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Exploiting deterministic features 
in apparently stochastic data
Ruedi Stoop1*, Giuseppe Orlando2, Michele Bufalo3 & Fabio Della Rossa4

Many processes in nature are the result of many coupled individual subsystems (like population 
dynamics or neurosystems). Not always such systems exhibit simple stable behaviors that in the 
past science has mostly focused on. Often, these systems are characterized by bursts of seemingly 
stochastic activity, interrupted by quieter periods. The hypothesis is that the presence of a strong 
deterministic ingredient is often obscured by the stochastic features. We test this by modeling 
classically stochastic considered real-world data from both, the stochastic as well as the deterministic 
approaches to find that the deterministic approach’s results level with those from the stochastic side. 
Moreover, the deterministic approach is shown to reveal the full dynamical systems landscape, which 
can be exploited for steering the dynamics into a desired regime.

Complexity often emerges from systems composed of many interacting subsystems. Under suitable conditions, 
such systems produce interesting coherent collective behavior, some of which even evidence universal features. 
Examples range from classical physics spin systems at criticality1, to environmentally relevant biological systems2,3 
at criticality, and neuronal systems that may or may not be at criticality4. All have in common that their dynamics 
projects down to much lower-dimensional spaces, and that usually periods of fierce activity interchange with 
calmer periods. Corporate dynamics emerge from economic agents that exchange signals based on prices5, which 
puts it into the class described.

The typical interchange between activity and calmer periods that we find in these systems is, in particular, 
found in biological neuronal activity. This is one of the reasons why in a recent work6, stock market indices 
developments were predicted by a deterministic low-dimensional neuroinformatics-borrowed Rulkov-type 
map7, and compared to the standard stochastic approach. This comparison yielded slightly superior modeling 
results of the deterministic over the stochastic one. The crucial observation, however, is that while the generally 
used stochastic approach fails to offer a convenient understanding of the modeling system’s build-up and of the 
involved parameters, the Rulkov map approach, due to its simplicity and explicitness, promised to open a door 
for a deeper understanding of the drivers of the market dynamics—in particular, if a mapping of the real-world 
data to model parameters could be established6.

In the present work, we substantiate these observations and expectations. Here, to emphasize the broad system 
class embraced by our modeling methodology, we focus on a more general system level and use distinct real-
world data. Using data from the market competition between companies as our example, we provide the existence 
of a convenient handle for guiding such apparently stochastic systems. Competition is an ubiquitous feature of 
physical and biological systems. For modeling, more specifically, activity developments of firms and the diffusion 
of innovations in business, Bass-type models8 were used (and later extended with behavioural assumptions on 
forecasting, e.g., Refs.9,10). Recently, agent communication and interaction structures have made these processes 
increasingly neuronal-like11. Since also the collective behavior of neuronal ensembles can collectively be mod-
eled by suitably chosen individual neurons12, we model the specific real-world data from corporate dynamics 
by generalizing the Rulkov maps originally designed to reflect the behavior of individual neurons. The results of 
this modeling are then compared to those obtained from a stochastic ARIMA-EGARCH model (an approach 
specifically optimized for dealing with autoregressive, moving average, heteroscedastic asymmetric volatility 
processes). The comparison will evidence that the two approaches are toe-to-toe. The main aim of the present 
work is, however, to explicitly demonstrate that the simplicity and explanatory power inherent in deterministic 
models hosts salient advantages over the stochastic approach and to present a perspective of the insight and 
opportunities available by capitalizing on this.
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The present work is made self-sufficient by first repeating the main elements of our deterministic modeling 
approach. Analytical investigations of our model will reveal in “Stationary states and their stability” section an 
asymptotic stable stationary state. The precise nature of this stationary state and non-local properties are analyzed 
in “Numerical investigations of the theoretical model” section using numerical investigations. In the “Android’s 
market position” section, we will give a wrap-up of how the Android computer operating system achieved a lead-
ing position in the market, and what properties the current business state has, according to our analysis. In the 
conclusion section, we will emphasize the generic nature of the analyzed system type and of the obtained insights.

Modeling fundamentals
At any level of abstraction of multicomponent systems, increased ’activity’, ’advantage’, or ’profit’ of a subsystem 
compared to a concurrent subsystem, are the consequences of several factors, such as skills, strategic positioning, 
etc., and it generally holds that above or below norm profits, respectively, may persist for prolonged periods of 
time13–17, but must converge to zero under perfect competition conditions, in the long run. For the following, we 
assume that all of these determining factors are combined in a variable that we shall call ’effort’ e, a quantity that 
would not be directly measurable, but manifest itself by consequences: The effort of a system at time t + 1 , et+1 , 
is assumed to depend on a variable x characterizing ”profits” according to a bounded functional form

which expresses that at xt = 0 , the effort et+1 would be equal to a/b, but tend to (a+ 1)/b for xt → ∞ and to 
(a− 1)/b for xt → −∞ . To obtain an effort bounded between 0 and 1, it is sufficient to set the parameters equal 
to a = 1 and b = 2 . These assumptions entrain a number of consequences. A drop in profit at time t puts pressure 
on the system, forcing it to increase effort. The latter cannot always be maximal, because efforts imply a rise in 
costs; if profits are high, the firm has to throttle back. As a consequence, we may expect a differential relationship 
between effort and change in profits of the form

As an illustration, in the business context, a strong link between demand, hours worked, and the profits can be 
expected. Whereas econometric analysis has not yet revealed the precise form of this link, previous work18 sug-
gests that profits are mainly correlated with average working hours, i.e., is expressed by the concept of effort by 
Eq. (1), and that the function fn(x) defined defined in (2) has the following properties

Proposition 2.1  For n even 

	 (i)	 fn is bounded: 0 < fn(x) ≤ 1(= fn(0)),
	 (ii)	 fn(x) vanishes for x → ±∞,
	 (iii)	 the first derivative of fn(x) is bounded. More specifically, maxx∈R |f ′n(x)| < n

2
.

Proof  (i), (ii) are obvious.
( i i i )  Obs er ve  that  f ′n(x) = − nxn−1

(1+xn)2
 and s e t  g(x) := − f ′n(x)

n  ,  f rom where  we  obtain 

g ′(x) = xn−2

(1+xn)3
[(n− 1)− (n+ 1)xn] . Moreover, g ′(x) ≥ 0 ⇐⇒ − n

√
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√
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√
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easy to see that maxx∈R |g(x)| = g
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(
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hence, for all n ≥ 2 one has n+1
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= 3 and therefore n
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3 ≤

√
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This proves that maxx∈R |g(x)| < 2
4
= 1

2
andmaxx∈R |f ′n(x)| = n ·maxx∈R |g(x)| < n

2
.

	�  �

Chosen in this way, n monitors the reactivity of profit xt , where lower values provide higher variability. To 
model company market competition, we will use a generalized version of Rulkov’s map approach developed for 
describing neuronal dynamics7 that takes care of the ”dragging” effect of economic variables that in classical 
stochastic models is implemented via autoregression19: While the change in profit xt+1 is the consequence of 
the previous value xt and that of a long-trend value yt , the value of yt+1 depends on its previous value yt and the 
short-term change xt . This can be to first order be implemented by

where β represents the sensitivity on the previous value and −µ is the ’mean reversion’ parameter. Low changes 
in profit will require high effort, and high efforts predict the recovery of profit. We may schematically depict 
this dependence by

(1)et+1 =
tanh(xt)+ a

b
,

(2)fn(xt) =
1

(1+ xnt )
, n ∈ N, x ∈ R.

(3)yt+1 = β yt − µ xt + η,

↓ xt ⇒↑ et+1 ⇒↑ xt+2 ⇒↓ et+3 . . . :
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to a high value of xt , a low value of xt+1 follows, etc. To smoothen this process, the long-term trend y is added

Under ’normal’ company performance, the effort will be intermediate, with xt+1 ≈ 0 . By combining Eq. (4) with 
Eq. (3), we obtain

In the case of γ and δ equal to zero, the maximum of fn(xt) determines the maximum effort. xt+1 will reach its 
peak value at xt = 0 ; a small deviation from zero even will cause a dramatic change in the company’s effort. 
Proposition 2.1 shows that, in the case of γ and δ equal to zero, the maximum of x will be α.

Stationary states and their stability
For assessing the influence of n in fn(xt) regarding the stability of Eq. (5), we use some classical results of two-
dimensional discrete dynamical systems

where F, G on R2  → R are any nonlinear functions. A stationary point (x∗, y∗) of Eq. (6) satisfies

Lemma 3.1  Consider the quadratic equation �2 − b�+ c = 0 , with b, c ∈ R . Assume that

then one has |�1,2| < 1 , where �1,2 denotes the roots of the quadratic equation.

Proposition 3.2  Let (x∗, y∗) be a stationary point of system (6) and let J be the Jacobian matrix at (x∗, y∗) , i.e.,

Then (x∗, y∗) is stable if the solutions �1,2 of the characteristic equation of J

have modulus smaller than 1, i.e. by Lemma 3.1, if

For deeper insights see, e.g., [27, Chapter V].

Case 2 ≤ n < +∞. 

Theorem 3.3  For β  = 1 , system (5) admits for any even n the stationary points

where x∗ is any solution of the equation

where

Moreover, any stationary point of system (5) is stable if

Proof  Stationary points of (5) satisfy

which yields (10,11) as a solution.

(4)xt+1 = αfn(xt)+ γ yt + δ .

(5)
{

xt+1 = αfn(xt)+ γ yt + δ

yt+1 = β yt − µ xt + η.

(6)
{

xt+1 = F(xt , yt)
yt+1 = G(xt , yt),

{

x∗ = F(x∗, y∗)
y∗ = G(x∗, y∗).

(7)c < 1, 1− b+ c > 0, 1+ b+ c > 0;

J =
[

Fx(x
∗, y∗) Fy(x

∗, y∗)
Gx(x

∗, y∗) Gy(x
∗, y∗)

]

.

(8)�
2 − Tr(J)�+ det(J) = 0

(9)det(J) < 1, 1± Tr(J)+ det(J) > 0.

(10)
(

x∗,
µx∗ − η

β − 1

)

(11)ax(xn + 1)+ bxn + d = 0,

(12)a = γµ− β + 1, b = (β − 1)δ − γ η, d = (β − 1)(α + δ)− γ η.

(13)0 < α <
2

n
, 0 < γµ < 1, 0 < β < 1− γµ.

(14)
{

x(1+ xn) = α + (1+ xn)(γ y + δ)

y = βy − µx + η,
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It remains to check the stability of the stationary points, i.e. that the Jacobian matrix of system (5)

s a t i s f i e s  t h e  c o n d i t i o n s  ( 9 ) .  Fr o m  ( 1 3 )  a n d  P r o p o s i t i o n  2 . 1  ( i i i ) ,  w e  h av e 
|αf ′n(x∗)| < αn

2
< 1, i.e., − 1 < αf ′n(x

∗) < 1. With (13), it follows that:

•	 det J = αβf ′n(x
∗)+ γµ < β + γµ < 1,

•	 1− Tr J + det J = (1− β)
(

1− αf ′n(x
∗)
)

+ γµ > 0,

•	 1+ Tr J + det J = (1+ β)
(

1+ αf ′n(x
∗)
)

+ γµ > 0,

which concludes the proof. 	�  �

These results predict the existence and properties of stationary points of the market competition process as fol-
lows. We will start with two explicit examples based on simplifying parameters and finite even n, before we turn 
to the asymptotic case n → ∞.

Example 3.4  Let n = 2 and β  = 1 . In this case, Eq. (11) reduces to

where a, b, d are given by Eq. (12).
The (complex) roots of such an equation can be given explicitly by means of Cardano’s formula:

where

It is well known that such a formula gives one, two or three real solutions, according to whether

In particular, if one has p > 0 , i.e., 3a2 − b2 > 0 , (17) yields a unique real solution.
If, however,

i t  f o l l o w s  t h a t  a = γµ+ 1− β > 0  ,  b = (β − 1)δ − γ η > 0  ,  d = (β − 1)(α + δ)− γ η > 0  , 
a− b = (1− β)(1+ δ)+ γ (η + µ) > 0 and therefore 3a2 − b2 > a2 − b2 = (a− b)(a+ b) > 0 . Hence, 
under assumption (19) Theorem 3.3 predicts system (5) to have a unique stable stationary point (x∗, y∗) , with 
y∗ = µx∗−η

β−1
 and x∗ given by Eq. (17). Moreover (by the positivity of the coefficients a, b, d), one has that x∗ < 0.

Example 3.5  For n > 2 even and β = 1 , system (5) has, however, a unique stationary point (x∗, y∗) given by

which is stable if 0 < α < 2
n and 0 < γµ < 1− αn

2
.

In fact, by Proposition 2.1 (iii), one has − n
2
< f ′n(x

∗) < n
2
 . As a consequence, the Jacobian

has the properties

•	 det(J) = αf ′n(x
∗)+ γµ < αn

2
+ γµ < 1,

•	 1− Tr(J)+ det(J) = γµ > 0,
•	 1+ Tr(J)+ det(J) = 2(1+ αf ′n(x))+ γµ > 2

(

1− αn
2

)

+ γµ > 0,

which, according to Theorem 3.3, proves the stability of (x∗, y∗).
Case n = +∞.  In this limiting case, we have

(15)J(x, y) =
[

αf ′n(x) γ

−µ β

]

(16)ax3 + bx2 + ax + d = 0,

(17)x∗ = −
b

3a
+

3

√

−
q

2
+

√

q2

4
+

p3

27
+

3

√

−
q

2
−

√

q2

4
+

p3

27
,

(18)p = 1−
b2

3a2
, q =

d

a
−

b

3a
+

2b3

27a3
.

q2

4
+

p3

27
> 0,

q2

4
+

p3

27
= 0,

q2

4
+

p3

27
< 0.

(19)0 < α < −δ < 1, γ > 0, 0 < −η < µ, 0 < β < 1− γµ,

(20)

{

x∗ = η
µ

y∗ = x∗−αfn(x
∗)−δ

γ
,

[

αf ′n(x) γ

−µ 1

]
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i.e., f∞(x) = �
(

x
2

)

 , where � represents the rectangle function. If α > 0, 0 < β < 1, 0 < γµ < 1 , for stationary 
points, using y = µx−η

β−1
 (see Eq. 10), we have x = γ η+(1−β)(δ+αf∞(x))

γµ+1−β
=: �+ νf∞(x) , where

Since f∞ ∈ {0, 1
2
, 1} , the stationary points of system (5) satisfy one of the expressions

(x∗1 , y
∗
1 ) is therefore stationary if and only if (’iff ’) f∞(x∗1 ) = 0 , i.e. iff |x∗1 | = |�| > 1 ; (x∗2 , y

∗
2 ) is stationary iff 

f∞(x∗2 ) = 1 , i.e. iff |x∗2 | = |�+ ν| < 1 ; (x∗3 , y
∗
3 ) is stationary iff f∞(x∗3 ) = 1/2 , i.e. iff |x∗3 | = |�+ ν/2| = 1.

Using (�, ν) as the pair of parameters, (x∗1 , y
∗
1 ) is stationary iff (�, ν) satisfies � < −1 or � > 1 (half-planes); 

(x∗2 , y
∗
2 ) is stationary iff (�, ν) satisfies −1 < �+ ν < 1 (stripe); (x∗3 , y

∗
3 ) is stationary iff (�, ν) lays on the lines 

�+ ν/2 = −1 or �+ ν/2 = 1 (line).
Thus, depending on the values of (�, ν) , we obtain 0, 1, 2, 3 stationary points. By stability properties, the half 

plane ν > 0 divides into regions A,B, . . . ,G (see the central rectangle of Fig. 1). The stationary points (x∗1 , y
∗
1 ) 

and (x∗2 , y
∗
2 ) will always be stable: The Jacobian matrix

f∞(x) := lim
n even, n→+∞

fn(x) =







0 if |x| > 1

1 if |x| < 1
1
2

if |x| = 1,

� =
γ η + (1− β)δ

γµ− β + 1
, ν =

α(1− β)

γµ− β + 1
, with ν > 0.

(21)x∗1 = �, x∗2 = �+ ν, x∗3 = �+
ν

2

(

y∗i =
η − µx∗i
1− β

, i = 1, 2, 3

)

.

Figure 1.   Center panel: Stationary states of system (5) in the (�, ν) plane. Small figures: Exemplary illustrations 
using vector fields on the {x, y} state-space with locations of stable fixed-points (green) and unstable fixed-points 
(red) indicated.
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satisfies Eq. (9), since one has det(J) = γµ < 1 and 1± Tr(J)+ det(J) = 1± β + γµ > 0 . The stability of the 
point (x∗3 , y

∗
3 ) can, however, not be determined by linearization, since in its neighbourhood the dynamics are 

discontinuous. Using numerical simulations we found that the stationary points at x∗3 = ±1 are unstable. We 
thus have 

A.	 one stable stationary point (x∗1 , y
∗
1 ) if � < −1 and ν ≤ −1−� , or if � < −1 ,   ν ≥ 1−� and �+ ν/2 �= ±1 , 

or when � > 1 and �+ ν/2 �= ±1;
B.	 one stable stationary point (x∗2 , y

∗
2 ) if −1 ≤ � ≤ 1 and −1−� < ν < 1−�;

C.	 two stable stationary points, (x∗1 , y
∗
1 ) and (x∗2 , y

∗
2 ) , if � < −1 , −1−� < ν < 1−� and �+ ν/2 �= −1;

D.	 no stationary point if −1 ≤ � ≤ 1 , 1−� ≤ ν and �+ ν/2 �= ±1;
E.	 one unstable stationary point (x∗3 , y

∗
3 ) if −1 ≤ � ≤ 1 , and �+ ν/2 = ±1;

F.	 two stationary points, (x∗1 , y
∗
1 ) (stable) and (x∗3 , y

∗
3 ) (unstable), if � < −1 , or � > 1 and �+ ν/2 = ±1;

G.	 three stationary points, (x∗1 , y
∗
1 ) (stable), (x∗2 , y

∗
2 ) (stable) and (x∗3 , y

∗
3 ) (unstable), if � < −1 , 

−1−� < ν < 1−� and �+ ν/2 = −1.

For n → ∞ , we therefore observe seven possible scenarios, depending on the number of stationary points 
obtained.

Numerical investigations of the theoretical model
Theoretical results are generally valid only locally around the stationary state and therefore provide little infor-
mation regarding basins of attraction involved. Moreover, they fail to reveal what happens if stationary states 
become unstable. “Stationary states and their stability” section provides sufficient, but not necessary, conditions 
that yield only conservative predictions of the dynamics to be expected, and also leave the dependence on the 
order n of the response function f unresolved.

To remedy this weakness, we complement our theoretical study with a numerical analysis, where the state 
space is explored starting from random initial conditions by means of 103 simulated paths of 1200 iteration steps 
each, using different choices of n. The numerical tests suggest that the partition into seven areas obtained from 
asymptotic n is still valid for n non-asymptotic. Together with the central asymptotic (�, ν) plane partition of 
Fig. 1, vector-field sub-panels illustrate this finding, where our specifically chosen parameter values were

•	 A: β = 0.8,α = 0.2, δ = 0.1, γ = 1, η = −1,µ = 0.6;
•	 B: β = 0.8,α = 0.1, δ = 0.1, γ = 0.4, η = −1,µ = 2;
•	 C: β = 0.8,α = 2, δ = 0.1, γ = 1, η = −1,µ = 0.5;
•	 D: β = 0.8,α = 4, δ = 0.1, γ = 0.4, η = 1,µ = 2;
•	 E: β = 0.8,α = 5.8, δ = 0.1, γ = 0.4, η = 1,µ = 2;
•	 F: β = 0.8,α = 1.8, δ = 0.1, γ = 0.4, η = −3,µ = 2;
•	 G: β = 0.8,α = 1.8, δ = 0.1, γ = 1, η = −1,µ = 0.6.

More detailed numerical results are presented in the following subsections.

Case 2 < n < ∞.  Figure 2a exhibits the behavior obtained for variable α , where for α < 1/3 the assump-
tions of Theorem 3.3 are satisfied. The simulations confirm that when β = 1 there is always a stationary state 
with x∗ = η/µ , and that for all explored values of α , this stationary state is stable. This does not contradict 
Theorem 3.3 and Example 3.5, since the latter represents a sufficient, but not a necessary, condition. For small α , 
the stationary state (20) is the only attractor for n → ∞ ; at α = 1.39 the system becomes multistable, by saddle-
node bifurcation giving birth to a stable period-6 cycle. Depending on the specificity of parameter α , the system 
either tends to the stationary state (20) or is attracted by another periodic, or chaotic, orbit. Upon increasing α , 
a Feigenbaum cascade20, 21 emerges, leading from periodic to chaotic behavior.

Case n = 2.  Figure 2b collects the results obtained for α  = −0.05 (thus either satisfying or violating the 
assumptions of Theorem 3.3 and Example 3.4, respectively). The simulations confirm the theoretical result that 
for small α , the stationary point (17) is stable. As a sufficient condition, the theoretical threshold of α is, however, 
very conservative; in reality, the stationary state loses stability for α = 2.2 , due to a supercritical flip (or ’period-
doubling’) bifurcation. At that level of α , the stable stationary state is replaced by a stable cycle of period 2 that 
at α = 2.6 loses its stability and is replaced by a stable cycle of period 4. These are the first steps of a flip-type 
or period doubling bifurcation cascade20, 21 that generally leads to a chaotic attractor dense of unstable periodic 
orbits. For α ∈ [3.55, 4.13] the only attractor of the system is a period 3 limit cycle.

Case n → ∞.  Figure 3 reports the last 200 iterations (out of 1200 simulation steps) of 103 simulated paths 
with n → ∞ , illustrating that the process always approaches a stable state. This not only confirms the arguments 
of “Case n = +∞” section; additionally, it exemplifies that the stationary state of this system does not need to 
be a simple period one: As α increases to α = 2.45 , a period-11 arises through to a saddle-node bifurcation and 
disappears through the same mechanism at α = 3.75 , whereas at α ≥ 3.68 a period-7 emerges from a saddle-

J =
[

0 γ

−µ β

]
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node bifurcation of the loop, persisting up to α = 6.1 where stability is lost due to a supercritical period doubling 
bifurcation (bifurcation parameters and types were identified using the MatContM22 software).

This is the rough overview of the landscape in which the process when modeled by our approach will take 
place. It will emerge from our numerical investigations involving real-world data, that, as approaches with dif-
ferent orders n yield results of similar quality, the order n of function f cannot be fixed in a decisive manner (cf. 
Table 4 below).

Figure 2.   Asymptotic behaviour of system (5) (a) for n = 4,β = 1, δ = 0, γ = 1, η = −0.05,µ = 0.9 and (b) 
for n = 2,β = 0.99, δ = −0.05, γ = 1, η = −0.0011,µ = 0.0025 , for different values of α . Last 200 steps from 
1200 iterations from 103 initial conditions are shown.

Figure 3.   Asymptotic behavior of (5) for n → ∞,β = 0.9, δ = 0, γ = 1, η = −0.05,µ = 0.9 and different 
values of α . Last 200 of 1200 iterations of 103 simulation runs.
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Android’s market position
We demonstrate in the following that our deterministic modeling captures Android’s market competition data. 
Over the last decade from January 2009 to July 2021, Android’s market percentage rose from 0 to 40.96%, cf. 
Fig. 4 (based on monthly retrieved StatCounter23 data). Table 1 exhibits the main statistical properties of this 
data, where skewness and excess kurtosis account for a heavily asymmetric dynamics with extreme deviations.

Such properties pose problems for modelling and forecasting. While outliers are generally seen as inconsist-
ent observations24, in economics and finance, skewness and kurtosis are inherent characteristics, and extreme 
observations are common25,26. In univariate financial time series, innovations are assumed to be symmetric, so 
that outliers are more difficult to detect than in independent data, since a single outlier may affect subsequent 
observations27. When it comes to modelling and forecasting, the computational challenge is kurtosis maximisa-
tion. To solve that problem, a recent suggestion was to convert projections with maximal kurtosis in univariate 
financial time series, into an easier to solve eigenvalue problem28. However, kurtosis-based projection pursuit, 
aimed at removing excess kurtosis, suffers from a crucial drawback: Kurtosis may not be defined for relevant 
distributions (e.g., the Student-t distribution with 4 or less degrees of freedom; for non-normal multivariate 
distributions, the fourth cumulant may be a null matrix), so that kurtosis might not be an appropriate projection 
index29 (for the situation in emerging stock markets, see Ref.30). Our low-dimensional deterministic approach 
masters the computational challenge posed by the highly skewed time series with extreme kurtosis in a compu-
tationally cheap manner.

Empirical parameter inference for forecasting and in‑sample prediction.  The empirical time 
series we use captures the monthly percentual change of Android’s market share. We first present modeling 
results, where we compare our low-dimensional deterministic approach based on Rulkov maps with an elaborate 
stochastic approach. We first demonstrate that the proposed deterministic approach is as good as the traditional 
stochastic one. The parameters yielding the optimal results permit us then to determine the location of the real-
world data within our theoretical system landscape.

The first step in our analysis consists in calibrating the Rulkov approach. Calibration involves a nonlinear 
regression, performing a robust estimation via an iteratively re-weighted least squares algorithm31. At each 

Figure 4.   Evolution of Android’s market percentage P, top panel, and corresponding logarithmic changes 
Log(P), bottom panel, from January 2009 to July 2021 (monthly data).

Table 1.   First four central moments of the logarithmic market share development, from January 2009 to July 
2021.

OS µ1 µ2 µ3 µ4

Android 0.0512 0.1033 3.3299 26.6497
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iteration, based on the residuals from the previous iteration, the weights are recalculated, until they converge. 
To compare the results with those of the stochastic approach, the ARIMA-EGARCH approach was taken, with 
degrees, (p, d, q) and (a, b), respectively, chosen using the Bayesian information criterion (BIC) and the Akaike 
information criterion (AIC). In the following, we will denote the achieved ’optimal’ stochastic model by ARIMA-
EGARCH*. To arrive at a two-dimensional representation, a slow component y is associated with the market 
dynamics data x, by means of performing an exponentially weighted moving average32–34 on x. Evaluations of the 
dynamic time warping distances confirm that the differences between the stochastic and the Rulkov approaches 
are at the level of white noise effects (see our Appendix for details).

Forecasting.  For a first strong demonstration of the strength of our deterministic approach, we consider fore-
casting. For this, we take the values xs, ys known at time s, from which, with the help of (5), the values at times 
t > s are calculated. Model parameters are calibrated over the rolling window [s −m+ 1, s] , where m = 12 is 
chosen due to the monthly frequency of the data (in contrast to a calibration across the whole data set shown 
later). Using the mean absolute percentage error (MAPE)35 and the absolute prediction error as measures, the 
obtained forecasts are compared to those from the ARIMA-EGARCH* model (the latter based on a mean of 103 
iterations), see Table 2 and Fig. 5. The two approaches evidence similar fits both for the process and its trend, 
confirming that the deterministic model performs at least as well as the stochastic one.

In‑sample prediction.  As an even stronger second argument for the strength of our approach are the results 
obtained by calibrating Rulkov and ARIMA-EGARCH*, respectively, over the whole time series, cf. Table 3.

This setting poses a major modeling challenge when volatility is high, or if the system changes from one 
regime of behavior to another. The quality of the modeling results reported in Fig. 6, is corroborated in Table 4 
( n = 2-panel) by the ratio between the relative mean absolute error RMAE and the normalized root-mean square 

Table 2.   Forecast errors: deterministic versus stochastic approach.

Rul. map state var. MAPE Rul. map MAPE ARIMA-GARCH*

Android TS
x 0.0849 0.0815

y 0.0563 0.0655

b

a

Figure 5.   Absolute percentage forecast error E: deterministic versus stochastic approach, components x and y 
(Android market share data).

Table 3.   Estimated Rulkov parameters for components x and y.

Parameters α γ δ β µ η n

Android TS − 0.093582 − 1.2302 0.097117 − 0.6695 − 0.32162 0.002575 2
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error (NRMSE). From visual inspection and error data, it is evident that both approaches capture the market 
dynamics equally well.

Stability of the empirical state.  Table 3 reports the parameters that we have obtained from the analysis of the 
in-sample calibrated time series. Albeit the particular case of a negative value of α was neither included in the 
presented model discussion nor in our numerical investigations, numerical investigations reveal that the param-
eters of the empirical state satisfy the conditions (19) of Example 3.4, so that the motion around the equilibrium 
state (−0.0246, 0.0005) should be globally stable. Across the time scales embraced by our empirical data, indeed 
a deterministic convergence to the mentioned fixed-point is observed on intermediate time scales, on which 
over shorter time scales a stochastic component seems to act as a ’disturber’. Table 4 confirms our earlier made 
observation that the order n of the reactivity plays a minor role in the modeling.

To date, whether financial data should preferentially be seen as deterministic or as stochastic processes 
is still unsettled. Some of the available data appear, however, to exhibit a substantial chaotic component36–38. 
Measures that indicate such a property are a positive maximal Lyapunov exponent39–43 (leaving open potential 
randomness); similarly, large values of the approximate entropies indicate that fluctuations over a time series 
are unpredictable44,45 (e.g., a regular alternation of 1 and 0 yields the value 0.0022 compared to around 0.63 for a 
random sequence of 0 and 1). As additional means, correlation dimensions measure the fractal dimension D of 
the space occupied by the data points43,46,47. For one-dimensional time series, D is directly related to the Hurst 
exponent48 H by D = 2−H49,50 (for stock markets, H has been shown to be around 0.5-0.651,52). Finally, the 
normalized ’spectral entropy’ variant SE53 of Shannon’s entropy54 measures the average level of ”information” in 
a random variable55–57. Table 5 exhibits the values of the above-mentioned descriptors of the real-time series of 

a b

c d

Figure 6.   Modeling comparison: (a) Android time series variable x (blue), versus Rulkov state variable x̂ (red); 
(b) Android time series variable y (blue), versus Rulkov state variable ŷ (red). (c) Android time series variable 
x (blue), vs. ARIMA-EGARCH* state variable ŷ (red); (d) Android time series variable y (blue), versus Rulkov 
state variable ŷ (red).

Table 4.   Error of the deterministic versus the stochastic approach.

Rul. map spec. ARIMA-EGARCH* parameters Time series Rul. map state var.
RMAE
(Rul. map/ARIMA-EGARCH*) NRMSE Rul. map NRMSE ARIMA-EGARCH*

n = 2
(1,1,2),(2,1)

Android
x 1.0473 0.0742 0.0704

(1,1,2),(2,1) y 0.9233 0.0673 0.0710

n = 4
(1,1,2),(2,1)

Android
x 1.0597 0.0939 0.0704

(1,1,2),(2,1) y 1.0263 0.0701 0.0710

n = 30
(1,1,2),(2,1)

Android
x 1.0598 0.0940 0.0704

(1,1,2),(2,1) y 1.0569 0.0722 0.0710
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Android market share, demonstrating consistency with the results from the Rulkov approach. While these results, 
indeed, seem to suggest a chaotic component in the data, most of the numerical methods used are, unfortunately, 
hampered by the lack of reaching a reliable saturation regime upon using variable embedding dimensions, and 
thus should not be used to umpire between deterministic chaotic vs. stochastic market data.

Figure 7a compares the entropy for the log-changes of Android’s market share versus the entropy of a random 
white noise process, confirming that the information content of both signals is high, which can be taken as an 
indication of either chaos or randomness being present in the data. Figure 7b compares the spectral entropy SE 
of the ARIMA-EGARCH* with that of the Rulkov approach, showing an almost complete overlap of results.The 
temporal evolution of the Hurst exponent shown in Fig. 8 confirms the possibility of a low-dimensional chaotic 
component in the data.

Table 5.   Chaotic descriptors: Android time series versus Rulkov map modelling.

Max. Lyap. Exp. Approx. Entr. Corr. Dim. Hurst Exp.

Andr. TS Rul. map Andr. TS Rul. map Andr. TS Rul. map Andr. TS Rul. map

0.4115 0.4424 0.4831 0.5014 3.0845 2.8599 0.5899 0.6686

a

b

Figure 7.   Spectral entropy SE (a) of the log-changes of Android’s market share (black) versus that of a white 
noise signal (magenta) exhibiting similar entropy levels; (b) of the stochastic (blue, continuous line) vs. the 
deterministic (orange, dashed line) calibrated approaches, for x- (top) and for y-variable (bottom). The almost 
perfect overlap of the two aligns well with the real-world data shown in (a).
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Conclusions
We explored the advantages that a low-dimensional deterministic approach may have when applied to tradition-
ally considered stochastic data. Comparisons of in-sample calibration, forecasting and stability analysis of the 
two deterministic with the stochastic approach, have revealed an example of a commonly exclusively stochastic 
considered data that hosts a substantial ingredient of deterministic features. For our real-world computer operat-
ing systems market share data, our findings indicate stochasticity prevails on the shortest scale and determinism 
on the intermediate scale. On larger time scales (above one year) the dynamics appear to change again (details 
not included). Given a desired time-scale, excess entropies, a recently developed tool for comparing models with 
data58 will provide more details on the accurateness of the modeling of the data. We suspect that beyond the 
specific data investigated, such a characterization may be a generic feature of a large class of real-world complex 
multicomponent systems, where our advocated deterministic approach offers insight into otherwise hidden 
structures that underlie the production of individually stochastic events. Our detailed analysis focused on the 
model’s dependence on the parameter α expressing the system’s responsiveness on short time scales. Upon a 
change of this parameter, stationary states may lose their stability, give way to a Feigenbaum cascade and to other 
bifurcation phenomena. In this way, our deterministic modeling reveals a strongly multistable nature underlying 
the generation of individual events, where the identified equilibria may be targets or avoided, by taking appropri-
ate control measures59,60. Thus, in addition to providing short-term predictions of reliability comparable to that 
obtained from the stochastic view, the deterministic approach offers an overview of the landscape of potential 
behaviours, that upon a change of externally accessible parameters may be monitored from outside by means 
of external guidance.

From a more global perspective, our investigations reveal strong similarities between local scale market 
behavior (as pursued here) with that at the more global level (such as the financial stress index), and neuronal 
firing behavior from various contexts. The embracing system category may, independently of the application 
specificity, bear substantial importance as a class of theoretical study.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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