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Neural network ensemble model 
for prediction of erythrocyte 
sedimentation rate (ESR) using 
partial least squares regression
Jaejin Lee1, Hyeonji Hong1, Jae Min Song2,3* & Eunseop Yeom1*

The erythrocyte sedimentation rate (ESR) is a non-specific blood test for determining inflammatory 
conditions. However, the long measurement time (60 min) to obtain ESR is an obstacle for a prompt 
evaluation. In this study, to reduce the measurement time of ESR, deep neural networks (DNNs) were 
applied to the sedimentation tendency of blood samples. DNNs using multilayer perceptron (MLP), 
long short-term memory (LSTM), and gated recurrent unit (GRU) were assessed and compared to 
determine a suitable length of time for the input sequence. To avoid overfitting, a stacking ensemble 
learning was adopted, which combines multiple models by using a meta model. Four meta models 
were compared: mean, median, least absolute shrinkage and selection operator, and partial least 
squares regression (PLSR) schemes. From the empirical results, LSTM and GRU models have better 
prediction than MLP over sequence lengths of 5 to 20 min. The decrease in MAPE and RMSE of 
GRU and LSTM was attenuated after a sequence length of 15 min, so the input sequence length is 
determined as 15 min. In terms of the meta model, the statistical comparison suggests that GRU 
combined with PLSR (GRU–PLSR) is the best case. Then, the GRU–PLSR was tested for prediction 
of ESR data obtained from periodontitis patients to check its applicability to a specific disease. The 
Bland–Altman plot shows acceptable agreement between measured and predicted ESR values. Based 
on the results, the GRU–PLSR can predict ESR with improved performance within 15 min and has 
potential applicability to ESR data with inflammatory and non-inflammatory conditions.

The erythrocyte sedimentation rate (ESR) is a simple and inexpensive blood test for providing general infor-
mation about an inflammatory or acute response. As the gold standard of ESR measurements, the Westergren 
method measures the distance from the meniscus to the top of the column of sedimented erythrocytes sepa-
rated from plasma in a vertical Westergren tube (inner diameter = 2.5 mm, length = 200 mm, and whole blood 
volume = 5 mL) after 1  h1,2. The ESR value represents the sedimentation speed in units of millimeters per hour.

Under low shear conditions, erythrocytes tend to form one-dimensional coin stacks (rouleaux) or three-
dimensional aggregates in a reversible process. Erythrocyte aggregation (EA) is affected by two major factors: 
aggregating force induced by the macromolecules, and disaggregating forces including negative surface charge 
and shear  force3. Although negative charges of erythrocytes repel each other, the presence of certain plasma 
proteins (fibrinogen, immunoglobulins, lipoproteins, and α-2 macroglobulin) and inflammation-related proteins 
(cytokines and chemokines) in plasma enhance the degree of EA. Elevated EA is considered to augment blood 
 viscosity4, which increases flow resistance and wall shear stress. In addition, the high extent of EA is somewhat 
correlated with cardiovascular diseases (CVDs)4 and diabetes  mellitus5. Considering Stokes’ law, the sedimen-
tation speed of a spherical particle in a medium is dependent on its  size6. Therefore, the ESR value is closely 
associated with the degree of  EA7.

Although ESR with minor modifications is still considered to be a useful index of nonspecific disease, the 
Westergren method has some disadvantages, including a time-consuming procedure (60 min) and a repetitive 
cleaning process. In addition, the Westergren method provides only the final sedimentation speed (the ESR 
value) after 1 h. It is insufficient to describe the temporal variation of the sedimentation tendency. Hong et al. 
proposed the micro-vibrational erythrocyte sedimentation rate (MV-ESR) and demonstrated the possibility of 
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shortening the time of ESR  measurement8. Shteinshnaider et al. demonstrated that ESR values at 60 min can 
be predicted by ESR values at 30 min by using simple linear  regression9. Nishisako et al. applied a formula for 
calculating a normal maximum range of ESR with only age information of  patients10. However, this formula 
was only applicable to Asian patients aged more than 65 years. Lapić et al. compared automated ESR methods 
(TEST1, Ves-Matic Cube 200) with the Westergren  method11. Ves-Matic Cube 200 showed larger dispersion, so 
they concluded that automated ESR methods should be used carefully. To gain information about the temporal 
sedimentation tendency, a characteristic time representing the time required for sedimentation by a specific 
length was  proposed12.

Although ESR elevation typically results from inflammatory factor such as fibrinogen, some noninflamma-
tory factors such as age, sex, and pregnancy can also cause elevation of the ESR, which might make it difficult 
to identify the patterns of  ESR13. For analysis of complex biological systems, machine learning algorithms have 
been proposed to recognize, classify, and predict the  patterns14. Thus, deep learning methods were used in this 
study considering their ability to learn the various patterns in ESR.

The sedimentation tendency of erythrocytes is time series data. For forecasting a time series, several deep 
neural networks (DNNs) have been proposed in several  fields15–19. Multilayer perceptron (MLP) is a type of feed-
forward neural network that does not have cycles in the same layer. Unlike the MLP, long short-term memory 
(LSTM) and gated recurrent unit (GRU) have cycles within a hidden layer and filter the information through 
gate  structure15,16. Kong et al. compared various benchmarks with LSTM, including the k-Nearest Neighbors’ 
algorithm and extreme learning  machine17. They found that LSTM outperformed the other rival algorithms in 
short-term forecasting for loads in individual residential households. AlDahoul et al. investigated the usage of 
ElasticNet linear regression, MLP, extreme gradient boosting, and LSTM for the prediction of suspended sedi-
ment in the Johor river in  Malaysia18. The results showed that the LSTM is better than the other models. Che 
et al. developed a GRU-based model (GRU-D) that captures the informative missing patterns in time series 
 analysis19. It was shown that GRU-D performed better than deep learning models built on GRU as well as other 
machine learning methods. Yilmaz and Buyrukoğlu proposed the hybrid model combining Back Propagation-
Based Artificial Neural Network (BP-ANN), Correlated Additive Model (CAM) and Auto-Regressive Integrated 
Moving Average (ARIMA) to forecast Coronavirus disease (Covid-19)  case20. They showed that the proposed 
hybrid model provides the best results, which can be used as the prediction model for Covid-19 to obtain better 
prediction results and to take immediate measures. Buyrukoğlu analyzed five promising cryptocurrencies with 
the ensembles of LSTM and single-based LSTM  networks21. This study revealed both ensembles of LSTM and 
single-based LSTM can be used separately, considering that ensemble of LSTM does not always outperform the 
single-based LSTM.

When a small amount of data is available, a single neural network algorithm tends to exhibit generalization 
error for unseen  instances22. Generalization means the capacity of the model to predict the correct output for 
previously unseen  data23. Because small datasets are more prone to overfitting than large datasets, an ensemble 
approach was proposed to reduce the generalization error by avoiding  overfitting24. Specifically, ensemble learn-
ing refers to the combination of multiple algorithms with different opinions and then weighting and combining 
them to make a complex decision. Ensemble learning is mainly used to improve prediction performance, or to 
avoid selection of a poor predictions by combining multiple models. In several studies, ensemble learning could 
improve the forecasting  performance25–27.

There are commonly used ensemble methods like bagging, boosting, and stacking. Bagging, also known as 
bootstrap aggregation, constructs multiple classifiers trained on bootstrap samples and averages the outputs of 
the predictors to obtain the final prediction with the appropriate  size28. Since the bootstrap samples are ran-
domly drawn with replacement from the entire training data, it causes individual bootstrap samples to overlap 
significantly, with many of the same instances in the training data appearing in most samples, and some instances 
appearing multiple times in a given sample. Unlike bagging, boosting creates different classifiers by sequentially 
reweighting the instances in the training  data29. Each instance misclassified by the previous base classifier get 
larger weights, and the next classifier is boosted on the reweighted training data. In this way, a sequence of train-
ing data and classifiers is obtained, which can be combined by a simple majority voting or by weight majority vot-
ing in the final decision. In stacking, which stands for stacked generalization, a set of base models are constructed 
from the training data, then their outputs are used to train a meta  model30. In most cases, the performance of an 
ensemble is better than a single  model21,31–34. Ensemble learning has been widely used in various fields such as: 
health  science31, sport  science32,  agriculture33,34,  finance21.

In this study, the MLP, LSTM, and GRU models were compared to reduce the measurement time of ESR. 
Specifically, the sequence length (input data) is determined by monitoring predictive performance with evalu-
ation metrics for each model. After determining the sequence length, stacking ensemble models with different 
ensemble sizes were investigated to select an adequate ensemble structure. Furthermore, all models including 
the individual DNNs were compared statistically. From the statistical comparison, the best performing meta 
model was determined. The proposed model was then applied to ESR prediction for patients with a particular 
disease. The aim of this study can be summarized as:

• To reduce measurement time of ESR, using ensemble deep learning models.
• To find the best performing ensemble model based on the statistical scores.
• To validate the applicability of the selected ensemble model for predicting ESR in nontrained samples 

(Patients with a particular disease).
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Material and methods
Blood sample preparation. A total of 310 subjects from the Pusan National University Dental Hospital 
(Busan, Korea) participated in this study. The study population included 304 normal subjects and 6 patients who 
have periodontal disease. The age of the subjects ranged from 5 to 95 years (48.369 ± 18.823). The percentages of 
males and females were 46% and 54%, respectively. Blood samples were collected via 3-mL BD Vacutainer® K2 
EDTA tubes (Becton, Dickinson and Co., Franklin Lakes, NJ) for anticoagulation. A centrifuge (DSC-102SD, 
Nasco Korea) was used for separating erythrocytes from plasma. Separated erythrocytes were mixed with autol-
ogous plasma with the hematocrit (packed volume percentage of erythrocytes) fixed at 35% by mixing. Ethical 
permission for this study was granted by the institutional review board (IRB) of Pusan National University Hos-
pital (H- 1911–028–085), and the study followed the rules of the Declaration of Helsinki.

Experimental setup. Figure  1a shows the experimental setup for recording the images for erythrocyte 
sedimentation. A disposable syringe (1 mL syringe, BD, USA) filled with a 1 mL blood sample was mounted ver-
tically. Consecutive images of the blood in the syringe were acquired by a digital camera (D5600, Nikon Imaging 
Korea Co., Ltd., Korea) with a micro-lens (AF Micro-Nikkor 105 mm f/2.8D, Nikon Co., Japan). Using software 
(Camera control pro 2, Nikon Co., Japan), images were taken automatically at intervals of 0.5 min for 60 min. 
The pixel size of the CMOS camera was 6000 × 4000 pixels. All experiments were conducted at room temperature 
(25 °C) with 50% humidity.

Figure 1.  (a) Measurement system composed of a disposable syringe (1 mL) and digital camera. (b) Typical 
images of sedimented erythrocytes in a blood sample with respect to time (t). Height of the sedimented 
erythrocytes  (HE) is gradually decreased during 60 min. (c) Data processing procedure. The original image is 
transformed into a binary image using Otsu’s method. The binary image is averaged in the horizontal direction 
to detect an interface (marked with a black circle) between sedimented erythrocytes and plasma. This interface, 
denoted by  HE/HT, was extracted during 60 min (marked with a gray circle), and forms time series data.
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Image processing procedure. Figure 1b shows the process of erythrocyte sedimentation in a blood sam-
ple at various times (t = 0, 20, 40, and 60 min). The total height of the blood  (HT) was about 53 mm, corresponding 
to 1 mL. The height of the sedimented erythrocytes  (HE) decreased continuously due to gravity sedimentation 
with the lapse of time. Figure 1c shows the image processing procedure using commercial software (MATLAB, 
Mathworks, USA). The captured images were cropped to the region of interest in the syringe (120 × 2900 pixels) 
and then converted into gray images. The images were transformed into binary images using Otsu’s method. By 
averaging the binary images in the horizontal direction, variation of the intensity along the gravity direction was 
obtained. The interface between sedimented erythrocytes and separated plasma was detected by utilizing the 
‘findchangepts’ function in MATLAB, which detects a drastic change in signal. Based on the detected interface, 
 HE/HT was determined at a given time. During ESR measurement (60 min), temporal variation of  HE/HT for 
one sample was obtained by repeating the procedure, as illustrated in the right inset of Fig. 1c. For learning and 
training for the prediction of ESR, normalized time series data  (HE/HT) were used as model input.

Deep learning methodology for ESR prediction. MLP model. The MLP is the most widely used 
algorithm for forecasting. It consists of multiple layers of interconnected elements called neurons with a nonlin-
ear activation function (φ)35. Each neuron is only forward connected to every neuron in the subsequent layers. 
This structure is combined with the hidden layer activation function and allows the MLP to approximate any 
continuous  function36. The mathematical model of the MLP is represented by:

where  yi is the output variable, H represents the number of neurons in the hidden layer,  wij is the weight connect-
ing the jth neuron and the ith neuron,  xi is an input variable, and  bj is the bias of the jth neuron.

LSTM. A recurrent neural network (RNN) has a recurrent hidden state with an activation at each time that 
depends on the one from the previous time. RNN based algorithms have been developed in time series forecast-
ing  applications37–39. Due to infinite lookback windows, RNNs are vulnerable to long-range dependencies in the 
data, and the gradients tend to either vanish or  explode40. LSTM is a variant of RNN that was developed to deal 
with the limitation of RNNs by using memory cells. A memory cell in each LSTM unit stores long-term infor-
mation and these cells are modulated through three gates: an input gate  (it), output gate  (ot), and forget gate  (ft). 
These gates adjust the hidden state  (ht) and cell states  (ct) of the LSTM as follows:

where W and b are the weights and biases of the LSTM layer, respectively. σ is a sigmoid function, and tanh is a 
hyperbolic tangent function. ⊙ is the element-wise (Hadamard) product.

GRU . GRU was introduced by Cho et al.16 and makes each recurrent unit with an adaptive selection of depend-
encies of different time scales. Unlike LSTM, GRU modulates the flow of information inside the unit without 
memory cells. GRU has two gates: an update gate  (gt) and reset gate  (rt).

where h̃t denotes candidate hidden state.

Selection of sequence length. To reduce ESR measurement time, the length of the input sequence of the 
prediction should be decreased. The starting time is fixed as 0 min. To select the optimal length of time, differ-
ent time spans were tested for MLP, LSTM, and GRU. The input time ranged from 5 to 20 min with intervals of 
2.5 min. When the input time is shorter than 5 min, the predicted results are extremely poor.

(1)yi = ϕ

(
H∑

i=1

wijxi + bj

)

(2)it = σ(Wi1Xt +Wi2ht−1 + bi)

(3)ot = σ(Wo1Xt +Wo2ht−1 + bo)

(4)ft = σ(Wf1Xt +Wf2ht−1 + bf )

(5)ct = f t ⊙ ct−1 + it ⊙ tanh(Wc1Xt +Wc2ht−1 + bc)

(6)ht = ot ⊙ tanh(ct)

(7)gt = σ(Wz1Xt +Wz2ht−1 + bz)

(8)rt = σ(Wr1Xt +Wr2ht−1 + br)

(9)h̃t = tanh(Wh1Xt +Wh2(rt ⊙ ht−1)+ b)

(10)ht =
(
1− gt

)
⊙ ht−1 + gt ⊙ h̃t
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Ensemble model. In the present work, stacking ensemble using bootstrapped samples of the training data 
was proposed. As shown in Fig. 2, stacking is a two-stage approach. In the first stage, multiple base models were 
built on bootstrap samples, and corresponding predictions were obtained. Bootstrap samples were randomly 
drawn with replacement from the entire training data. In the second stage, meta model combines the predic-
tions of the base models and produces the final prediction. The final prediction should be a weighted average 
of the individual predictions since some base models are more accurate than others. However, given that all 
base models attempt to solve the same task, their predictions are expected to be highly correlated, which can 
lead to performance degradation of the  ensemble24,28,41. Feature selection technique is necessary to remove the 
redundant or irrelevant features or features correlated in the data. Some studies proposed deep autoencoder or 
deep belief network to extract the nonlinear  features42,43. However, the predictions of the base models didn’t 
show any complex patterns but high correlation in this study. Thus, LASSO and PLSR were used to cope with 
the multicollinearity due to the high degree of correlation between the individual predictions. The meta models 
are briefly introduced.

Mean ensemble. The mean is the simplest weight combination approach and assigns equal weights to all the 
individual  forecasts44. The mean operator is intuitive, but it has a limitation that is widely known: the mean is 
susceptible to outliers and skewed distribution. The mean ensemble forecast  (za) can be calculated as:

where M is the number of base models, and  zi (i = 1, …, M) denotes the forecasted output vector of the ith base 
model.

Median ensemble. The median simply provides the middle value of  zi in a sorted list if M is odd or the mean of 
the two middle values  otherwise44. The median is less affected by the influence of outliers. The median ensemble 
forecast  (zm) can be calculated as:

Least absolute shrinkage and selection operator (LASSO). The LASSO is a regularized regression to deal with 
multicollinearity in  data45. The LASSO penalty can force certain coefficients to be zero by imposing a penalty on 
their size, and it yields interpretable results with improved accuracy. The LASSO estimator ( ̂βL) is the solution 
to the following optimization problem:

where y represents the vector of observed ESR values, Z =  [z1,  z2, …,  zM] is the individual forecasts matrix, and 
β denotes the regression coefficient. λ is a positive regularization (penalty/tuning) parameter that controls the 
amount of shrinkage of β. As the value of λ depends on the data, it can be determined using data-driven methods 
such as cross-validation (CV). The intercept is ignored for convenience. The LASSO ensemble forecast  (zL) can 
be calculated as:

(11)za =
1

M

M∑

i=1

zi

(12)zm =

{
z(M+1)/2, if M is odd
(zM/2 + zM/2+1)/2, if M is even

(13)β̂L = argmin
β

�y − Zβ�22 + ��β�1

Figure 2.  Structure of the ensemble model.
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Partial least squares regression (PLSR). The basic idea of PLSR is to project the original variables onto a set 
of orthogonal latent variables. The latent variables, called components, are linear combinations of the original 
variables. The number of the latent components (J) is determined by CV, similar to the LASSO method. PLSR 
extracts these components by modeling both input and output  data46. PLSR builds a relationship between the 
input matrix Z and the output vector y. The PLSR technique attempts to find a linear decomposition of Z and y 
by the outer  relations47:

where T and U are score matrices, P and Q are loading matrices, and  Ex and  Ey are residual errors for input and 
output.  pj and  qj are loading vectors that can be considered as weights. The superscript “T” means transposition. 
Latent vectors  tj and  uj are obtained to maximize the covariance between Z and y while minimizing  Ex and  Ey. 
The inner relation between U and T is given by:

where B denotes the coefficients, and  EU is an error term between U and T. If the error terms are minimized, the 
PLSR ensemble forecast  (zP) can be calculated as:

Deep neural network implementation. DNN models ware built using TensorFlow 2.8.0 and Keras 
packages in Python 3.7.12 in the Google Colaboratory environment. For training and evaluation of the model, 
time series data of 304 normal subjects were randomly split into training, validation, and test sets (194, 50 and 
60 subjects, respectively). Models were trained for 300 epochs with an early stopping method. Early stopping 
was adopted that specifies an arbitrarily large number of epochs and stops training the model when there is no 
improvement in the validation loss for 15 epochs. Moreover, an exponential decay schedule was utilized, which 
decays the learning rate using an exponential function. The loss function was the mean squared error. The opti-
mizer used in this study was the adaptive moment estimation (ADAM), which showed the highest performance 
among other optimizers including Adadelta, Adagrad, RMSprop, and SGD in a preliminary test.

The neural network architecture was determined empirically by monitoring the performance with different 
architectures. MLP consisted of two hidden layers: one with 15 neurons and one with 10 neurons. The architec-
ture of the GRU consisted of one hidden layer with 15 neurons. The architecture of LSTM was identical to that 
of GRU. A dense layer with a single neuron was chosen for the output layer in all DNNs.

Performance metrics. The forecasting performance of each model was evaluated through some error met-
rics. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) were  adopted48. The 
formulas for MAPE and RMSE are as follows:

where  ns and ŷ denote the number of samples and the forecasted ESR, respectively.

Statistical test for all pairwise comparison. The Friedman test is a non-parametric test that detects 
significant differences among  models49. It produces ranks of models’ performance averaged over multiple data-
sets. The null hypothesis of the Friedman test states that all the models are equivalent and their mean ranks are 
nearly equal. If the null hypothesis is rejected with very small p-values, the Nemenyi post-hoc test can be  done50. 
Although the Nemenyi test is known to be conservative, the procedure is the simplest among post-hoc tests for 
pairwise multiple  comparisons51. The Nemenyi test was used to compare all models with each other. The perfor-
mance between any two models is significantly different if their corresponding mean ranks differ by at least the 
critical distance (CD). The CD is given by:

(14)zL = Zβ̂L

(15)Z = TPT + Ex =
J∑

j=1

tjp
T
j + Ex

(16)y = UQT + Ey =
J∑

j=1

ujq
T
j + Ey

(17)U = TB+ EU

(18)zP =
J∑

j=1

ujq
T
j

(19)MAPE =
1

ns

ns∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣× 100(%)

(20)RMSE =

√√√√ 1

ns

ns∑

i=1

(
yi − ŷi

)2
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where k and D are the numbers of models and datasets, respectively, and qα is the critical value based on stu-
dentized range statistics divided by 

√
2.

Results and discussion
Tendency of the erythrocyte sedimentation. Figure 3a shows the temporal variations of  HE/HT for all 
subjects (n = 304) and mean trend of all samples (black dotted line). Since the hematocrit of blood samples was 
fixed at 35%, ESR values  (HE/HT at 60 min) ranged from 0.350 to 0.859. Although some samples show similar 
ESR values, the variation tendency of  HE/HT is somewhat different. To further investigate the variation tendency 
during the erythrocyte sedimentation process, the instantaneous time rate of sedimentation  (VE = −dHE/dt) for 
304 subjects is shown in Fig. 3b as the mean and standard deviation (SD). The extent of  VE can be approximately 
divided into two stages according to time. Within 13 min,  VE shows an acceleration stage. After that, it tends to 
decrease with the lapse of time. Since  VE can describe the extent of erythrocyte sedimentation for a specific time, 
it is closely related to the ESR sedimentation process.

The sedimentation process can be approximately described by 3 phases: aggregation, sedimentation, and 
 packing52,53. During the aggregation phase, erythrocytes aggregate and form the rouleaux or aggregates. Since the 
sedimentation speed is proportional to the particle  size6, large rouleaux and aggregates produced in the aggre-
gation stage promote sedimentation. As a result, erythrocytes rapidly fall in the sedimentation phase, whereas 
erythrocytes slowly fall and pile up at the bottom of the tube in the packing phase. It can be inferred that times 
with high  VE (10–20 min) may be included in the sedimentation phase (Fig. 3b). Thus, temporal variations of 
 HE/HT at 0–20 min are important to predict the ESR value because they provide information on the erythrocyte 
sedimentation process.

Performance comparison of DNNs depending on input sequence lengths. Figure 4a,b show the 
variations of MAPE and RMSE according to the sequence length (input data at 0-t min). MAPE and RMSE are 
mean values of MAPE and RMSE obtained by repeating the prediction over 30 times. Due to the random setting 
of initial weights and biases, the 30 results are different. In general, prediction errors decrease with increasing 
sequence length for all DNNs. MLP shows relatively poor performance for all sequence lengths. This might 
result from the inherent structure of MLP, which cannot learn the sequential order of the time series input. 
As shown in Supplementary Table 1, SD values of MLP are usually higher than those of LSTM and GRU. This 
indicates that the prediction results of LSTM and GRU are less dependent on the initial setting than those of 
MLP. These results are well matched with a previous study that compared the prediction uncertainty of LSTM, 
GRU, and  ANN54. Since similar accuracy was observed between LSTM and GRU, the optimal sequence length 
was determined based on LSTM and GRU results. MAPE and RMSE of both GRU and LSTM gradually decrease 
until the sequence length reaches 15 min and show a marginal decrease from 15 min onward.

Determination of the exact time input for the ESR is challenging since many factors also affect ESR, including 
sex, age, and even vertical installation angle of the specimen tubes. Previous studies reported that the ESR can 
be estimated by the ESR recorded at 30  min9,55. The inconsistent optimal time can be explained by the method 
to monitor erythrocyte sedimentation. In this experiment, relatively dense temporal variations of erythrocyte 
sedimentation (time interval of 0.5 min) were recorded. In contrast, previous reports measured the ESR values at 
15, 20, 30, and 40 min. Considering the marginal decrease from 15 min with small values of MAPE and RMSE , 
the optimal sequence length was selected as 15 min.

(21)CD = qα

√
k(k + 1)

6D

Figure 3.  (a) Temporal variations of  HE/HT for 304 normal subjects. Mean value of every  HE/HT is marked by 
black dotted line. (b) Instantaneous time rate of sedimentation  (VE). Velocity data are represented as mean ± SD 
(n = 304).
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Performance of ensemble model according to ensemble size. As the number of base models  (NB) 
is an important parameter in ensemble performance, its impact was investigated in terms of MAPE and RMSE . 
Both LSTM and GRU were selected as base models for the ensemble. All meta models were implemented in 
MATLAB, where the parameters of LASSO and PLSR were determined by fivefold CV. All base models were 
trained on bootstrap samples and run 30 times for the fixed sequence length (15 min) of the test set. To select an 
adequate ensemble size,  NB was varied from 3 to 10. In a preliminary test, MAPE and RMSE of each ensemble 
model were almost saturated when  NB exceeded 10 DNNs.

Figures 5,6 show the variations of MAPE and RMSE for LSTM and GRU coupled with four meta models. 
It can clearly be observed that the results of the mean are similar to those of the median. This marginal differ-
ence can be explained by the strong correlation between the individual forecasts. As the mean and median are 
measures of the central tendency, multicollinearity in the individual forecasts results in similar performance 
between them. However, LASSO and PLSR methods are more accurate than the mean and median over all  NB, 
which show superior ability to handle the multicollinearity.

Combinations of LSTM with PLSR and LASSO show similar performance, as illustrated in Fig. 5. However, 
compared to LASSO, PLSR shows a different trend for  NB ranging from 3 to 7. Particularly, PLSR exhibits a sig-
nificantly low error when  NB increases from 4 to 5. Both methods show marginal improvement with the increase 

Figure 4.  (a) MAPE (%) of the individual models according to sequence length (min). MAPE is the mean 
MAPE over 30 repeated experiments. (b) RMSE of the individual models according to sequence length (min). 
RMSE is the mean RMSE over 30 repeated experiments.

Figure 5.  Forecasting accuracy of LSTM-based ensemble model according to number of base models  (NB): (a) 
MAPE (%) for different meta models, (b) RMSE for different meta models.
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in  NB  (NB > 8). In the case of the GRU base model, PLSR achieves better results, followed by LASSO (Fig. 6). 
The variations of PLSR fluctuate with increasing  NB, whereas the variations of LASSO gradually decrease. PLSR 
shows relatively high reduction of error when  NB varies from 4 to 5, which was similarly observed in LSTM 
results (Fig. 5).

Although PLSR shows the minimum error at  NB of 10, there is no significant difference at  NB ranging from 8 
to 10 in terms of PLSR performance (Figs. 5,6). The performance degradation with the increase in  NB indicates 
that usage of all base models may not contribute to the improvement of the ensemble  forecast56,57. The pattern 
learned by some base models has already been represented by other models due to serious correlation between 
the models when  NB is sufficiently high. Thus, the candidates for the optimal  NB are 8 and 10. In this study, the 
optimal  NB was determined as 8 because there was no significant difference between 8 and 10.

Statistical comparison of model performance. To examine significant differences among all models, 
statistical tests were carried out with the selected  NB of 8. Extremely low p-values were obtained by the Friedman 
test for both MAPE and RMSE at a significance level of 0.05, so the Nemenyi test was performed as illustrated in 
Fig. 7. P-values and CD are shown in the title, and the mean rank is marked next to each model. The ensemble 
models are named based on their base models and the meta models, such as LSTM-Mean or GRU-Median. As 
the base models coupled with meta models show better performance (low mean ranks), the models are posi-

Figure 6.  Forecasting accuracy of GRU-based ensemble model according to  NB: (a) MAPE (%) for different 
meta models, (b) RMSE for different meta models.

Figure 7.  Nemenyi test results based on MAPE (left) and RMSE (right) for  NB of 8. The critical distance (CD) 
is 2.75.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19618  | https://doi.org/10.1038/s41598-022-23174-0

www.nature.com/scientificreports/

tioned at the top in ascending order. The methods are not significantly different if their mean ranks share the 
same color bar that is less than or equal to the CD.

According to the Nemenyi test rank, GRU–PLSR achieves the lowest mean rank in both of MAPE and RMSE . 
Furthermore, the ensemble models coupled with PLSR and LASSO outperform the other meta models and the 
individual models with 95% confidence. The findings suggest that both PLSR and LASSO are useful meta models 
and that GRU–PLSR is the best-performing ensemble model for the ESR prediction.

Application of GRU–PLSR for ESR prediction of periodontitis patients. Periodontal disease is 
a bacterial infection that damages the supporting tissues of the teeth. It may result in tooth loss and elevation 
of the body’s inflammation. Some studies reported relatively high ESR values in patients with periodontitis 
 disease58,59. The ESR difference between normal subjects and periodontitis patients was monitored to examine 
the effect of periodontitis disease. For comparison, 6 control subjects were randomly sampled from 304 normal 
subjects. Temporal variation of  HE/HT for the control group and periodontitis patients is illustrated in Fig. 8a.

The ESR tendency shows differences between the two groups because ESR is increased by infectious and 
inflammatory diseases. The mean values of ESR for the control and periodontitis groups are 0.537 ± 0.141 and 
0.414 ± 0.083, respectively. This indicates that a fast sedimentation trend was observed in periodontitis patients. 
The different tendency from periodontitis disease is similar to a previous result of the faster sedimentation for 
a patient group in a comparison of characteristic  time8. To further examine the effect of periodontitis disease, 
variations of  VE for the control and periodontitis groups are illustrated in Fig. 8b. Based on  VE, the erythrocytes 
for periodontitis patients rapidly decreased in 15 min in comparison to the control subjects, which indicates that 
the periodontitis disease accelerates the aggregation and sedimentation phases.

GRU–PLSR trained using normal subjects was applied to the ESR prediction for periodontitis patients to 
demonstrate the practical applicability of the ensemble model. The Bland–Altman method was used to compare 
the similarity between  methods60. Figure 9 displays the difference between the actual ESR values and predicted 
ESR values according to their mean values. The bold line and dashed lines denote the mean value of bias and 
95% limits of agreement, respectively. As the presence of data in the 95% limits indicates that the two methods 
are well matched, ESR values estimated by the GRU–PLSR are in good agreement with the actual ESR values. 
However, the limited sample size of patients with periodontitis may lead to biased results, and further study 
with more data is needed.

Contributions of the study. To the best of our knowledge, this is the first paper that analyzes and predicts 
the sedimentation tendency of erythrocytes using deep learning algorithms. The key contributions of this study 
are as follows:

• The use of deep learning approaches to predict ESR, in an attempt to find faster means of obtaining the ESR
• The use of ensemble models to improve the generalization ability on unseen data.
• The performance evaluation of various deep learning and ensemble models to find a best predictive model 

for ESR based on post-hoc analysis.

Conclusion
In this study, the optimal sequence length was determined based on LSTM and GRU to reasonably predict the 
ESR value before 60 min. For improvement of ESR prediction, ensemble models with four meta models were sug-
gested and compared. Empirical and statistical results demonstrated that PLSR and LASSO were superior meta 

Figure 8.  (a) Temporal variation of  HE/HT for the control and periodontitis subjects. (b) Instantaneous time 
rate of sedimentation of  VE for the normal subjects and periodontitis patients. All data shown are values of 
mean ± SD (n = 6).
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models, and GRU–PLSR achieved the lowest mean ranks among all methods. Finally, the GRU–PLSR model was 
applied to the prediction of ESR values for patients with periodontitis. Based on our results, it can be concluded 
that GRU–PLSR is able to predict ESR values from inflammatory and non-inflammatory conditions with high 
accuracy in only 15 min. Therefore, GRU–PLSR could be useful for clinical applications in ESR measurement, 
where prompt decision-making is needed.

Data availability
The datasets used and analysed during the current study available from the corresponding authors on reason-
able request.
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