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Energy‑efficient distributed 
heterogeneous re‑entrant hybrid 
flow shop scheduling problem 
with sequence dependent setup 
times considering factory eligibility 
constraints
Kaifeng Geng1*, Li Liu2 & Zhanyong Wu1

In the face of energy crisis, manufacturers pay more and more attention to energy‑saving scheduling. 
In the paper, we consider the distributed heterogeneous re‑entrant hybrid flow shop scheduling 
problem (DHRHFSP) with sequence dependent setup times (DHRHFSP‑SDST) considering factory 
eligibility constraints under time of use (TOU) price, which means that each job can only be assigned 
to its available set of factories and all factories have different number of machines and processing 
capacity, and so on. To deal with DHRHFSP‑SDST, a multi‑objective Artificial Bee Colony Algorithm 
(MOABC) is proposed to optimize both the makespan and total energy consumption. For the MOABC, 
firstly, a hybrid initialization method is presented to initialize the population; then, due to the 
electricity price shows significant differences vary from periods under TOU price, the energy saving 
operator based on right‑shift strategy is proposed to avoid processing jobs with the high electricity 
price without affecting the productivity; thirdly, based on the full consideration of distributed 
heterogeneous and factory eligibility, crossover and mutation operators, three neighborhood search 
operators and new food sources generation strategy are designed; lastly, extensive experiments 
demonstrate the effectiveness of the proposed algorithm on solving the DHRHFSP‑SDST.

Cooperative production among enterprises is becoming more common as globalization progresses. Therefore, 
enterprise managers decentralize production centers and transform them into distributed factories to reduce 
production costs, manage risks and improve enterprise  competitiveness1–3. Hybrid flow shop scheduling problem 
(HFSP) widely exists in production practice, such as textile, semiconductor and paper  industries4. It needs to 
solve two subproblems: machine selection and operation sequencing. Contrast to HFSP, the distributed hybrid 
flow shop problem (DHFSP) considers multiple factories, and it is an HFSP problem in each factory. As a 
result, DHFSP must address three subproblems: factory selection, machine selection and operation sequencing. 
DHFSP is currently being studied by researchers, and some preliminary findings have been produced. To solve 
the DHFSP, Shao et al.5 designed a hybrid algorithm based on DNEH and a multi-neighborhood iterated greedy 
algorithm to minimize makespan. Jiang et al.6 addressed the DHFSP using a novel evolutionary algorithm to 
minimize makespan and total energy consumption (TEC). Li et al.7,8 suggested two improved discrete artificial 
bee colony (DABC) algorithms for the DHFSP and DHFSP with sequence dependent setup times (SDST) to 
minimize makespan, separately. Meng et al.9 tackled the DHFSP with SDST using three mixed-integer linear 
programming (MILP) model. Cai et al.10 designed a VNS algorithm to minimize makespan and the total delay 
time for the DHFSP with SDST. Zheng et al.11 proposed an EDA algorithm based on iterated greedy search to 
solve the multi-objective fuzzy DHFSP.

However, most of the previous studies assume that the factory is identical in the distributed scheduling 
problem, and lack of consideration for the constraint of heterogeneous factory. In addition, most of the optimiza-
tion objectives are time related indicators, while there are few environmental related indicators such as energy 
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consumption. Lu et al.12 addressed the distributed heterogeneous flow shop scheduling problem (DHFSP) using 
a hybrid algorithm. Focus on the DHFSP, an evolutionary algorithm is designed to minimize the makespan and 
 TEC13. Liu et al.14 proposed a DABC algorithm for the distributed heterogeneous scheduling problem (DHSP). 
Focus on the no-wait DHFSP, a DABC algorithm is designed to minimize  makespan15. Zhao et al.16 designed 
a self-learning discrete yaya algorithm to solve the no-idle DHFSP to minimize the total tardiness (TD), TEC, 
and factory load balancing. In recent years, environmental issues have gotten a lot of attention. Reducing car-
bon emissions and developing green economy have become the consensus of all countries in the world. Green 
scheduling, as we all know, is a strategy for conserving energy and lowering emissions. For the energy-efficient 
scheduling problem, He et al.17 studied the energy-efficient job shop scheduling problem with SDST to minimize 
makespan, TD and TEC. Pan et al.18 provided a bi-population evolutionary algorithm to solve the energy-efficient 
fuzzy flexible job shop scheduling problem (FJSP). Wang et al.19 designed a whale swarm algorithm for the 
distributed welding flow shop scheduling problem aiming at minimizing the TEC and makespan. Focus on the 
energy-efficient distributed permutation flow-shop inverse scheduling problem, a hybrid collaborative algorithm 
is  designed20. Lian et al.21 studied the energy-efficient HFSP in steelmaking plants. For convenience, these above 
publications are classified by shop floor category, objectives, solving approach (algorithms), (see Table 1).

In practice, some machines are new and some ones are old in the same factory, the processing capacity varies 
from machines, and some jobs cannot be processed on all factories. If there is a machine in a factory that is not 
suitable for one job, the job cannot be arranged to the factory, namely factory eligibility. In addition,  statistics22 
show that: in actual production, non-processing time accounts for more than 90% of the whole production time. 
Therefore, auxiliary time such as setup times can not be ignored. However, in classical job scheduling optimiza-
tion problems, setup time is usually considered in processing time or ignored. At present, no published relevant 
research results have been found about the distributed heterogeneous re-entrant hybrid flow shop scheduling 
problem with sequence dependent setup times considering factory eligibility constraints (DHRHFSP-SDST) 
under TOU price. As a result, this article focused on the DHRHFSP-SDST, which introduces new economic 
and environmental dimensions to this problem and realizes green production. The following are the primary 
contributions of this paper:

(1) Aiming at the DHRHFSP-SDST, the MOABC algorithm is proposed to solve it. Meanwhile, crossover and 
mutation operators, three neighborhood search operators and new food sources generation strategy are 
designed to improve the performance of the algorithm.

(2) According to the characteristic that the electricity price varies from hour to hour in one day, the imple-
mentation of green scheduling under TOU price is studied.

(3) Considering the factory eligibility and SDST constraints, the effective factory allocation method, encoding 
and decoding strategy are designed.

The rest of the article is structured as follows: In “Problem description” section, the DHRHFSP-SDST is 
described; In “Methods” section, a MOABC algorithm is presented. In “Simulation experiment” section, some 
simulation experiments and the discussions are carried out. Finally, some conclusion and future works are 
discussed.

Problem description
DHRHFSP-SDST can be described as follows. n jobs need to be processed in F heterogeneous factories and each 
factory has an only one HFSP that has the same amount of stages. At each stage, there is one or more unrelated 
parallel machines (UPM). All jobs have the similar process routes, but some jobs may visit the same stage many 
times and can skip certain stages until all operations are completed. Each job has at least one factory that can 

Table 1.  Literatures classification.

Articles Shop floor category Objectives Approach (algorithm)

Lu et al.12 Distributed heterogeneous scheduling problem Makespan and TEC Iterated greedy algorithm

Wang et al.13 Distributed heterogeneous welding flow shop Makespan and TEC MOEA/D algorithm

Liu et al.14 Distributed heterogeneous integrated process plan-
ning and scheduling problem Makespan DABC algorithm

Haoran et al.15 Distributed heterogeneous no-wait flowshop schedul-
ing problem Makespan DABC algorithm

Zhao et al.16 Distributed Heterogeneous No-Idle Flow-Shop 
Scheduling Problem TD, TEC, and factory load balancing Discrete yaya algorithm

He et al.17 Job shop scheduling problem with SDST Makespan, TD and TEC Hybrid multiobjective genetic algorithm

Pan et al.18 Fuzzy flexible job shop scheduling problem Fuzzy makespan and fuzzy TEC and maximize mini-
mum agreement index Bi-population evolutionary algorithm

Wang et al.19 Distributed welding flow shop scheduling problem Makespan and TEC Whale swarm algorithm

Mou et al.20 Distributed permutation flow-shop inverse scheduling 
problem Minimize adjustment and TEC Hybrid collaborative algorithm

Lian et al.21 Hybrid flow shop scheduling problem Makespan and TEC Improved multi-objective evolutionary algorithm
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process it. Due to the different quality, quantity and condition of machines in factories, some jobs cannot be 
processed on all machines. If there is a machine in a factory that is not suitable for one job, the job cannot be 
arranged to the factory, namely factory  eligibility23. The setup time of an operation cannot be ignored, and it is 
related to machine and the adjacent operations, namely SDST. The aim of this problem is to allocate all jobs to 
the available factories reasonably and determine the processing sequence in each factory, so as to minimize the 
makespan and total energy cost considering factory eligibility and sequence dependent setup times. Figure 1 is 
the production model of the DHRHFSP-SDST.

The main assumptions for DHRHFSP-SDST are as follows:

(1) Each job can be allocated to just one of the factories that are available and the processing time of the same 
operation varies from machines and factories.

(2) The number of UPMs in each factory varies, but the number of stages remains the same.
(3) The first operation’s setup time on each machine is not considered.
(4) Once a job has been assigned to a factory, all of its operations should be handled at that factory.
(5) The processing time and setup time of all operations are known, the unit energy consumption in the pro-

cessing state, idle state and setup state are known, and the TOU price scheme is known.
(6) Regardless of the machine failure, the energy consumption of power on/off, the buffer between adjacent 

machines is infinite.

Notations

Notation Description

F Number of factories

f Index for factories, f = 1, 2, …, F

j,h,v Index for job, j,h,v = 1, 2, …, n

L A large positive number

s Number of stages in each factory

i Index for stage, i  = 1, 2, …, s

r Number of re-entrances

k Index of operations for job j, k ≤ r ∗ s

Ojk The k-th operation of job j

mif Number of UPMs at stage i in factory f

u Index for UPM at stage i in factory f, u = 1, 2, …,mif

M The total number of machines in all factories, M =

F∑

f=1

s∑

i=1

mif

q Index of machines,q = 1, 2, …, M

Uif Operations set that are processed at stage i in factory f

Sjkf Starting time of Ojk in factory f

Ejkf Ending time of Ojk in factory f

pjkuif Processing time of Ojk on machine u at stage i in factory f

ujhuif Sequence dependent setup time of job h when job j and h are processed successively on machine u of station i in factory f
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Machine
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Figure 1.  The production model of DHRHFSP-SDST.
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Notation Description

Cj Job j’s finished time

Sq Machine q’s startup time

Tq Machine q’s showdown time

PIq Energy consumption per unit time of machine q in the idle state

PWq Energy consumption per unit time of machine q in the processing state

PSq Energy consumption per unit time of machine q in the setup state

f (t) TOU price function

Yjf 1 if job j is assigned to factory f, and 0 otherwise

Qif 1 if job j can be processed in factory f; 0 otherwise

Xjkuig 1 if Ojk is assigned to machine u at stage i in the factory g, and 0 otherwise

Zjkj′ k′ uif 1 if Ojk precedes Oj′k′ are processed successively on machine u of station i in factory f, and 0 otherwise

ytq 1 if the machine q is in the processing state at time t, and 0 otherwise

xtq 1 if the machine q is in the idle state at time t, and 0 otherwise

�
t
q 1 if the machine q is in the setup state at time t, and 0 otherwise

Optimized objectives. Based on the existing  literatures1,2, a mathematical model for bi-objective 
DHRHFSP-SDST is presented to minimize the makespan (Cmax) and total energy cost (TC). In real manufactur-
ing, if the machines utilized for each operation varies, the processing time and energy usage differ. Similarly, 
different time periods are selected for processing, and the corresponding electricity price is different, so the 
processing energy consumption cost is also different. If the electricity price peak is avoided and the processing is 
selected in the trough period, the processing energy consumption cost will be reduced, but the standby energy 
consumption cost may increase and the maximum completion time may be extended due to the delay.

In which, PC, IC, and SC represent the energy cost of machines in processing, idle, and setup states, 
respectively.

s.t.

f = minimize(Cmax ,TC)

(1)Cmax = max(Cj)

(2)TC = PC + IC + SC

(3)PC =

M∑

q=1

Tq∑

t=Sq

PWqy
t
qf (t)

(4)IC =

M∑

q=1

Tq∑

t=Sq

PIqx
t
qf (t)

(5)SC =

M∑

q=1

Tq∑

t=Sq

PSq�
t
qf (t)

(6)
F∑

f=1

Yjf = 1, ∀ j

(7)Yif ≤ Qif , ∀j, f

(8)ytq + xtq + �
t
q = 1, ∀q, t = [Sq,Tq]

(9)
mif∑

u=1

Xjkuif = 1, ∀ i, j, k, f , Ojk ∈ Uif

(10)

m
i
′ f∑

u=1

rj(k+1)ui
′
f Sj(k+1)f ≥

mif∑

u
′
=1

rjku′ if (Sjkf + pjku′ if ), ∀i, i
′

, j, k, f
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Formulas (1–2) are the objective functions. Formulas (3–5) are the three components of TC. Constraint (6) 
requires that each job be allocated to just one factory. Constraint (7) indicates that each job must be arranged 
to a factory that can process it. Constraint (8) indicates that in the processing cycle, each machine only has 
three states: processing, idle and setup. Constraint (9) assures that each operation will only be processed on one 
machine at one stage. Constraint (10) assures that the starting time is not earlier than the prior operation’s finish-
ing time. Constraints (11–13) ensure that each machine can only process one operation at a time. Constraints 
(14–15) indicate the Sjkg and Ejkg . Constraints (16–17) indicate the Cj.

Methods
The DHRHFSP-SDST is an NP hard problem that is difficult to solve using exact approaches. Metaheuristic 
algorithms have a significant benefit in terms of balancing computation time and solution quality. The artificial 
bee colony algorithm (ABC) is a novel intelligent optimization algorithm based on the honeybee’s honey harvest-
ing process, which has three major components: food source, employed bees and unemployed  bees24. The food 
sources are the feasible solution of the optimization problem to be solved and the quality of the food sources or 
the feasible solutions is evaluated by the amount of nectar of nectar sources, namely the fitness. The number of 
employed bees or onlooker bees is equal to the number of food sources. The task of the employed bees is mainly 
to find information about food sources and share it with the onlooker bees with a certain probability. Unem-
ployed bees include onlooker bees and scout bees. After receiving the information transmitted by the employed 
bees, the onlooker bees chose the satisfactory nectar source greedily for tracking. If a food source has not been 
further updated after limit times cycle, the onlooker bee will become a scout bee, and the scout bee will find a 
new food source instead of the original one.

As shown in Fig. 2, the improved MOABC algorithm proposed. A hybrid initialization method is presented to 
initialize the population; then, due to the electricity price shows significant differences vary from periods under 
TOU price, the energy saving operator based on right-shift strategy is proposed to avoid processing jobs with 
the high electricity price without affecting the productivity; lastly, based on the full consideration of distributed 
heterogeneous, factory eligibility and SDST features, crossover and mutation operators, three neighborhood 
search operators and new food sources generation strategy are designed.

Individual expression. In the MOABC algorithm, each feasible solution represents a food source. Accord-
ing to the characteristics of DHRHFSP-SDST, we employ the representation as in Naderi and  Ruiz25 for the clas-
sic distributed permutation flow shop scheduling problem. To be more descriptive, the individual is represented 
by f vectors, one for each factory. Each vector is a job list that represents the jobs sequence processed in the fac-
tory. An individual may be written as π = {π1, π2, … , πF} using the aforementioned encoding approach, in which 
πf denotes the permutation that is the order of jobs processed in factory f, as shown in Fig. 3.

Decoding method. Assign the jobs to the appropriate factory according to the encode schema and, if pos-
sible, place it on a machine that can process it as soon as possible. The decoding process is shown in Figs. 4 and 
5, and the detailed decoding steps are as follows.

Step 1 Assign all jobs to corresponding factories according to individual π and initialize f = 1, index = 1.
Step 2 Traverse all of the jobs in factory f and set joblist = π f .
Step 3 Assuming v = joblist(index) , if job v is the first job processed in the factory f, all operations of job v 

will be arranged on the earliest machine that can complete the operation, and the starting and ending times of 
each operation will be recorded, and then turn to step 8, otherwise turn to step 4.

Step 4 From the available machines set machineset, choose the appropriate machine for operation Ovk.
Step 5 Assume that machine u is selected from machineset to process operation Ovk . Then the starting time 

Svkf  and ending time Evkf  of operation Ovk can be obtained by the following formulas.

(11)
L(1−Xjkuif )+L(1−Xj

′
k
′
uif )+L(1−Zjkj′ k′uif )+(Sj′ k′ f−Sjkf ) ≥ pjkuif +ujj′uif , ∀i, j, j

′

, u,Ojk ∈ Uif ,Oj
′
k
′ ∈ Uif

(12)
L(1−Xjkuif )+L(1−Xj

′
k
′
uif )+LZjkj′ k′uif+(Sjkf−Sj′ k′ f ) ≥ pj′ k′uif+uj′ juif , ∀i, j, j

′

, u,Ojk ∈ Uif ,Oj
′
k
′ ∈ Uif

(13)L(1− Xjkuif )+ L(1− Xjk
′
uif )+ (Sjk′ f − Sjkf ) ≥ pjkuif , ∀i, u, j, f , k < k

′

,Ojk ∈ Uif ,Ojk
′ ∈ Uif

(14)
L(4−Xj(k−1)u

′
i
′
f−Xjkuif−Xhk

′
uif−Zhk′ jkuif )+Sjkf ≥ max(Ehk′ f+uhk′ jkuif ,Ej(k−1)f ), ∀j, h, k

′

, u, ui , i, i
′

, f , k > 1

(15)Ejkf ≤ Sjkf+pjkuif + L(1− Xjkuif ), ∀ j, k, u, i, f

(16)Cj ≤ Cmax , ∀ j

(17)Cj ≥ 0, ∀ j

(18)Svkf = max{Ev(k−1)f , pu + uhvuif }
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Figure 2.  Flow chart of MOABC algorithm.
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Figure 3.  Individual expression.
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where Ev(k−1)f  represents the ending time of the previous operation of job v. If operation Ovk is the first opera-
tion of job v, then Ev(k−1)f=0 . pu refers to the ending time of an operation on machine u . uhvuif  is the SDST of 
operation Ovk . If Ovk is the first operation of machine u, then uhvuif=0.

Step 6 Select an appropriate insertion point for operation Ovk on machine u of factory f to minimize Svkf  . The 
detailed steps are as follows:

(1) Obtain all the operation sets ops in the current state of machine u, and arrange them in ascending order 
according to the ending time.

(2) Get the ending time Cmr of the r-th operation in ops. pu = Cmr , where r = 0 means that operation Ovk is 
regarded as the first operation of the equipment, and pu = Cmr = 0.

(3) According to the formulas (18) and (19), the starting time and ending time of operation Ovk are calcu-
lated. If the r-th operation is the last operation on machine u, return Svkf  and Evkf  , and end the judgment. 
Otherwise, if Evkf ≤ Bu(r+1)f − uvjuif  , where Bu(r+1)f  is the starting time of the (r + 1)-th operation on the 
machine u, return Svkf  and Evkf  , and end the judgment. Otherwise, r = r + 1, go to (2).

Step 7 Repeat Step 6 until all the machines in machineset are traversed to get the smallest Svkf  . If multiple 
insertion points have the same Svkf  , select one with smaller idle time between the insertion point and the previ-
ous operation.

Step 8 index = index + 1, repeat Step 3—Step 7 until all jobs in joblist are processed.
Step 9 f. = f + 1, go to step 2 until all factories are traversed.
Step 10 Calculate the objective function values Cmax and TC.
Consider the following scenario: 2 factories, 8 jobs and 2 stages. The number of UPMs at each stage in fac-

tory1 is 2 and 2. The amount of UPMs at each stage in factory2 is 1 and 2. The factory eligibility constraints is 
 F1 = {1,2},  F2 = {1},  F3 = {1,2},  F4 = {2},  F5 = {1,2},  F6 = {1},  F7 = {1,2},  F8 = {1,2}, which indicates that job 1, job3, job5, 
job7 and job 8 can be processed in all factories, job 2 and job6 can be processed in factory 1 only and job4 can 
be processed in factory2 only. To make things more understandable, assume that π = {[1–8]} with π1 = [1, 2, 6–8] 
and π2 = [3–5], which means that job1, job 2, job6, job7 and job8 are processed in factory1 in the order job1 → job 
2 → job6 → job7 → job8, while job3, job4 and job5 are processed in factory2 in the order job3 → job4 → job5. For 
instance, in factory1, all of job 1’s operations are scheduled on the machine that can complete them the earliest. 
Then, all operations of the rest jobs will be placed on the machines that can complete them the earliest by select-
ing the proper insertion points. The processing times of 8 jobs in each available factory is shown in Table 2. pvk 
= 0 means that the job is not machined at this stage in this round. Meanwhile, Tables 3 and 4 show the sequence 
dependent setup times and the TOU price scheme, respectively.

The Gantt charts obtained according to the above decoding method are shown in Figs. 6 and 7. Among them, 
1(1) denotes the first operation of job 1, and in addition, 1–3 on machine 2 denote the sequence dependent 

(19)Evkf = Svkf+pvkuif

Figure 4.  The decoding diagram of operation Ovk when Evk ≤ Bm(r+1) − stvjmf .

Figure 5.  The decoding diagram of operation Ovk when Evk > Bm(r+1) − stvjmf .
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setup times between job 1 and job 3 on machine 2. The Cmax and TC in each factory are 33 h, 524.896 CNY 
and 26 h, 261.656 CNY respectively. Therefore, the two objective values are Cmax= max(33,26) = 33 h and TC= 
524.896 + 261.656 = 786.552 CNY.

Energy saving operator based on right‑shift strategy. Because waiting states for machines and jobs 
are unavoidable in SRHFSP-SDST, we can make full use of these waiting periods by adjusting the processing 
times of the operations to reduce the TC. Based on the factory assignment, job sequencing and machine assign-
ment, the energy saving operator based on right-shift strategy (ESRS) is added to select the appropriate starting 
processing time for each operation and try to avoid processing jobs in the periods with high electricity prices 
to achieve a lower TC without deteriorating Cmax. According to various constraints, all operations can only be 
shifted to the right. Furthermore, the adjustment of the latter operation will affect the previous operation and 
only machines with idle periods have the potential to shift to right, so the right shift procedure must be carried 
from back to front. The specific steps of ESRS is as follows:

Table 2.  Processing times.

Factories Jobs

First-round Re-entrant 1

Stage1 Stage2 Stage1 Stage2

M1 M2 M3 M4 M1 M2 M3 M4

Factory 1

Job 1 3 5 5 5 4 3 1 1

Job 2 1 3 2 2 5 5 5 3

Job 6 2 1 3 4 5 4 3 5

Job 7 2 2 3 1 5 3 3 3

Job 8 5 5 0 0 5 2 3 4

M1 M2 M3 M1 M2 M3

Factory 2

Job 3 2 3 3 1 0 0

Job 4 4 2 5 1 5 4

Job 5 2 2 5 4 3 1

Table 3.  Sequence dependent setup times.

Factories Stages Machines Jobs Job 1 Job 2 Job 6 Job 7 Job 8

Factory 1

Stage 1 M1/M2

Job 1 0/0 3/2 3/3 2/3 1/1

Job 2 3/3 0/0 3/2 2/2 3/1

Job 6 2/1 1/1 0/0 1/3 3/3

Job 7 3/3 1/1 3/2 0/0 1/1

Job 8 3/3 3/2 3/3 1/1 0/0

Stage 2 M3/M4

Job 1 0/0 2/2 1/3 1/1 2/1

Job 2 3/1 0/0 1/3 3/3 3/1

Job 6 1/1 1/3 0/0 2/2 2/2

Job 7 2/3 3/1 3/3 0/0 3/1

Job 8 2/3 1/1 2/1 3/3 0/0

Job3 Job 4 Job 5

Factory 2

Stage 1 M1

Job 3 0 3 3

Job 4 1 0 1

Job 5 2 1 0

Stage 2 M2/M3

Job 3 0/0 2/2 1/1

Job 4 2/2 0/0 2/2

Job 5 3/1 1/2 0/0

Table 4.  TOU price scheme (unit: CNY/kWh).

On-peak Mid-peak Off-peak

Time 8:00–11:00
13:00–1500

6:00–8:00
11:00–13:00
15:00–22:00

0:00–6:00
22:00–24:00

Price 1.202 0.749 0.285
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Step 1 Input a solution. Generate a scheduling scheme according to the decoding method, and record the 
starting time and ending time of all operations, the starting time and ending time of all setup periods and ini-
tialize f = 1.

Step 2 Put the starting time and ending time of all idle time periods of machines in plant f into the set idle , 
and record the information about the previous and the next operations of all the idle periods. If there is only one 
operation Ovk on the machine and its completion time is less than Cf , then the time period [ Evk , Cf  ] is added 
to the idle.

Step 3 Sort the idle periods in idle in descending order by the ending time of each idle period.
Step 4 Traverse all idle periods in idle. Suppose that the idle time period is [start, end] and the previous opera-

tion is Ovk , then the ending time of Ovk after the right-shift is Evk = min(end, Svk+1) . If Ojk is the last operation of 
job v, then Evk = Cf  . If Ejk < Ejk  , it means that operation Ovk meets the condition of shift to right, and the step 
size is Evk − Evk . Meanwhile, adjust the operation’s processing and setup times and move to step 2. If Ejk=Ejk  , 
continue with the next idle period until the idle is traversed.

Step 5 f. = f + 1, repeat Step2–Step5 until all factories are traversed.
Step 6 Generate a new scheduling scheme.
After adding ESRS to the scheduling scheme shown in Figs. 6, 7, 8 and 9 illustrate the revised Gantt charts 

with the objective values Cmax= 33 h and TEC= 751.366 CNY. By comparison, TC was reduced by 35.186 CNY, 
up to 4.47%, without affecting Cmax . The reason is that the processing periods of operations 6(2), 6(4) and 4(4) 
are shifted from the period with high electricity price to low electricity price.

Figures 10 and 11 show the energy consumption curve (EC curve) of all machines in each factory. As seen 
in the figures, if there is a discrepancy between the dotted and solid lines, the electrical load has transferred. In 
particular, electricity is charged at a high (low) price in the vicinity of 18–21 (25–28) hours in factory1. After 
ESRS, the TC in the first phase drops, whereas the TC in the second period rises. Factory2 is similar to that in 
factory1. Evidently, total energy costs can be reduced by avoiding higher price periods.
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Figure 6.  Gantt chart of factory1.
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Population initialization. The quality of the initial population has a direct impact on the performance 
of the MOABC algorithm. According to the characteristics of solving problem and various constraints, three 
kinds of population initialization methods are designed in this paper. To guarantee the population’s variety, the 
Randomly_initialization method is used for 20% of the population. In addition, to ensure the quality of the solu-
tions, 40% individuals are generated equitably based on two greedy methods: makespan_based_initialization 
and TC_based_initialization.
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Figure 8.  Factory1’s Gantt chart with ESRS.
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Figure 10.  The EC curve in factory1.
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Figure 11.  The EC curve in factory2.



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18741  | https://doi.org/10.1038/s41598-022-23144-6

www.nature.com/scientificreports/

Employed bee phase. Crossover and mutation operators are used in the employed bee phase to enhance 
the population’s diversity. Crossover is an indispensable part in the evolutionary process, which generates new 
individuals by exchanging genes between two different parental individuals. According to the characteristics of 
the encoding and the factory eligibility constraints, this paper adopts the crossover operator as shown in Fig. 12. 
First, select factory f randomly and swap the jobs in factory f between two parent individuals. Then, remove the 
jobs duplicated with factory f in Parent1 and Parent 2. Thirdly, copy the remaining jobs in Parent1 into offspring 
1 and the remaining jobs in Parent 2 into offspring 2. Lastly, copy part of the jobs in Parent 2 into offspring 1 and 
part of the jobs in Parent 1 into offspring 2.

To avoid that the better food source obtained after the crossover operate is not destroyed, the following selec-
tion strategy is designed. If O1 and O2 are generated by the crossover operator performed on the parent food 
sources P1 and P2. Select a better one as Xbetter. If f(Xbetter)≺ f(P1), then P1 ← Xbetter and limit = 0 else if f(Xbetter)≺ 
f(P2), then P2 ← Xbetter and limit = 0; else perform the following mutation operator. To avoid the infeasible solu-
tion caused by mutation operator and reduce the extra repair work, three mutation operators are designed in 
the paper.

Swap_in_Critical_Factory. Select two jobs from πF∗ randomly and exchange the positions of two jobs.

Inverse_in_Critical_Factory. Select two jobs from πF∗ randomly and inverse the jobs between the selected two 
jobs.

Insert_among_Factories. Remove a job from πF∗ and reinsert it into the position selected from one of its avail-
able factories Fr randomly.

The above mutation operators can be executed for 15 cycles at most in the paper. If π ′ is generated by the one 
of the mutation operators performed on the parent food source π in a certain cycle. If f(π’)≺ f(π), then π ←π

′ , 
limit = 0 and the cycle is terminated If the f(π ′ ) and f(π) do not dominate each other, then f(π ′ ) will be compared 
with other individuals in the populations (denotes as π ′′ ) to see if there is a dominant relationship between them. 
If there is a dominant relationship, the dominant solution will be abandoned and continue with next cycle. If 
there is no solution that can dominate f(π) at the end of 15 cycles, then limit = limit + 1. The pseudocode of the 
mutation operators is as follows, and  F* is the critical factory with the greatest makespan among all factories.
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Figure 12.  Crossover operator.
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Onlooker bee phase. To reduce the makespan, it is necessary to readjust the factory assignment and job 
sequence between the non-critical factory and critical factory or within the critical factory. Based on the theory 
of the critical factory and the features of the problem, the neighborhood search method is used in the onlooker 
bee phase, which consists of three kinds of neighborhood structures.

Greedy_Insert_in_Critical_Factory. Remove a job from πF∗ randomly and reinsert it into all possible position 
of the original jobs sequence of factory F*. The original solution is replaced if the neighboring solution is better 
than it.

Greedy_Swap_in_Critical_Factory. Select a job from πF∗ randomly and swap it with the rest jobs of factory F* 
one by one. The original solution is replaced if the neighboring solution is better than it.

Greedy_Insert_among_Factories. Remove a job from πF∗ randomly and reinsert it into all possible position in 
the rest of its available factories. The original solution is replaced if the neighboring solution is better than it.
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Scout bee phase. For the MOABC, if the fitness value of the employed bee in the same food source is not 
improved by more than limit times searches, the employed bee is converted to a scout bee. In such a situation, 
a new individual will replace the old food source. To be specific, the process of obtaining new food sources is as 
follows: firstly, select a food source from the external archives randomly; then, the mutation operator proposed 
in this paper is used to explore near the food source; lastly, get the new food source after the mutation operator.

Simulation experiment
Since there are few studies on the DHRHFSP-SDST, three representative algorithms NSGA-II26, MO-GVNS27 and 
SPEA-II are selected for comparative study. These three algorithms are widely used in solving mixed flow shop 
scheduling problems. In addition, MATLAB R2017a is used in this paper implements algorithm programming.

Test instances and parameter settings. The test instances in this paper are named using f*j*s*r*, where 
* is a positive integer. For example, the instance f2j15s3r1 represents that 15 jobs are processed in 2 factories 
with 3 stages and 1 re-entrance. According to the combination of the number of jobs, stages and re-entrance 
with different scales, 48 examples are generated. The value ranges of all variables are shown in Table 5. The TOU 
price function is shown in Table 4. It’s easy to observe that the on-peak price is over four times higher than the 
off-peak price. With such a vast disparity, energy-intensive industrial companies may save a significant amount 
of energy consumption costs.

The key parameters in MOABC are population size Ps, crossover probability Pc and mutation probability Pm. 
Taguchi  method28 is used to do the orthogonal experiment. The factor level of each parameter is shown in Table 6. 
According to the L16(43) orthogonal table, each combination parameters in the orthogonal table is run 20 times 
independently. In the paper, the limit is 5 and max iterations is 120 for each algorithm. The average value of the 
dominant indicator Ω of 10 randomly selected cases represents the response variable (RV), as shown in Table 7, 
where Ω refers to the probability that the non-dominated solution set of an algorithm is optimal pareto fronts 
(OPF) at the same time. The greater the RV value, the better the performance of the parameter combination.

The larger value of Ps can promote the exploration capability but results in huge computation time. An 
appropriate Pc can improve the global search ability of the algorithm, and an appropriate Pm can accelerate 
the convergence of the algorithm to the optimal solution, and will not cause the solutions close to the optimal 
solution to be destroyed due to mutation. According to Fig. 13, the parameter values are set as follows: Ps = 100, 
Pc = 0.7 and Pm = 0.15, the algorithm has the best performance.

Performance metrics. Two performance metrics IGD and C-metric in  literature29 are used to measure the 
convergence and coverage of the algorithms. The smaller the IGD values, the better the algorithm’s performance. 
On the contrary, the larger the C-metric value, the better the algorithm’s performance. Furthermore, because the 
test instances’ OPF are unknown, we substitute approximate Pareto-front (APF) for OPF. For each instance, APF 
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may aggregate the non-dominant solutions acquired by all algorithms into a set and then eliminate the dominant 
solutions from the set.

Effectiveness of energy cost saving operator based on the right shift. MOABC is compared with 
MOABC1 (MOABC without energy-saving operator based on the right shift) to verify the effectiveness of the 
energy saving operator. 12 instances are selected randomly, and the average values of IGD as well as C-metric 
obtained from 20 runs of each instance are listed in Table 8. The optimal value for each metric is shown in bold. 
Meanwhile, the Wilcoxon signed rank sum test results are given in Table 8, and the significance level is 0.05, 
in which "†" represents that MOABC algorithm is significantly better than the comparison algorithm, "‡" rep-
resents that MOABC algorithm is significantly worse than the comparison algorithm, and " = " represents that 
MOABC algorithm has no significant difference with the comparison algorithm. As can be seen from Table 8, 
in terms of C-metric, the two algorithms have significant differences, and MOABC is better. The IGD metric of 

Table 5.  Bounds of the variables.

Variables Bounds

F 2, 3, 4

n 15, 20, 25, 30

s 3, 4

r 1, 2

mif 1, 2, 3

PWq A real number between [9–15]

PSq A real number between [2–4]

PIq A real number between [1–1.8]

pjkuif An integer between [1–10]

ujhuif An integer between [1–6]

Table 6.  Parameters levels.

Parameters

Factor level

1 2 3 4

Ps 60 80 100 120

Pc 0.6 0.7 0.80 0.9

Pm 0.1 0.15 0.2 0.25

Table 7.  Orthogonal matrix and RV values.

Number

Factor

RVPs Pc Pm

1 60 0.7 0.15 0.0644

2 60 0.8 0.20 0.0417

3 60 0.9 0.25 0.0489

4 80 0.6 0.15 0.0676

5 80 0.7 0.10 0.0837

6 80 0.8 0.25 0.0575

7 80 0.9 0.20 0.0563

8 100 0.6 0.20 0.0800

9 100 0.7 0.25 0.0981

10 100 0.8 0.10 0.0766

11 100 0.9 0.15 0.0704

12 120 0.6 0.25 0.0476

13 120 0.7 0.20 0.0676

14 120 0.8 0.15 0.0728

15 120 0.9 0.10 0.0333

16 60 0.7 0.15 0.0644
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MOABC is smaller than that of MOABC1 in all instances. Therefore, the energy saving operator designed in this 
paper makes full use of the characteristics of the problem and the TOU price policy to improve the individual, 
which is very effective.

The relative change rate of the average value of Cmax and TC about each instance is shown in Fig. 14, where 
the expressions of the relative change rate are shown in (20) and (21). makespanMOABC1 and TCMOABC1 represent 
the average value of the two objective function values obtained by MOABC1, makespanMOABC and TCMOABC 
represent the average value of the two objective function values obtained by MOABC. Meanwhile, the negative 
sign represents the relative increase. As can be seen from Fig. 14, after adding the energy saving operator, TC 
changes greatly, while the influence on makespan is small and can be ignored. which further proves the effective-
ness of the energy saving operator.

Effectiveness of population initialization. MOABC is compared with MOABC2, which generate the 
initial population completely randomly, to verify the effectiveness of hybrid population initialization strategy. 
12 instances are selected randomly, and the average values of IGD as well as C-metric obtained from 20 runs of 
each instance are listed in Table 9. The best value for each metric is highlighted in bold. Table 9 shows that two 
algorithms have significant differences in terms of C-metric, and MOABC is better. The IGD metric of MOABC 
is smaller than that of MOABC2 in all instances except the f2j15s4r2. It demonstrates that the initialization strat-
egy helps to improve the algorithm’s performance.

Comparison with other algorithms. For the 48 instances with different scale, each algorithm is executed 
20 times. Table 10 lists the average values of IGD, C-metric and the Wilcoxon signed rank test results after 20 

(20)makespan% = (makespanMOABC1
−makespanMOABC)/makespanMOABC1

∗100%

(21)TC% = (TCMOABC1
−TCMOABC)/TCMOABC1

∗100%

Figure 13.  Factor level trend.

Table 8.  Comparison of three indexes of MOABC and MOABC1 algorithm.

Instances

IGD C-metric

MOABC MOABC1 C(MOABC, MOABC1) C(MOABC1, MOABC)

f2j15s3r1 0.0537† 0.2828 1† 0

f2j15s4r2 0.1393† 0.1802 0.8823† 0.0321

f2j20s3r1 0.0227† 0.2484 1† 0

f2j20s4r2 0.0484† 0.2605 1† 0

f2j25s3r1 0.0730† 0.1674 1† 0

f2j25s4r2 0.0487† 0.2717 0.8576† 0.0516

f2j30s3r1 0.0598† 0.1836 1† 0

f2j30s4r2 0.0781† 0.3569 1† 0

f3j25s3r1 0.1048† 0.1908 1† 0

f3j25s4r2 0.0614† 0.2888 1† 0

f3j30s3r1 0.0771† 0.1791 1† 0

f3j30s4r2 0.0915† 0.3021 1† 0
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runs of the four algorithms. It can be seen from Table 10 that except for a few instances, the IGD and C-metric 
indexes of MOABC are significantly better than those of NSGA-II, MO-GVNS and SPEA-II. The box plot of 
IGD and C-metric metrics is shown in Figs. 15 and 16. From Fig. 15, it is clear that MOABC not only has good 
convergence but also has uniform scalability. From Fig. 16, it can be seen that the C-metric of MOABC is much 
larger than other algorithms on all test instances.

Taking f2j15s3r1instance as an example, in which 15 jobs are processed in 2 factories. In factory1, the num-
ber of UPMs at each stage are 2, 2 and 2. In factory2, the number of UPMs at each stage are 2, 2 and 1. The 
machine eligibility constraints is F1 = {2} , F2 = {2} , F3 = {1} , F4 = {1} , F5 = {1} , F6 = {1, 2} , F7 = {1} , F8 = {2} , 
F9 = {1, 2} , F10 = {1, 2} , F11 = {1} , F12 = {2} , F13 = {2} , F14 = {1} and F15 = {1, 2} . The convergence curves of 
Cmax and TC for MOABC, NSGA-II, Mo-GVNS and SPEA-II algorithms are shown in Figs. 17 and 18. From the 
figures, we can see that two objectives of MOABC decline rapidly in the early stage of evolution, and gradually 
converge in the later stage, and the two goals converge to 53 h and 2050 yuan respectively, which are significantly 
smaller than the convergence values of other algorithms.

Taking the feasible solution π= {[7, 14, 3, 5, 11, 4, 10, 9, 15], [2, 1, 8, 13, 12, 6]} as an example, without consider-
ing the characteristics of TOU price, the Gantt charts of the two factories are shown in Figs. 19 and 20 respec-
tively, and Cmax = max(58, 59) = 59 hours and TC = 1432.2 + 897.7 = 2329.9 yuan. Figures 21 and 22 are the Gantt 
charts of the solution with energy saving operator, and the two objective values are Cmax = max(58, 59) = 59 
hours and TC = 1349.7 + 845 = 2194.7 yuan. By comparison, under the premise of keeping the production effi-
ciency unchanged, the processing periods of many operations, such as 7(5), 4(1), 11(4), 10(1), 11(6), 9(2), 3(2), 
13(1), 12(4) and 8(4), have been shifted, and TC has been reduced by 135.2, up to 5.80%. To sum up, the MOABC 
algorithm proposed in this paper can effectively solve DHRHFSP-SDST under TOU price.

Figure 14.  The relative change rate.

Table 9.  Comparison of three indexes of MOABC and MOABC2 algorithm.

Instances

IGD C-metric

MOABC MOABC2 C(MOABC, MOABC2) C(MOABC2, MOABC)

f2j15s3r1 0.0618† 0.4163 0.6684† 0.1032

f2j15s4r2 0.1344† 0.3383 0.7942† 0.1382

f2j20s3r1 0.0899† 0.3973 0.6752† 0.2635

f2j20s4r2 0.1062† 0.3251 0.5896† 0.3465

f2j25s3r1 0.0590† 0.2918 0.6365† 0.2943

f2j25s4r2 0.0475† 0.2535 0.7340† 0.1777

f2j30s3r1 0.0639† 0.2880 0.6093† 0.1543

f2j30s4r2 0.1023† 0.5055 0.6513† 0.1636

f3j25s3r1 0.0284† 0.2838 0.7219† 0.2688

f3j25s4r2 0.0484† 0.1982 0.8413† 0.1179

f3j30s3r1 0.0694† 0.5174 0.8068† 0.1176

f3j30s4r2 0.1505† 0.4071 0.5968† 0.2244
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Table 10.  IGD and C-metric metrics of four algorithms (A: MOABC, B: NSGA-II, C: MO-GVNS, D: 
SPEA-II).

Instances

IGD C-metric

MOABC NSGA-II MO-GVNS SPEA-II C(A,B) C(B,A) C(A,C) C(C,A) C(A,D) C(D,A)

f2j15s3r1 0.0852† 0.2994 0.1746 0.3327 0.8024† 0.0435 0.6146† 0.2904 1† 0

f2j15s3r2 0.0980† 0.1802 0.1594 0.2216 0.8752 0.1143 0.7072† 0.2462 1† 0

f2j15s4r1 0.1045† 0.3170 0.1679 0.3346 0.7336† 0.0847 0.6642† 0.2024 1† 0

f2j15s4r2 0.0386† 0.2655 0.1571 0.3039 0.7847† 0.1343 0.6604† 0.1724 0.8274† 0.0504

f2j20s3r1 0.1063† 0.3657 0.2278 0.4429 1† 0 0.6012† 0.2277 1† 0

f2j20s3r2 0.0061† 0.1279 0.0965 0.1859 0.8074† 0.0932 0.7741† 0.1941 1† 0

f2j20s4r1 0.1238† 0.1882 0.1584 0.3757 0.7311† 0.1468 0.7026† 0.1849 0.8500† 0.1500

f2j20s4r2 0.0540† 0.2054 0.1231 0.2667 0.7426† 0.1575 0.6842† 0.1834 0.7784† 0.064

f2j25s3r1 0.0734† 0.1656 0.1162 0.2210 0.6930† 0.1214 0.6476† 0.1653 0.7381† 0.0225

f2j25s3r2 0.0662† 0.2360 0.1557 0.3001 0.8879† 0.1029 0.7231† 0.1421 1† 0

f2j25s4r1 0.1153 = 0.1713 0.1554 0.1843 0.8275† 0.0578 0.6472† 0.1839 0.8864† 0.0042

f2j25s4r2 0.0427† 0.1851 0.1570 0.2554 1† 0 0.8134† 0.1334 1† 0

f2j30s3r1 0.0148† 0.1883 0.1480 0.3680 0.7898† 0.1066 0.7069† 0.2254 0.8915† 0.0619

f2j30s3r2 0.0500† 0.2789 0.1286 0.3509 0.8090† 0.1098 0.7591† 0.0634 0.8468† 0.0311

f2j30s4r1 0.0330† 0.2318 0.1090 0.3031 1† 0 0.8083† 0.1039 1† 0

f2j30s4r2 0.0823† 0.2531 0.1393 0.2925 0.8256† 0.1662 0.7910† 0.0984 0.8623† 0.0388

f3j15s3r1 0.0524† 0.2638 0.1652 0.2769 0.8347† 0.0877 0.7590† 0.1109 1† 0

f3j15s3r2 0.0095† 0.2052 0.1449 0.1893 1† 0 0.8225† 0.1786 1† 0

f3j15s4r1 0.1319† 0.2377 0.1971 0.2547 0.8880† 0.0789 0.7586† 0.2228 1† 0

f3j15s4r2 0.0042† 0.1370 0.0907 0.2376 0.8646† 0.0239 0.7876† 0.1578 1† 0

f3j20s3r1 0.0457† 0.2802 0.1515 0.3062 0.7629† 0.1085 0.6253† 0.2761 1† 0

f3j20s3r2 0.0304† 0.1635 0.1268 0.2462 0.8432† 0.1288 0.8616† 0.1293 1† 0

f3j20s4r1 0.1372† 0.2803 0.2158 0.3091 0.6862† 0.0892 0.6428† 0.1955 0.8978† 0.1064

f3j20s4r2 0.0366† 0.2051 0.1890 0.2215 0.8657† 0.1173 0.7270† 0.1971 1† 0

f3j25s3r1 0.1052† 0.2157 0.1809 0.2474 0.7809† 0.1109 0.6944† 0.1817 0.7756† 0.0453

f3j25s3r2 0.0601† 0.2604 0.1603 0.2826 0.8658† 0.0644 0.7241† 0.2082 0.9019† 0.0162

f3j25s4r1 0.0450† 0.1680 0.1364 0.2107 1† 0 0.7134† 0.1760 1† 0

f3j25s4r2 0.1252 = 0.1260 0.1189 0.1494 0.7034† 0.2420 0.5557† 0.4202 0.7981† 0.0808

f3j30s3r1 0.1210† 0.3128 0.2256 0.3046 0.7802† 0.1624 0.7456† 0.2137 0.8146† 0.0226

f3j30s3r2 0.0919† 0.1724 0.1589 0.2440 1† 0 0.7584† 0.2465 1† 0

f3j30s4r1 0.0835† 0.1643 0.1221 0.2235 0.6307† 0.1701 0.6331† 0.2297 0.7226† 0.0237

f3j30s4r2 0.0809† 0.1767 0.1456 0.2023 0.7254† 0.1472 0.7008† 0.1990 0.7480† 0.1077

f4j15s3r1 0.0813† 0.2845 0.2178 0.2448 1† 0 0.7113† 0.1477 1† 0

f4j15s3r2 0.0727† 0.1818 0.1103 0.2250 0.8879† 0.1094 0.7644† 0.2016 1† 0

f4j15s4r1 0.0609† 0.1528 0.1096 0.1931 0.7305† 0.0812 0.6309† 0.0997 0.9327† 0.0278

f4j15s4r2 0.0248† 0.1540 0.0900 0.1674 0.7831† 0.1781 0.7533† 0.2355 0.8114† 0.1188

f4j20s3r1 0.1092† 0.1621 0.1174 0.2110 0.7849† 0.0534 0.7624† 0.0897 0.8192† 0.0094

f4j20s3r2 0.0436† 0.1963 0.1684 0.2479 0.8117† 0.0886 0.6466† 0.1115 1† 0

f4j20s4r1 0.0215† 0.1643 0.1295 0.1875 1† 0 0.7532† 0.1841 0.8364† 0.1220

f4j20s4r2 0.1114 = 0.1688 0.1061 0.1734 0.7653† 0.1491 0.7368† 0.2255 0.6766† 0.1098

f4j25s3r1 0.0868† 0.1508 0.1298 0.1768 0.8455† 0.0847 0.6743† 0.1328 1† 0

f4j25s3r2 0.0596† 0.1892 0.1392 0.2402 0.8664† 0.1228 0.7723† 0.2022 1† 0

f4j25s4r1 0.0045† 0.1446 0.0563 0.1402 0.7888† 0.1479 0.6619† 0.1734 1† 0

f4j25s4r2 0.0156† 0.1440 0.1067 0.2231 0.8870† 0.1065 0.6321† 0.1276 1† 0

f4j30s3r1 0.1048† 0.2510 0.1840 0.3092 0.8323† 0.0771 0.7658† 0.1056 1† 0

f4j30s3r2 0.0812† 0.1630 0.1018 0.1974 0.7123† 0.0434 0.7004† 0.2618 0.8174† 0.0892

f4j30s4r1 0.0675† 0.1520 0.1195 0.1810 0.7445† 0.0350 0.6224† 0.1795 0.8396† 0.0290

f4j30s4r2 0.1033† 0.2447 0.1355 0.2703 0.8440† 0.1268 0.6633† 0.2279 1† 0
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Conclusions and further works
The distributed re-entrant hybrid flow shop problem has attracted the attention of many scholars since it was 
proposed, but there are still many problems to be further studied and expanded. In the paper, we consider the 
distributed heterogeneous re-entrant hybrid flow shop scheduling problem with sequence dependent setup times 
(SDST) considering factory eligibility constraints (DHRHFSP-SDST) under time of use (TOU) price policy. 
According to the characteristics of this problem, a multi-objective artificial bee colony algorithm (MOABC) 
is proposed. The main improvements include encoding and decoding methods, energy saving operators, three 
neighborhood search operators and new food sources generation strategy. Finally, a large number of simulation 
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experiments verify the effectiveness and superiority of the algorithm. Under the TOU price policy, although 
the total electricity consumption does not decrease, it can reasonably shift the electricity load and reduce the 
total cost of electricity consumption. In the future, we will further study green scheduling problems, such as 
designing better swarm intelligence algorithm, collaborative optimization of distributed scheduling and pre-
maintenance, and so on.
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Figure 18.  Convergence diagram of instance f2j15s3r1 about Cmax.
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Figure 19.  The Gantt chart of instance f2j15s3r1 in factory1 without considering TOU price.
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Figure 20.  The Gantt chart of instance f2j15s3r1 in factory2 without considering TOU price.
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Figure 21.  The Gantt chart of instance f2j15s3r1 in factory1 considering TOU price.
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