacts SAM at the base of the coenzyme-binding pocket. High conservation and prior biochemical information 
likely accounted for correct functional inferences from FATHMM and PolyPhen-2 for NHS-motif mutations. 
However, these programs did not distinguish LOF and neutral mutations for the remaining 95% of variants, 
including cluster 1 and remaining cluster 3 variants that, based on structural information, are involved in form-
ing the SAM/S-adenosylhomocysteine-binding pocket (Fig. 3D).

Cluster 4 LOF variants encompassed residues mapping to a contiguous surface along the SET domain base. 
LOF mutations in this cluster predominantly affected buried aa positions and were predicted to be destabiliz-
ing. One GOF variant was in a residue that inserts into the active site at a position that determines product 
specificity32,33,61,64–70. This variant showed a mixed phenotype of lost monomethyltransferase activity, but gained 
dimethyltransferase activity (Fig. 2B), similar to a cancer-causing substitution71 that is a lymphoma treatment 
target72.

Cluster 5 encompassed a domain that forms a zinc-binding lobe and provides 3 of 4 cysteine residues coor-
dinating a zinc crucial to a portion of the coenzyme-binding pocket (Fig. 3D). LOF variants in this region likely 
destabilize the zinc-binding lobe, altering SAM binding.

Comparing predicted and in vitro phenotypes.  To determine how well functional annotation pro-
grams predict biochemical changes in MLL family VUS, we plotted FATHMM, PolyPhen-2 and CancerVar 
scores against methyltransferase activity normalized to wild-type (Fig. 4A–C). FATHMM scores clustered into 
three regions (Fig.  4A). Of 99 missense mutations, 3 representing true-positive (TP) predictions had activ-
ity < 50% of wild-type with FATHMM scores meeting the default disease threshold (≤ − 0.75)29. Another cluster 
3 prediction fell into the false-positive (FP) region, with tenuous assignment because activity was barely above 
the 50% threshold. Another region representing true-negative (TN) predictions, containing 45% of mutations, 
had activity > 50% of wild-type with FATHMM scores > − 0.75. The third region representing false-negative (FN) 
predictions (48% of mutations) had activity < 50% wild-type and FATHMM scores indicating no disease.

In further cluster classification, FATHMM correctly called all 12 neutral mutations not within the five cluster 
groupings. FATHMM correctly predicted functional impacts of only 6% of all 51 LOF mutations, with FN infer-
ences for 94%. FATHMM had mixed results for variants within the structural clusters. Three highly conserved 
cluster 3 residues were correctly called as TPs; FATHMM lacked sensitivity to call the remaining LOF variants 
despite similar activity loss (Fig. 4A).

PolyPhen-2 clustered the 99 missense mutations predominantly into two groups (Fig.  4B): 95% had 
scores > 0.8, predicting “probably damaging.” Mutations with activity < 50% of wild-type (53.5% of total) repre-
sented TP predictions. All but 4 of the remaining (42% of total) with activity > 50% of wild-type represent FP 
predictions. PoylPhen-2 incorporated structural information into the predictions7, but in contrast to FATHMM, 
lacked precision to adequately distinguish FP from TN inferences.

CancerVar clustered missense mutation into 4 regions (Fig. 4C): 53% had OPAI scores ≥ 0.95 and were pre-
dicted to be oncogenic. Mutations with activity < 50% of wild-type represented TP (33%) and FN (19%) predic-
tions, whereas mutations with activity > 50% of wild-type represent FP (18%) and TN (29%) predictions.

Together, while the programs show general agreement for the few mutations in amino acid positions with 
prior functional information, they struggled to correct classify the impact of the remaining mutations- despite 
incorporating structural information into the prediction. These results reinforce the need for additional high 
throughput biochemical annotation methods to identify the variables that are most important for accurate 
functional predictions.

Predicting impact of mutations.  The contradictory FATHMM, PolyPhen-2 and CancerVar results 
underscore the difficulties of inferring the functional impact of VUS using prediction programs that rely pri-
marily on aa sequence conservation. To identify the most important variables for predicting functional impact 
on MLL enzymes, Supplementary File 2 has 14 potential explanatory parameters including changes in aa physi-
cal–chemical properties: number of side chain atoms (ΔAtoms) or hydrogen bond donors or acceptors, charge, 
hydrophobicity, side chain volume, and the predicted changes in unfolding free energy (ΔΔG) upon point muta-
tion. Substitution probabilities were from the BLOSUM62 matrix73.

We tested inclusion of additional variables inferred from functional annotation observations to improve pre-
dictions. LOF mutations clustered nonrandomly in specific structural regions, suggesting that clustering might 
indicate altered function. We calculated a missense-mutation “parallel-cluster score” (pClustScore) from the 
proximity of adjacent missense mutations within each protein (ProxScoreEach) and the proximity of the aggre-
gate of all missense mutations from MLL family members projected onto a single aa sequence (ProxRatioAll). 
The average enzymatic activity was significantly lower for missense mutations with high vs. low cluster scores 
(P = 0.0001) (Fig. 4D). Missense mutations clustered into 4 groups corresponding with the structural analysis; 
the fifth group (post-SET domain) showed some clustering (Fig. 4E, Fig. S7). Differences in distributions of 
missense mutations among family members suggested a subgroup of missense mutations had differential effects 
on each protein.

To understand reasons for the large number of PolyPhen-2 FP inferences, we studied differences in aa con-
servation scores comparing alignments of all SET1 family SET domains with members of each phylogenetic 
subfamily (clade). Comparison of the six human SET1/MLL family members showed three clades that diverged 
in target gene and product specificity (number of H3K4 methylations) (Fig. 4F)33. PolyPhen-2 TP predictions 
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Figure 4.   Comparison of predicted and in vitro phenotypes for cancer-associated missense variants of uncertain 
significance (VUS). (A) FATHMM scores vs. relative activity (mutant [MT]/wild-type [WT]) of VUS color coded 
by clusters. Clusters 1, 2, 4, and 5 have roughly equal density above and below 50% of wild-type activity (horizontal 
dotted line); vertical dotted line, FATHMM cancer default disease threshold ≤ − 0.75 (greater certainty that a mutation 
causes disease); white circles, 12 neutral mutations that did not fit in the 5 clusters; red dots, mutations corresponding 
to conserved “NHS” mutations in cluster 3 (motif essential for enzymatic activity). Three highly conserved cluster 3 
residues were correctly called as true positives (TPs), but FATHMM lacked sensitivity to call the remaining cluster 3 
loss-of-function variants despite similar activity loss. (B) PolyPhen-2 scores vs. relative activity of VUS. Vertical lines, 
PolyPhen-2 default disease thresholds: > 0.8 “probably damaging”, 0.2 to 0.8 “possibly damaging”, < 0.2 benign). (C) 
CancerVar OPAI scores vs. relative activity of VUS. Vertical line,default threshold (< 0.95) for variants with uncertain 
probability of oncogenicity. (D) Violin plot of mean activity differences between VUS with low (< 1.5) or high (> 1.5) 
parallel cluster scores (pClustScore). Significance was from 2-tailed unpaired t-tests. Dashed line, median; dotted lines, 
upper and lower quartiles. (E) Variant ProxRatioEach scores showing proximity of adjacent missense mutations in each 
protein, plotted as a function of amino acid position using Mixed Lineage Leukemia (MLL) 1 numbering. (F) Clustal 
Omega phylogenetic cluster analysis of human SET1/MLL proteins shows three clades diverged in product specificity 
(me1, 2, 3 is degree of methylation)33. (G) Comparison of family vs. versus clade conservation scores in PolyPhen-2 
false-positive (FP) and true-positive (TP) amino acid positions. Two-way ANOVA compared means within groups. 
****P < 0.0001; ns, P > 0.05.
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showed little difference in average family vs. clade conservation scores. FP predictions had family-conservation 
scores significantly lower than clade-conservation scores (P < 0.0001) (Fig. 4G), indicating that despite high 
conservation among orthologs, positions that differed among paralogs had diminished predicted importance. 
To test if including phylogenetic information improved functional predictions, we used Mutation Assessor74 to 
compute functional impact scores (FI-Score) for each missense mutation. FI-Score is derived from a combinato-
rial entropy approach that simultaneously computes a “family conservation” score (VC-Score) and “specificity 
score” (VS-Score) based on conservation among orthologs within each subclade74,75.

Clustering parameters (ProxRatioEach, ProxRatioAll, pClustScore) and phylogenetic parameters (FI-,VC-,and 
VS-scores) each demonstrated statistically significant relationships with mutant activity relative to wild-type, 
Activity(Mut/WT) (Spearman’s P ≤ 0.01). ΔAtoms, ΔΔG, and BLOSUM62 parameters demonstrated weak but sig-
nificant associations with Activity(Mut/WT) (Spearman’s P = 0.04); other physical–chemical parameters were not 
significantly correlated (Fig. S8). Contributions of variables to Activity(Mut/WT) were determined by principal 
components regression on 14 parameters. Consistent with correlations, phylogenetic and clustering parameters 
and BLOSUM62, ΔΔG and ΔAtoms were major contributors to variation in methylation rates (Fig. S9). Using 
only these covariates identified three principal components that collectively accounted for ~ 76% of variation 
(R2 = 0.61, P < 0.0001 when regressed on Activity(Mut/WT), Fig. S10). Phylogenetic parameters accounted for the 
largest proportion of observed data variation (37%); clustering parameters contributed most strongly to PC2 
(27%), and ΔAtoms to PC3 (12%). PC1 vs. PC2 scores revealed groupings separated between low and high 
enzymatic activity along PC1 (Fig. 5A), suggesting that phylogenetic and clustering parameters were most pre-
dictive of methylation rates. FI-Score was strongly associated with VC-Score, VS-Score (Spearman’s P < 0.0001) 
and was the phylogenetic parameter for further analyses. Because of strong association between pClustScore and 
ProxRatioAll, and ProxRatioEach (Spearman’s P < 0.0001), pClustScore represented clustering parameters (Fig. S8).

A regression tree using an unbiased recursive partitioning algorithm76 showed how phylogenetic, clustering, 
and physical parameters influenced methylation variability among missense mutations. The first breakpoint for 
distinguishing variants with high vs. low activity was based on FI-Score, a measure of conservation and phy-
logenetic differences among paralogs (Fig. 5B). Almost all VUS variants with FI-Scores > 3.005 were correctly 
classified as LOF with very low activity (P < 0.001). For VUS variants with FI-Scores ≤ 3.005, pClustScore became 
the major factor distinguishing high- vs. low-activity variants. Blosum62, ΔAtoms and ΔΔG parameters were not 
significant. Thus, combining FI-Score and pClustScore was significantly better at predicting the functional impact 
of VUS mutations (R2 = 0.63) than FATHMM (R2 = 0.0002), PolyPhen-2 (R2 = 0.05) or CancerVar (R2 = 0.001) 
(Fig. 5D–G).

To test the predictive power of these two parameters, we repeated the recursive partitioning algorithm using 
tenfold crossvalidation77. FI-Score and pClustScore correctly predicted the functional impact of ~ 92% of VUS 
variants (Fig. 5C, Table S1), (compared to 51% FATHMM, 55% PolyPhen-2, 62% CancerVar Table S2). Thus, 
functional impact predictions were significantly improved by combining aa conservation information on all 
related proteins plus conservation of key positions among orthologs that differentiate unique functions of para-
logs, with clustering density of missense mutations that define functional areas of protein folds.

Discussion
We describe the rapid, economical PFA method for functionally annotating VUS without enzyme purification, 
modeled using histone-modification enzymes. Collecting functional information on 99 mutations took 1–2 weeks 
of benchwork. Results for a subgroup of missense mutations were similar to previous characterizations, vali-
dating PFA. Contrary to prediction algorithms, we found that 62% of VUS mutations result in loss of histone 
methyltransferase activity while 35% showed no observable defects, suggesting they are passenger mutations 
or they disrupt an activity not present in the assay. Of VUS mutations, 3% led to an observable gain- or switch-
of-function, including one with alterations in product specificity similar to those observed in a SET domain 
of EZH2, which is currently being targeted by therapeutics as a lymphoma treatment71,72,78–80. In addition, we 
identified new LOF and GOF variants in uncharacterized aa positions.

PFA is most useful for parallel screening of large numbers of missense mutations for altered enzymatic 
function. PFA is easily modified to screen mutations in nonenzymatic subunits as long as they are required for 
enzymatic activity, for estimating preliminary kinetic parameters (e.g., Vmax), and screening for variants sensi-
tive to inhibiting or enhancing compounds. Other coupled fluorescence-based assays that measure formation of 
S-adenosyl-homocysteine34 require purified enzyme to reduce off-target methylation or fluorescence quenching. 
PFA uses crude extracts, biotinylated substrates, and FlashPlates, eliminating steps to purify protein and remove 
unincorporated 3H-SAM before measurement. PFA can be used for other histone-modification enzymes, if 
functionally expressed in E. coli.

Drawbacks include the lack of posttranslational modifications, if required for activity. The assay likely misses 
mutations that do not alter enzymatic activity but affect GOF interactions with proteins or nucleic acids absent 
from the assay. Nonetheless, PFA produced insights about sequence-based computational predictions and sug-
gested mechanisms for VUS contributions to cancer.

By combining functional annotation of three paralogs, we discovered sequence-based phylogenic and cluster-
ing parameters that dramatically improved functional predictions over three computational prediction programs. 
We noticed that most Polyphen-2 FP mutation positions were conserved among orthologs, but not among para-
logs. Computational programs that ignore these phylogenetic differences likely diminish the importance of aa 
positions that are highly conserved within a phylogenetic subclade, but differ between subclades that diverged for 
specific functions. Our observation that the six human SET1/MLL family members fall into three phylogenetic 
subclades that diverged in product specificity (Fig. 4E)33 may explain why FATHMM, PolyPhen-2 and CancerVar 
programs struggled to predict the functional impact of MLL VUS (Table S2).
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Figure 5.   Phylogenetic and clustering parameters predict functional impact of cancer-associated missense variants 
of uncertain significance (VUS). (A) Principal component (PC) biplot of significant phylogenetic (FI-Score, VC-Score 
and VS-Score), clustering (pClustScore, ProxRatioAll, ProxRatioEach) and physical–chemical (ΔAtoms, Blosum62, ΔΔG) 
parameters. Red, VUS with enzymatic activity ≤ 50% of wild-type (WT); blue, VUS with activity > 50% of WT. Mut, mutant. 
(B) Recursive partitioning classification tree for enzymatic activity using FI-score, pClustScore, ΔAtoms, Blosum62 and ΔΔG 
parameters for MLL1-3 VUS. Circles, internal nodes that can be partitioned into subnodes; boxes, terminal nodes; red, VUS 
with activity ≤ 50% of WT; blue, VUS with activity > 50% of WT. Circles, P values input nodes; box plots of Activity(MT/WT) 
values are in terminal nodes. (Goodness of Fit R2 = 0.65, RMSE = 0.22) (C) Confusion matrix showing predictive accuracy of 
the tree based on the tenfold cross-validation scheme. The recursive partitioning algorithm was repeated85 with 10 rounds 
of fitting, each using randomly chosen data subsets, with 90% training set and 10% testing set. D-G) Actual vs. Predicted 
plots. X-axes, actual activity; y-axes, predicted activity based on the regression model. Red diagonal line, line of identity; 
dashed lines, cutoff for VUS with less than or greater than 50% WT activity. (D) FI-Score and pClustScore parameters as 
predictors. (E) FATHMM inference score as predictor. (F) PolyPhen-2 inference score as predictor. (G) CancerVar Oncogenic 
Prioritization by Artificial Intelligence (OPAI) score as predictor. Shown are adjusted R2 values.
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The importance of phylogenetic information in functional prediction was recognized in a combinatorial 
entropy approach with Mutation Assessor74,75 that provides a missense-mutation FI-Score based on the overall 
conservation of an aa position and conservation of “specificity residues” that differ among paralogs74. For PFA, 
FI-Score explained the largest proportion of variation in methylation rates among MLL mutations (36%, Fig. S10), 
a significant improvement over physical–chemical and BLOSUM62 parameters combined, which explained < 10% 
of methylation rate variation. FI-score was necessary but not sufficient for the best functional predictions.

Missense-mutation proximity analysis has identified potential driver genes based on clustering in functional 
domains—indicating positive selection. Several approaches use sequenced-based or structure-based approaches 
to quantitively identify missense mutation clusters in oncogenes81–83. Given the paucity of structural information 
for most proteins, sequence-based parameters are desirable. Sequence-based clustering algorithms predominantly 
focus on identifying potential oncogenes, but can be useful for identifying structural features required for func-
tion. We found that most LOF mutations clustered around at least four unique structural elements involved in 
substrate or cofactor binding, or complex assembly. We noticed differences in clustering patterns among paralogs 
that may reflect differences in inactivation mechanisms. Based on the Mutation Assessor analogy, we computed a 
VUS clustering score accounting for these differences. The pClustScore parameter was better at predicting meth-
ylation rates than ProxRatioAll and/or ProxRatioEach parameters (Table S3), demonstrating complementarity.

Combining FI-Score with pClustScore described ~ 70% of methylation rate variability, without contributions 
from physical–chemical parameters often used in prediction algorithms. This level of variability was sufficient 
to predict functional impacts of VUS with up to ~ 90% accuracy. These results suggest that phylogenetic and 
clustering parameters from parallel analysis of family members provided important constraints for accurately 
modeling the functional impact of VUS mutations, particularly for families with multiple paralogs.

This work demonstrates how increasing knowledge of the impact of missense mutations on protein structure 
and biochemistry improves overall functional annotations. Application of similar high-throughput methods 
with other proteins will help identify all parameters required for accurate, broadly applicable, sequence-based 
functional predictions of missense mutations associated with disease.

Methods
Mutagenesis.  pGST expression plasmids encoding the C-terminal 260 aa of each wild-type MLL family 
member were used as templates33. MLL family constructs consisted of residues MLL1 (3745–3969) (KMT2A, 
UniprotKB ID Q03164); MLL2 (also known as MLL4) (5319–5537) (KMT2B(D), (UniprotKB ID O14686); 
and MLL3 (4689–4911) (KMT2C, UniprotKB ID Q8NEZ4). Site directed mutagenesis was performed using 
QuickChange II XL kit (Agilent). In-house Sanger sequencing was used to confirm the presence of the intended 
sequence variant and the absence of unintended mutations.

Protein expression and lysis.  Colonies from transformed E. coli cells (Rosetta II (DE3) pLysS, Novagen) 
were used to inoculate 5 ml TBII media with 50 µg/ml carbenicillin and 25 µg/ml chloramphenicol and cul-
tures were grown overnight with shaking at 30 °C. For PFA, 0.1 ml overnight culture was added to 5 ml fresh 
TBII with 50 µg/ml carbenicillin and 25 µg/ml chloramphenicol and grown at 37 °C with shaking at 200 rpm 
to OD600 ~ 1.0. Cultures were chilled on ice for 30 min, induced with 1 mM IPTG, and shaken at 200 rpm for 
24 h at 16 °C. Cells were harvested by centrifugation at 4,000 rpm at 4 °C and pellets were resuspended in lysis 
buffer (50 mM Tris pH 7.5, 1 mM TCEP, 300 mM NaCl, 1 µM ZnCl2) supplemented with a complete protease 
inhibitor EDTA-free tablet (Roche Applied Science), 1XBugBuster (Novagen), and 0.25 mg/ml DNase A. Resus-
pended pellets were incubated at 4 °C with gentle rotation for 3 h. Cell lysates were harvested by centrifugation 
at 20,000 RPM at 4 °C. Supernatant was collected and pellets were discarded. Lysates were aliquoted, flash frozen 
and stored at − 80 °C. The expression level of each mutant was determined by 4–15% SDS PAGE using Mini-
PROTEAN TGX gels (Bio-Rad) and Coomassie staining. Imaging and densitometry used a Bio-Rad Chemidoc 
Imager. Expression and purification of MLL core complex subunits WDR5, RbBP5, Ash2L and DPY-30 were as 
previously described33.

Parallel functional annotation assays.  Unmodified and H3K4 monomethylated histone H3 peptides 
(residues 1–20) tagged with GGK-biotin and C-terminal amidation were synthesized by GenScript and purified 
to > 95% purity. For methyltransferase assays, an equal volume of wild-type or mutant lysate was incubated with 
3 µM WRAD, 250 µM H3 peptide (unmodified or monomethylated), and 1–2 µCi [3H]-SAM (PerkinElmer Life 
Sciences) in assay buffer (20 mM Tris pH 8.5, 1 mM TCEP, 200 mM NaCl, 1 µM ZnCl2). Samples were incu-
bated at 15 °C for 30 min. Lysates from cells transformed with empty vector (pGST II) or uninduced wild-type 
plasmids served as negative controls. Reactions were quenched with 0.5 M EDTA (1:1, v:v). Quenched reactions 
were brought to 200 µL using assay buffer with 0.5 M EDTA and 0.2 mg/ml BSA and transferred to 96-well 
streptavidin-coated FlashPlate microplates (PerkinElmer). Samples were incubated overnight at 4 °C to allow 
binding of biotinylated H3 peptide to the streptavidin-coated surface before scintillation counting in a Hidex 
Sense Plus microplate reader (LabLogic). For the gel-based fluorography assays, reactions were quenched with 
SDS-loading buffer and separated by 4–12% BisTris SDS-PAGE (LifeTechnologies) at 200 V for 30 min. Gels 
were stained with Coomassie, imaged, then placed in enhancing solution (Enlightening, PerkinElmer Life Sci-
ences) for 30 min at room temperature. Gels were dried for 2.5 h at 72 °C under constant vacuum and exposed 
to film (Eastman Kodak Co. Biomax MS Film) at − 80 °C for 6–72 h before developing. Densitometry using 
ChemiDoc ImageLab (BioRad) software was used to quantify H3 peptide methylation.

Missense mutation clustering analysis.  pClustScore was derived from the sum of two proximity param-
eters calculated using a modification of the approach in Tamborero et al.81. Missense mutation proximity param-
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eters were calculated by counting the number of missense mutations in a window + /− 7 aa around each muta-
tion, then dividing by the distance to the nearest missense mutation. The window for mutations was chosen 
based on an analysis showing that 25% of all neighboring mutations in the Catalogue of Somatic Mutations in 
Cancer (COSMIC) database are within 7 aa of each other, which represents the first quartile of nearest-neighbor 
distances83. ProxRatioEach was calculated based on the proximity of missense mutations within each protein and 
ProxRatioAll was calculated for the combined mutations for all three family members projected onto a single 
sequence. ProxRatioAll and ProxRatioEach were correlated (Fig. S8), indicating they provide complementary 
measures of mutational proximity. We therefore summed the two values to derive the single clustering parameter 
pClustScore. Multiple regression analysis showed that pClustScore was more accurate at predicting H3K4 meth-
ylation rates than either parameter alone, or when both parameters were used without summation (Table S3).

Statistical methods.  Principal components regression analysis was performed with GraphPad Prism ver-
sion 9.3.0 for MacOS (GraphPad Software, San Diego, California USA). Component selection was based on 
the principal components with the largest eigenvalues that together explained at least 75% of the total variance. 
Recursive partitioning tree regression was performed using the R-based web-implementation of the R package 
as described76,84. Model validation was performed using tenfold crossvalidation with quantile categorization76, 
using 90% of the data as the training set and 10% to test the model. Validation was repeated 10 times using a 
different randomly chosen training and test set.

Data availability
The data generated during and/or analyzed during the current study are included in this published article (and 
its Supplementary Information files).
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