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A novel method to monitor 
COVID‑19 fatality rate in real‑time, 
a key metric to guide public health 
policy
Yuanke Qu1,4, Chun Yin Lee2 & K. F. Lam1,3*

An accurate estimator of the real‑time fatality rate is warranted to monitor the progress of ongoing 
epidemics, hence facilitating the policy‑making process. However, most of the existing estimators fail 
to capture the time‑varying nature of the fatality rate and are often biased in practice. A simple real‑
time fatality rate estimator with adjustment for reporting delays is proposed in this paper using the 
fused lasso technique. This approach is easy to use and can be broadly applied to public health practice 
as only basic epidemiological data are required. A large‑scale simulation study suggests that the 
proposed estimator is a reliable benchmark for formulating public health policies during an epidemic 
with high accuracy and sensitivity in capturing the changes in the fatality rate over time, while the 
other two commonly‑used case fatality rate estimators may convey delayed or even misleading 
signals of the true situation. The application to the COVID‑19 data in Germany between January 2020 
and January 2022 demonstrates the importance of the social restrictions in the early phase of the 
pandemic when vaccines were not available, and the beneficial effects of vaccination in suppressing 
the fatality rate to a low level since August 2021 irrespective of the rebound in infections driven by the 
more infectious Delta and Omicron variants during the fourth wave.

Emerging infectious diseases appear more frequently worldwide. For example, the severe acute respiratory 
syndrome (SARS) in 2003, the Middle East respiratory syndrome (MERS) in 2013, the Ebola virus disease (EVD) 
in 2014 and the most recent threat, novel coronavirus disease (COVID-19), all pose tremendous challenges 
to public health globally. In particular, the COVID-19 pandemic continues to spread around the world and 
has caused sustained outbreaks across 221 countries and territories, resulting in more than 5.4 million deaths 
out of nearly 289 million confirmed cases as of January 2,  20221. Due to the lack of knowledge and inadequate 
preparedness to combat new viruses, outbreaks of these novel epidemics often hit affected areas hard, not only 
as a health crisis in the short term but also as a devastating social and economic disruption in the long term. In 
particular, the quantification of disease severity is of great concern for public health officials to assess the risk of 
epidemics and make informed decisions.

The case fatality rate (CFR), calculated as the ratio of cumulative deaths to confirmed cases, is presumably 
the most commonly used epidemiological quantity for measuring disease severity. Although the crude CFR has 
a simple interpretation and only requires minimal data inputs, it has two important limitations in practice. First, 
it assumes that the underlying disease severity is constant over time. Second, it takes no account of the time delay 
from disease onset to death. In the context of the current COVID-19 pandemic, however, (i) the epidemic has 
lasted for a long time, approximately two years; (ii) virulent mutant variants of COVID-19 have emerged since 
 20212; (iii) there is a significant reporting delay in time from disease onset to  death3; and (iv) a non-negligible 
proportion of the population are getting vaccinated  worldwide4. Therefore, the disease severity no longer depends 
solely on disease virulence, but varies according to a basket of time-varying confounding  factors5. For instance, 
a worsening fatality rate always informs public health professionals to adopt timely response strategies, such 
as social distancing or travel bans, before the hospitals are slammed by infected patients. On the other hand, 
an improvement in the fatality rate is expected to appear shortly after effective measures are taken, such as the 
introduction of a specific treatment or a boosted vaccination rate in the population. Hence, the CFR which 
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assumes the underlying disease severity is constant over time with no adjustment for the reporting delay can 
cause severe bias in practice.

Several methods have been proposed in the literature to adjust for the reporting delays in the CFR estimator. 
Specifically, the numerator of CFR comprises only the reported deaths but it ignores the fact that some active 
cases that are part of the denominator will eventually die but may not be observed at the time of analysis, known 
statistically as censoring. The shrinkage in the numerator results in a downward bias in the estimation of the 
fatality rate, especially in the early phase of the outbreak. To address the censoring problem in the CFR estimator, 
a modified Kaplan-Meier  approach6 and a parametric mixture  model7 have been proposed using survival analysis 
techniques to obtain the fatality rate of the 2003 SARS epidemic, respectively. However, these methods typically 
require high-quality survival data, which makes them applicable only to a small number of hospitalized cases for 
which the individual-level data are available. In nationwide epidemiological studies, tracking the status of each 
infected individual induces unrealistic administrative costs, if not impossible. Alternative methods have been 
proposed to correct the downward bias by adjusting the denominator of the crude CFR with the consideration of 
the distribution of time from disease onset to  death8–11. In these adjustments, the numerator is unchanged but the 
denominator is restricted to the predicted number of cases adjusted for the delay from disease onset to death, the 
distribution of which can be informed by some prior knowledge or by analyzing some existing hospitalized cases.

All the aforementioned estimators assume that the underlying fatality rate is constant throughout the 
epidemic with an aim to obtain an overall disease severity at the end of the epidemic, but they pay less attention 
to the changes in fatality rate over the course of an epidemic. To better cope with the time-varying nature 
of the underlying fatality rate, different real-time estimators have been proposed in the literature through 
modeling the transition from disease onset to the final outcomes (death or recovery), under the competing risks 
 framework6,7,12,13. These methods work reasonably well for certain diseases when the time to death is comparable 
to the time to recovery, as in the 2003 SARS epidemic, but they tend to be biased if the time to death and time 
to recovery have different  distributions14,15. Hence, it limits the use of these methods in some epidemics, like 
the ongoing COVID-19 epidemic, because the time from disease onset to death is typically shorter than that to 
 recovery16.

In this article, we propose a real-time fatality rate estimator adjusted for reporting delay (rtaCFR) which is 
able to capture the changes in fatality rate due to a variety of distinguishable factors, such as the implementation 
of effective health policies or treatments, as well as some indistinguishable factors like a new mutant variant and 
weather. It provides policymakers with rich information on decision making process. The proposed method 
is simple, widely applicable to public health practice, and requires only basic epidemiological data, i.e., the 
cumulative numbers of cases and deaths over time. Simulation results demonstrate the strength of the proposed 
method in terms of high accuracy and sensitivity to capture the changes in disease severity over time. The 
proposed estimator is shown to be empirically unbiased in all scenarios, whereas the two commonly used 
fatality rate estimators perform well only when the underlying fatality rate is constant over time; otherwise, 
they may convey delayed or even misleading information about the trends in disease severity. We illustrate the 
usefulness of the proposed method through an application to the COVID-19 data in Germany from January 
2020 to January 2022.

Methods
Setting. We assume that minimal epidemiological data are collected on a regular basis during an ongoing 
emerging epidemic. For a given observation time point t, the observed numbers of deaths and confirmed cases 
reported on day j are denoted by d(j) and c(j), respectively, for j = 1, . . . , t . Suppose that the final outcome for 
each diagnosed case is either death or recovery. We denote F as the cumulative distribution function of the time 
from disease onset to death with F(0) = 0, F(S) = 1 , 0 ≤ F(s) ≤ 1 for 0 ≤ s ≤ S , and S pertains to the maximum 
day to incur death given the onset of illness. Here, F can be informed by prior knowledge, such as data obtained 
from past outbreaks, or through analysis of some hospitalization cases for which the individual-level data are 
available.

Existing CFR estimators. Subject to the minimal data available in the contexts of emerging diseases, there 
are two commonly used fatality rate estimators. The first one is the traditional CFR calculated as the ratio of the 
cumulative number of deaths to the cumulative number of confirmed cases, given by

The second one is the time-delay adjusted case fatality rate (aCFR) proposed by Nishiura et al.8, which is 
formulated as

where min(a, b) = a if a < b . It is remarked that the first estimator does not adjust for the delay from disease 
onset to death, but the second one takes this into account by multiplying an adjustment factor F(min(t − j, S)) 
to the components in the denominator. However, both estimators assume that the underlying fatality rate is 
constant over a given period [0, t) and aim to estimate the overall fatality rate up to time t, thus failing to reflect 
the changes in disease severity over time.

(1)CFR(t) =

∑t
j=1 d(j)∑t
j=1 c(j)

.

(2)aCFR(t) =

∑t
j=1 d(j)∑t

j=1 c(j)F(min(t − j, S))
,
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The proposed real‑time fatality rate estimator. We model p(j) as the proportion of confirmed cases 
reported on day j who will eventually die from the disease. In practice, p(j) is potentially influenced by many 
factors including but not limited to virus virulence, treatment effect and quality of healthcare. The primary goal 
of our study is to estimate p(j), the real-time fatality rate adjusted for reporting delay, for j = 1, . . . , t , and we 
denote the estimator of p(j)’s as rtaCFR(t). Under this modeling framework, the expected number of observed 
deaths on day j is

where f (s) = F(s)− F(s − 1) for 1 ≤ s ≤ S . Specifically, among the confirmed cases reported on day j − s , it 
is expected that p(j − s)c(j − s) of them will ultimately die from the disease according to the Bernoulli process 
with probability p(j − s) , and f (s + 1) governs the time delay for the deaths to be observable at time j for 
s = 0, . . . , j − 1 . Note that E[d(j)] is purely a function of p(1), . . . , p(j) given the distribution function F and 
the observed series of confirmed cases c(1), . . . , c(j) , for j = 1, . . . , t . Hence, equation (3) is a standard linear 
regression model which can be rewritten into matrix form as

where C = diag(c(1), . . . , c(t)) , and diag denotes the diagonal matrix operator. It is easy to see that when 
p(1) = p(2) = · · · = p(t) = p in (4), the estimate for p at time t in (3) is equivalent to the aCFR(t) in (2) as they 
are estimating the same quantity, the constant fatality rate over the period [0, t).

Considering the temporal structure in (4), the fused lasso technique with fusion penalty can be applied to 
obtain rtaCFR(t) =

(
p̂(1), p̂(2), . . . , p̂(t)

)
 by solving the following minimization  problem17,18

where � is a non-negative tuning parameter penalizing the absolute differences in successive coordinates of p as 
the values of fatality rate within a short time interval are closely related to each other. When � = 0 , the penalty 
term has no effect, and the fused lasso will produce the classical least squares estimates. As � increases, the 
resulting p̂ ’s of adjacent time points are shrunken towards each other, and the estimates become homogeneous 
as � approaches infinity. In practice, � is chosen with the smallest residual sum of squares subject to 0 ≤ p̂(j) ≤ 1 
for all j = 1, . . . , t . The computation can be performed via the R package genlasso19, which provides solutions 
for all values of the tuning parameter � with the associated residual sum of squares values.

Ethics approval. Not applicable (no human subjects used), as we preformed the study from publicly 
available data.

Simulation studies
We compare the performance of the proposed rtaCFR with those based on CFR and aCFR using simulated data 
under various hypothetical scenarios. We assume that the epidemiological data set contains only the cumulative 
numbers of confirmed cases and deaths, and that the exact time of infection and death for each case is generally 
unknown. This mimics the actual situation of most epidemic outbreaks that the individual-level data are not 
readily accessible or completely missing, especially for the areas with a weak surveillance system. We set a 
200-day observation period and set the daily number of confirmed cases to be c(t) = 3000− 5 · |100− t| , for 
t = 1, . . . , 200 . This mimics an outbreak with an initial surge in the number of confirmed cases followed by a 
decline in infections when control strategies are implemented. We then consider six scenarios with different 
patterns of p(t), namely (a) constant fatality rate; (b) exponentially increasing fatality rate; (c) constant fatality 
rate at both ends with a linearly increasing rate from day 60 to 100; (d) constant fatality rate followed by an 
exponentially decline; (e) exponentially increasing followed by exponentially decreasing fatality rate; and (f) 
exponentially decreasing followed by exponentially increasing fatality rate. The values of the time-varying p(t) 
in each scenario are represented by red lines with squares in Fig. 1a–f, respectively.

Given the specified series of c(t) and p(t) under each scenario, the numbers of deaths on day t namely d(t) 
can be simulated. Specifically, for the confirmed cases reported on day t, they will eventually die of the disease 
with a probability of p(t), and the time from onset to death is determined by F. In the simulation setting, F 
is chosen to be the distribution function of a gamma random variable with mean µ = 15.43 days and shape 
parameter γ = 2.03 , which pertains to the situation of COVID-19 outbreak estimated by a recent  study20. It 
follows that the rtaCFR can be computed based on (5) given F, simulated confirmed cases and deaths. To 
compare the performance of the proposed rtaCFR, with aCFR and CFR, Fig. 1 provides the averaged estimates 
constructed based on 1000 replicates under the six hypothetical situations. We observe the following patterns in 

(3)E[d(j)] =

j−1∑

s=0

p(j − s)c(j − s)f (s + 1), j = 1, . . . , t,

(4)
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our simulations. First, at the beginning of the observation period, the CFR is subject to a downward bias whereas 
aCFR and rtaCFR are nearly unbiased. It is due to the fact that CFR does not adjust for time delay from onset to 
death, unlike the other two estimates. Second, when the true fatality is constant over time (i.e. Fig. 1a, and early 
period of Fig. 1c,d, both aCFR and rtaCFR are nearly unbiased. This result is not surprising as the rtaCFR actually 
includes the aCFR as a special case when the underlying fatality rate is constant. Third, when the true fatality is 
not constant, rtaCFR is still able to pick up the changes in the fatality rate over time in the sense that the red and 
blue lines align with each other closely, but large disparities are seen for CFR and aCFR that the bias cannot be 
remedied by prolonging the observation period. Presumably, the insensitivity of the latter two estimators can be 
attributed to their constant fatality rate assumption.

Importantly, the simulation results suggest that it is inappropriate to use CFR and aCFR estimates as a 
guideline for implementing certain public health policies during an epidemic as they may show a misleading 
trend or even a trend contrary to the truth. Scenario (e) corresponds to the case where the fatality rate of the 
disease increases in the early phase due to lack of preparedness and then drops gradually after a certain time 
point, which could be a result of introducing an effective treatment or increasing hospital capacity. We can see 
that both the CFR and aCFR are insensitive to pick up the decreasing trend of fatality rate in the late phase of 
the epidemic, therefore, fail to detect the positive effect of certain treatments or implemented policies. On the 
other hand, scenario (f) mimics the situation of the ongoing COVID-19 epidemic in most countries, where the 
fatality rate initially declines and then increases sharply with a new wave of infections probably due to the easing 
of public health measures or the emergence of a more virulent mutant variant. We can see that the proposed 
rtaCFR has an excellent performance in capturing changes in disease severity over time, whereas the other two 
estimators present a false increasing trend in the early stages and then remain roughly constant throughout the 
epidemic period.

To evaluate the robustness of the proposed method against the specification of F, we also fit the proposed 
model to the simulated data using 10  days9,21 and 18  days22 as the mean length from disease onset to death. The 
corresponding estimates are labelled as rtaCFR− and rtaCFR+ respectively, in Fig. 1. We can see that although 
a small disparity is observed among rtaCFR, rtaCFR− and rtaCFR+ in the early stage, the three estimates are 
almost consistent and unbiased for the time-varying disease severity. It shows that the proposed method is quite 
robust with a reasonable range of distributions. In addition, we have tried different sequences of daily number of 
confirmed cases in the simulation setup, such as c(t) = 3000+ 5t and c(t) ≈ 800 , as well as using the number 
of confirmed cases in Germany for the latest 200 days up to the date of writing on 7 January 2022. The results 
obtained are quite robust to these changes, hence are not reported here.

The COVID‑19 pandemic in Germany. We illustrate the proposed adjusted real-time fatality rate estimator 
using COVID-19 data from Germany, which is known as a role model for epidemic management as compared to 
other worst-hit European countries, especially in the early stages of the  epidemic23,24. Epidemiological data for 

Figure 1.  Performance of the proposed real-time fatality rate estimator (rtaCFR) ( rtaCFR− and rtaCFR+ are for 
robustness check) compared with the traditional case fatality rate (CFR) and the time-delay adjusted case fatality 
rate (aCFR) under different hypothetical scenarios of true values based on 1000 replicates. The true values are 
(a) p(t) = 0.034 ; (b) p(t) = 0.01 · e0.012t ; (c) 0.04 · e0.016·I(t>60)·min(40,t−60) ; (d) 0.1 · e−0.009·(t−70)·I(t>70) ; (e) 
0.1 · e−0.015·|t−80| ; and (f) 0.015 · e0.018·|t−120| for t = 1, . . . , 200.
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daily series of cases and deaths from the time of the first incidence in Germany reported on 27 January 2020 to 
the date of writing, 7 January 2022 were extracted from the public  domain25. The seven-day moving averages of 
daily numbers of confirmed cases and deaths are plotted in Fig. 2.

The first infection in Germany was reported on 27 January 2020 and the number of confirmed cases escalated 
rapidly since  then26. In response to the unprecedented pandemic, a crisis management team was set up and a 
series of precautionary measures, including school closure, social distancing and travel bans, were implemented 
in Germany since March  202027–29. Owing to the effective containment strategies and a lockdown since 22 
March 2020, the number of infections in Germany dropped substantially in the weeks that  follow30. In view of 
the significant decline in incidence, the government decided to gradually ease the lockdown restrictions starting 
from 4 May 2020. However, after a few months of the holiday season without strict public health measures, 
Germany encountered a second wave of infections. We can see from Fig. 2 that the daily number of infections in 
October 2020 returned to the peak level as in April of the same year. While other European countries imposed a 
strict lockdown in early November 2020 to control the disease, Germany adopted a softer lockdown, named as 
‘lockdown light’, to deal with the second wave of the  disease31. The partial lockdown started on 2 November 2020 
with restaurants, bars, gyms and entertainment venues closed, but schools and most businesses were allowed 
to remain open in the hope of striking a balance between public health and the economy. However, the partial 
lockdown failed to stop the spread of the disease until a hard lockdown was declared in December  202032. Since 
then, a vaccination program prioritizing the elderly also  began33. We can see from Fig. 2 that there was a temporal 
decline in the trend of confirmed cases from January to February 2021, but the infection figure bounced back 
in March, possibly caused by the emergence of the Alpha variant, a more contagious strain of COVID-19. In 
August 2021, the Delta variant and the gradual easing of social restrictions led to the fourth wave of infections 
in Germany, and the new fastest-spreading Omicron variant has further driven up the infections since the end 
of  202134. On the contrary, the trend of the death toll was fairly simple, with literally three peaks recorded in 
early April 2020, mid-January 2021, and mid-December, 2021 respectively.

We apply the proposed method to assess the time-varying fatality rate of COVID-19 in Germany. We assume 
that F follows a gamma distribution with mean 15.43 days and shape parameter 2.0320. The piecewise constant 
black lines in Fig. 3a show the raw estimates of the fatality rate obtained using the fused lasso technique. The 
tuning parameter is set to be � = 39000 , which gives the smallest residual sum of squares subject to 0 ≤ p̂(j) ≤ 1 
for all j = 1, . . . . To gain an insight into the trend of fatality rate over time, the blue solid line shows the smoothed 
rtaCFR based on the original estimates using a Gaussian kernel density with a bandwidth equal to twenty days. 
To consider the robustness of the proposed method, we also fit the data using different Gamma distributions 
for F with a mean of 10 days and 18  days9,21,22, and the results are labelled as rtaCFR− and rtaCFR+ in Fig. 3a, 
respectively. Analogous to what we observed in the simulation study, the results obtained are robust to these 
changes. Furthermore, to investigate the effect of the penalty term � in the fused lasso regression, Fig. 3b presents 
a sensitivity analysis showing the smoothed rtaCFR obtained using a range of different values for � . We can see 
that as � increases, a larger penalty is imposed and the neighboring estimates are getting closer to each other 
across the time axis, yielding a smoother estimated curve for the real-time fatality rate. The sensitivity analysis 
demonstrates that the proposed method is quite robust against the changes in � as evidenced by Fig. 3b.

The estimates obtained based on three fatality rate estimators, together with the chronology of some important 
events and implemented measures, are displayed in Fig. 4 for comparison. Based on the rtaCFR, we can observe 
three peaks of fatality rates attained at around 0.052, 0.046 and 0.024 appearing in April 2020, January 2021 and 
July 2021, respectively, while the fatality rate maintains at low levels for the rest of the study period. The estimates 
obtained from CFR and aCFR differ significantly during the early stage of the epidemic, but are virtually identical 
from May 2020 onward. This is because, during the fast-growing epidemics, newly confirmed cases are almost 
negligible compared to cumulative cases with definitive outcomes, and thus the effect of the adjustment factor in 
the aCFR diminishes over time, leading to similar estimates from these two approaches. We can see that the CFR 

Figure 2.  Seven-day moving average of daily numbers of confirmed cases and deaths in Germany from 27 
January 2020 to 7 January 2022.
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Figure 3.  Estimation for the COVID-19 data in Germany (a) original rtaCFR (piecewise constant black lines) 
plus smoothed rtaCFR (blue lines) based on different Gamma distributions for F, using the optimal tuning 
parameter; (b) smoothed rtaCFR obtained based on different tuning parameter values for sensitivity analysis.

Figure 4.  Estimates based on rtaCFR, aCFR and CFR for the outbreak of COVID-19 in Germany.
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and aCFR estimates drive to a peak level close to 0.05 in May 2020, then they decline gradually until December 
2020 and remain stable at around 0.03 throughout the whole period.

It is clear that the proposed fatality rate estimator, rtaCFR, is capable of providing timely information on 
the progress of the epidemic in Germany. The rtaCFR increased sharply with the surge of cases during the first 
wave, which may be due in part to inadequate preparation in the early stages of the outbreak, especially with the 
increased proportion of high-risk elderly among the cases reported at that  time29. Fortunately, the reduction in 
cases resulting from lockdown and mitigation measures implemented since March 2020 kept hospitals from being 
overburdened, and the rtaCFR declined gradually soon after reaching its peak in April. Then the rtaCFR stayed 
at a low level until a second wave of infection hit Germany. We can see that the fatality rate kept increasing at the 
beginning of the second wave despite the implementation of the ‘lockdown light’, and it only started to decline 
when strict lockdown was reintroduced in January 2021. Indeed, it has been suggested that mild and long-term 
lockdown strategies had limited power and lowered efficiency in containing the disease in general as compared 
to strict and short-term  lockdown35. Especially when infections overwhelm the healthcare system, the fatality 
rate can be surprisingly high due to inadequate medical  resources36,37. The rtaCFR then declined gradually since 
January 2021 with a small peak of around 0.02 observed during the third wave in June 2021 dominated by the 
Delta variant. In the following months, the spread of the Delta and the novel Omicron variants drove the fourth 
wave of infections.

We can see that although the number of cases reached a record high during the fourth wave of infection, the 
estimated fatality rate was suppressed to a historically low level. The low fatality rate is probably due to the less 
lethal Omicron strain compared to the earlier COVID-19  variants38. In addition, as of mid- August 2021, 82% 
of the elderly that are at the highest risk of severe outcomes have been fully  vaccinated39. The high vaccination 
coverage in the elderly population in late 2021 also helped to reduce hospitalization and death in the third and 
fourth waves, whereas the share of the older population among confirmed cases increased when the vaccines 
were not available during the first and second waves of infections in  Germany29. These findings demonstrate 
the effectiveness of social restriction in the absence of vaccination, and the beneficial effects of vaccination that 
brings to the society in reducing the risks of infection and severe  illness40,41.

Discussion
A simple time-varying fatality rate estimator adjusted for reporting delays using only the aggregated count of 
cases and deaths is proposed in this paper. In the early stages of the COVID-19 outbreak, the daily case counts 
were the primary metrics by which health authorities determined which mitigation efforts were appropriate. 
However, because the new Omicron variant is less lethal but more contagious, with many infections having few 
or no symptoms, experts recommend shifting the focus from case counts to disease severity level, as it provides 
a more reliable picture of hospitalizations and deaths, especially in an era of  vaccination42,43. After two years of 
struggling with the outbreak, many countries, including the United Kingdom, the United States, Singapore, South 
Korea, and much of Europe, are now considering a new phase of living with the virus. Rebooting the economies 
after a prolonged lockdown does not mean giving up disease control; instead, it places a greater demand on 
real-time monitoring of the epidemic so that decision on prompt implementation or relaxation of restrictions 
at the earliest possible point can be made to reduce hospitalizations and deaths while minimizing the impact of 
economic and social  disruption44. Therefore, the fatality rate in real-time should instead be the leading indicator 
for the government when considering precautions.

The simulation study shows the strength of the proposed rtaCFR in terms of accuracy and sensitivity 
in capturing the changes in disease severity. Ignoring the delay from disease onset to death leads to an 
underestimation of the actual fatality in commonly used CFR estimator, and this effect is even more pronounced 
in fast-growing epidemics. More importantly, it could mislead the trends in fatality rate during ongoing epidemics. 
This was the case with the SARS outbreak in 2003, where an increasing trend in fatality rate is suggested by the 
CFR estimator but in fact, it was a false alarm caused by the way of  calculating6. This shortcoming is evident in 
Fig. 1d–f of our simulation study, where CFR indicates an upward trend in disease severity, but the actual severity 
is decreasing. Furthermore, the CFR, calculated by the aggregated counts, is insensitive in capturing changes in 
fatality rate. This property is shared by aCFR estimator, where the detection of a change in fatality rate is inevitably 
delayed even if it could eventually match with the real trend. For emerging infectious diseases, falsified and 
delayed information may lead to a delayed response, an inappropriate policy decision, invalid reflection on the 
effectiveness of a certain implemented measure, and other disastrous consequences. We therefore propose to use 
the rtaCFR to capture the underlying trends in disease fatality during ongoing epidemics, whereas traditional 
CFR is more appropriate to serve as an indicator of overall disease severity after an epidemic ends.

The application to the COVID-19 data in Germany also demonstrates the usefulness of the proposed method 
in formulating public health policies during ongoing epidemics. We can see that the proposed rtaCFR is able 
to reflect changes in disease severity during a new wave of infections, whereas the other two commonly used 
estimators remain more or less constant in the late phase of the epidemic. Naturally, the upward trend in rtaCFR 
suggests that stricter public health measures should be implemented promptly, while the converse suggests that 
restrictions are sufficient or can be gradually eased. In addition to the mitigation measures and vaccine coverage, 
changes in the age structure of the reported cases over time are also thought to have driven trends in disease 
fatality. For example, studies found a noticeable increase in age among confirmed cases in spring and winter 
2020 in Germany. The high fatality in the older age group may have contributed to an increase in population 
disease severity as indicated by rtaCFR during this  period22,29. On the other hand, the increased mobility of young 
adults during the summer vacation led to a higher proportion of young patients recorded in autumn 2020 and 
2021, which may partially explain the decline in rtaCFR after the peak of the first wave and the relatively low 
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disease severity during the third and fourth  waves22,29,45. Furthermore, gender differences in the severe outcome 
of COVID-19 were also  demonstrated46.

Rising attention has been paid to monitoring the progression of the COVID-19 epidemic with the use of 
surveillance data in different regions, while considering the reporting delay in death figures.  Zhao47 studied the 
estimation for instantaneous case fatality ratio in Canada using a maximum likelihood approach. The author 
assumed that the time interval between onset to death and the time interval between onset to confirmation are 
independent, and assumed a probability distribution to each of the time variables. In our work, we only model the 
time interval from onset to death and the assumption is modest in practice. Ko et al.48 studied the joint estimation 
of vaccine effectiveness against death and age-specific case fatality rate in Japan under the Bayesian paradigm. 
They assumed that the case fatality rate follows a beta distribution in the binomial process. In contrast to their 
approach, we do not impose a parametric assumption on the real-time fatality rate enjoying greater flexibility in 
modelling, but our method does not incorporate the explanatory variables.

It is worth noting that the infectious disease fatality rate is a composite measure, and in addition to the age 
and sex distribution of diagnosed cases we mentioned above, it can also be affected by many other factors, 
such as testing capacity, vaccination coverage, and even weather. A limitation of the study is that the effects 
of explanatory variables, such as age, sex and some healthcare burden indicators are not considered. Hence, it 
may not be fair to compare the trends of the fatality rates across multiple regions using the proposed estimator, 
especially when the population structures between regions being compared differ notably. Presumably, some 
standardization methods can be used to remove those effects by adjusting for differences in the age or gender 
distribution of the populations being compared if detailed demographic data are available. When numerous 
features are available in the study and the dynamics of the fatality over time is not the main focus, the lasso 
regression method, as a variable selection tool that allows sparsity in the covariate effects, has been widely applied 
to explore the most important factors affecting the level of COVID-19  fatality49–51. The fused lasso techniques 
on the time series fatality rate estimation in the literature are relatively limited but they have recently been 
applied to the susceptible-infected-recovered model tracking the transmission of the COVID-19  epidemic52,53. 
In this paper, variable selection is not the focus, and the fused lasso regression is simply used to incorporate 
temporal smoothness in the disease fatality estimates over time. We basically formulate the problem based on the 
frequentist approach as the fatality rate parameters are not random. It will be interesting to see if the proposed 
method can be extended to the Bayesian paradigm in the future.

Another limitation of the proposed method includes the potential ascertainment bias in the estimation of 
the fatality rate. Specifically, as only diagnosed cases are considered, bias will be introduced if the fatality rate 
of individuals identified with COVID-19 is not the same as that of undiagnosed individuals. The extent of this 
bias depends on the country-specific test coverage. In countries with widespread testing, such as China and 
Germany, this bias is negligible. Nevertheless, in countries where testing is less comprehensive, such as Italy 
and the United States, an upward bias may be incurred due to the under-detection of milder cases. In these 
circumstances, data about the testing volume and other additional information is required to estimate the ratio 
of under-reporting  rate54. There is therefore an urgent call for a standardized data collection method by health 
authorities regarding the testing strategies, demographic characteristics and vaccination status of the cases to 
facilitate a better understanding of the trends in disease fatality. Despite the limitations, the proposed rtaCFR 
provides a valuable benchmark representing the risk of death under the influence of various factors during an 
ongoing epidemic. By monitoring the latest trend of fatality rate with the proposed method, the continuous 
decision-making process can be supported during the epidemic, even in a limited-data context. We hope that 
the proposed estimator can contribute to fighting against emerging epidemics worldwide.

Data availability
The datasets generated and/or analysed during the current study are available in the Johns Hopkins Coronavirus 
Resource Center repository, https:// coron avirus. jhu. edu/ region/ germa ny.
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