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Saliva metabolome alterations 
after acute stress
Liat Morgan1,2*, Rune Isak Dupont Birkler3, Shira Shaham‑Niv3, Yonghui Dong3, 
Tal Wachsman3, Lior Carmi4, Boris Yakobson7, Lihi Adler‑Abramovich3,6, Hagit Cohen5, 
Joseph Zohar4, Melissa Bateson2 & Ehud Gazit1,3*

Major stress has systemic effects on the body that can have adverse consequences for physical 
and mental health. However, the molecular basis of these damaging effects remains incompletely 
understood. Here we use a longitudinal approach to characterise the acute systemic impact of major 
psychological stress in a pig model. We perform untargeted metabolomics on non-invasively obtained 
saliva samples from pigs before and 24 h after transfer to the novel physical and social environment 
of a slaughterhouse. The main molecular changes occurring include decreases in amino acids, 
B-vitamins, and amino acid-derived metabolites synthesized in B-vitamin-dependent reactions, as 
well as yet-unidentified metabolite features. Decreased levels of several of the identified metabolites 
are implicated in the pathology of human psychological disorders and neurodegenerative disease, 
suggesting a possible neuroprotective function. Our results provide a fingerprint of the acute effect 
of psychological stress on the metabolome and suggest candidate biomarkers with potential roles in 
stress-related disorders.

Psychological stress has systemic effects on the body that may lead to chronic impairments in physical and 
mental health, resulting in reductions in longevity and quality of life1,2. More than 70% of human diseases are 
considered to be stress-related3, with the most common stress-related disorders being posttraumatic stress dis-
order (PTSD), anxiety disorders and major depressive disorder (MDD)4. Despite the established importance 
of stress in disease, we currently lack objective measures of the biological impact of stress on the body. A better 
understanding of the metabolic changes caused by stress is crucial for elucidating the mechanisms underlying 
the development of stress-related diseases and developing better treatments3. Furthermore, personalised medi-
cine requires biomarkers that are sufficiently sensitive and specific for diagnosing potentially damaging stress 
exposure and predicting future outcomes5.

Elevated cortisol, which can be measured non-invasively in saliva or hair, is one of the most common meas-
ures currently used to assess acute and chronic stress. However, due to the inverted U-shaped relationship 
between cortisol levels and numerous neurobiological and behavioural endpoints, cortisol is nonspecific and 
cannot be used to reliably distinguish understimulation from overstimulation and stress6. Moreover, there are 
individual differences in the level of stress associated with optimum stimulation for health and well-being with 
individuals vulnerable to stress-related disorders having lower optimum cortisol levels than individuals resilient 
to stress6.

Due to the complexity of the stress response, a more holistic approach is required, moving away from the 
measurement of single biomarkers such as cortisol. Triangulation, whereby multiple biomarkers, each with its 
own strengths and weaknesses, are measured simultaneously, should deliver a more reliable estimate of an indi-
vidual’s condition. Untargeted metabolomics identifies and compares the relative concentrations of a large cohort 
of metabolites (small molecules < 1500 Da) between samples of interest, yielding a specific metabolic signature 
or fingerprint of a given exposure or manipulation7–9. The results can be used to identify a panel of metabolites 
that effectively discriminate against different conditions. We test the hypothesis that untargeted metabolomics 
conducted on samples obtained before and after exposure to a major stressor will reveal new biomarkers and 
shed light on the metabolic pathways involved in the etiology of stress-related diseases.
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Collecting samples longitudinally before and after a terrifying, life-threatening event, characteristic of a 
major stressor, is practically and ethically challenging. Here we make use of an opportunistic pig model that we 
argue has strong ecological validity for the types of events known to potentially result in PTSD and other stress-
related disorders. Handling of pigs pre-slaughter involves a 24 h period during which animals are transported, 
re-mixed with unfamiliar pen-mates and held in a new environment where they are exposed to the noise and 
smell of the slaughterhouse10. These events have been widely described in the literature as extreme stressful events 
for pigs10–13. These events result in prolonged thirst and hunger, restricted movement, negative social behavior, 
resting problems, fatigue, pain, fear and respiratory distress12, with physiological consequences sufficient to 
impair meat quality10,13. Pigs have physiological similarities to humans making them a common animal model 
in biomedical research14,15. Additional benefits of the model include the homogeneous genetic background, age, 
nutrition and rearing environment of the animals, all of which reduce random variation in physiology. Saliva 
samples were collected non-invasively from standard environmental enrichments provided in the animals’ pens, 
ensuring that baseline samples were uncontaminated by sampling stress.

Results
Effects of 24 h of stress on the saliva metabolome.  For the examination of acute stress as detailed in 
Fig. 1, longitudinal saliva samples were collected non-invasively from 200 pigs by providing cotton ropes for the 
animals to chew as environmental enrichment16–18. The pigs were penned in groups and each rope provided a 
pooled sample from 5 to 10 animals. Saliva samples were collected from the pigs twice: (1) 24 h before slaughter, 
while pigs were still in their pen, in a familiar group from weaning (n = 31 samples); and (2) after short transport, 
regrouping with unfamiliar pen-mates, and 24 h holding in the new environment of the slaughterhouse (n = 32 
samples). All samples were kept on ice, and stored at -80 °C within two hours of collection until the metabo-
lomics analyses. An untargeted metabolomics approach was used involving ultra-high-performance liquid chro-
matography coupled with high-resolution mass spectrometry (UHPLC-HRMS). Metabolites were extracted 
from the saliva samples using an extraction procedure (methanol:acetonitrile) suitable for polar metabolites. 
UHPLC-HRMS was performed using a hydrophilic interaction liquid chromatography (HILIC) analytical col-
umn, in both positive and negative ionization mode for broader metabolite coverage. A pooled sample from all 
samples was injected from the same vial for quality control (QC), as well as pooled samples extracted four times 
for quality assurance (QA). Overall, obtained UHPLC-HRMS data revealed the relative quantification of 2518 
metabolite features in total, in the positive ionization mode, and 1165 metabolite features in the negative ioniza-
tion mode. After data evaluation and cleaning, including background spectral filtering (noise elimination) and 
QC based filtering (metabolite features with coefficient of variation (CV) ≥ 30% were removed), 1564 metabolite 
features from the positive mode, and 850 metabolite features from the negative mode remained for further sta-
tistical analyses. Of these, 920 metabolite features were putatively annotated in the positive ionization mode, and 
531 in the negative ionization mode.

A principal component analysis (PCA) score plot revealed clear separation between pig saliva metabolites 
before and after the acute stress intervention, suggesting a clear influence of the intervention on the saliva 
metabolome (Fig. 2).

Furthermore, relative concentrations of 932 metabolite features in the positive ionization mode, and 591 
metabolite features in the negative ionization mode were significantly different before and after the stressful 
intervention (Fig. 3; Adj P < 0.05). Of these features, those with at least a two-fold change in relative concentra-
tion were considered differentially affected by stress. Accordingly, in the positive ionization mode 243 metabolite 
features were significantly upregulated (a fold change of 2.00 to 17.12) after stress, and 357 metabolite features 
were significantly downregulated (a fold change of 2.00 to 333.33) after stress (Fig. 3a; Adj P < 0.05). In the nega-
tive ionization mode, 49 metabolite features were significantly upregulated (a fold change of 2.01 to 53.05) after 
stress, and 333 metabolite features were significantly downregulated (a fold change of 2.04 to 250.00) under 
stress (Fig. 3b; Adj P < 0.05).

Follow-up analyses included investigation of metabolite features responsible for the clustering of the metabo-
lome changes before and after the stressful intervention. The complete screening for biomarkers is summarized 
in Table 1, and fully detailed in Table S1. As mentioned, we searched for metabolite features for which the rela-
tive concentrations after stress were not only significantly different, but also showed at least a two-fold change 
(Adj P < 0.05; 2 ≤ FC or FC ≤ 0.5). Each of these metabolite features that could serve as potential biomarkers was 
manually checked for the match of the precursor ion mass (m/z) and fragments (MS/MS) to online and in-house 
libraries. Metabolite identification confidence level for each identified metabolite in this study was assigned 
following the modified four-level classification scheme from the Metabolomics Standards Initiative19,20: level 
1- match to commercial standards; level 2- full match to online databases of the precursor ion and its fragments 
(both m/z and MS/MS); level 3- putative annotation based on precursor ion; and level 4- not annotated). To 
ensure higher confidence, the metabolites discussed as potential biomarkers in this paper are only those with 
identification confidence levels 1 and 2. These were mainly decreased relative abundances of amino acids and 
metabolites synthesized endogenously by amino acids and B vitamins. In addition, the most promising biomark-
ers that were not identified with high confidence, or were not annotated at all, are detailed in Table S1.

Another approach in the investigation of novel biomarkers and metabolic fingerprints, is to look at the altera-
tion of entire metabolic pathways, rather than single potential biomarkers. Therefore, 144 metabolite features 
from both the positive and negative ionization with higher annotation confidence (level 1 and level 2; when 
both precursor ion and its fragments, MS/MS, were matched to in-house library of commercial standards or 
online databases). 95 of these putatively annotated metabolite features were successfully matched to a metabolic 
pathway by Metaboanalyst software 5.021. Several metabolic pathway alterations were induced following the 24 h 
stressful intervention. These pathways are represented by both −log10 (Adj P-value) > 1.1220, which is equivalent 
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to a Adj P-value < 0.05 and high pathway impact score, calculated by overrepresentation of metabolites from the 
same pathway, as well as highly important metabolites to the pathway. Accordingly, as shown in Fig. 4, histidine 
metabolism; phenylalanine, tyrosine and tryptophan biosynthesis; arginine and proline metabolism; and arginine 
biosynthesis are  significantly different, as well as have relatively high pathway impact. Moreover, the pathways 
of nicotinate and nicotinamide metabolism; lysine degradation; alanine aspartate and glutamate metabolism; 
and vitamin B6 metabolism were also highlighted and show a promising direction for further investigation.

Discussion
The trajectory of stress and related disorders has been widely investigated1–3, but there remains a gap in our 
understanding of the acute systemic effects of major stress3,22,23. Our aim was to characterize the metabolic 
fingerprint of major stress, in order to provide a comprehensive understanding of its acute physiological effects 

Figure 1.   Study design. For the examination of acute stress, saliva samples were obtained non-invasively 
from 200 pigs. Cotton ropes were provided, yielding 63 pooled saliva samples, each from 5 to 10 pigs. 
Saliva was collected from the same pigs twice: (1) before stressful conditions (n = 31); and (2) after 24 h in 
stressful conditions (n = 32). Metabolites were extracted and analysed using an ultra-high‐performance liquid 
chromatography high-resolution mass spectrometer. Raw data was used for data pre-processing, identification 
of features as metabolites, and data analyses for the identification of altered metabolites and metabolic pathways. 
Procreate (version 5.2.6) and Adobe Photoshop Creative Cloud (version 23.5.1) were used for the graphics and 
illustrations.
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and to reveal novel potential biomarkers. We utilized an untargeted metabolomics approach in which we used 
UHPLC-HRMS to characterize the change in the saliva metabolome of the same group of pigs measured before 
and 24 h after exposure to major stress involving transport, social mixing and holding in the novel and frighten-
ing environment of a slaughterhouse. Our results provide a basis for further investigation of the impacts of stress 
and the mechanisms underlying the development of stress-related disorders such as PTSD in humans. Moreover, 
they may shed light on potential drugs and nutritional supplements for treating stress-related disorders.
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Figure 2.   PCA score plots of pig saliva metabolome. A Principal Component Analysis (PCA) plot of the 
metabolome data that characterizes pig saliva before (Blue) and after (Orange) acute stress. Each dot represents 
a sample and the colour represents the type of sample. Repeatability (Grey) is demonstrated by pooled samples, 
injected along the analyses as quality controls. (a) A PCA score plot of metabolite features from data acquisition 
in positive ionization mode. (b) A PCA score plot of metabolite features from data acquisition in negative 
ionization mode. Graphs were created by GraphPad Prism (version 9.4.).
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Figure 3.   Differential metabolite features after stress. (a–b) Differential analysis of metabolite ratios between 
pigs in their familiar environment (Before) and 24 h after (After) the onset of stress. (a) Volcano plot of 
metabolite features from data acquisition in positive ionization mode. (b) Volcano plot of metabolite features 
from data acquisition in negative ionization mode. Each dot represents a metabolite feature. Significant 
upregulated metabolite features are in Red on the right (2 < fold change; Adj P < 0.05). Significant downregulated 
metabolite features are in Blue on the left (fold change < 0.5; Adj P < 0.05). (c–d) Heat map analysis of 
differential metabolite features (fold change < 0.5; 2 < fold change; Adj P < 0.05), (c) in both positive and (d) 
negative ionization modes. Each row represents a sample and each column a metabolite feature. Purple indicates 
that metabolite features were downregulated, and Yellow indicates that metabolite features were upregulated. 
Graphs a, b were created by GraphPad Prism (version 9.4.); Heat maps c, d were plotted by R (version 4.2.0), 
using R package pheatmap (version 1.0.12).
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Table 1.   Summary of potential biomarkers. Summary of significantly differential metabolite features after 
acute stress. Metabolites with at least a two-fold change ratio before and after stress were considered differential 
and Adj P < 0.05 were considered significant. Metabolite features are divided according to their fold-change 
ratios differences, as well as the assigned level of confidence in the annotation (level 1- match to commercial 
standards, level 2- full match of the precursor ion and its fragments to online databases (both m/z and MS/
MS), level 3- putative annotation based on precursor ion (m/z), level 4- not annotated). Further detail is 
provided in the supplementary information Table S1.

Total number of potential biomarkers Level 1 Level 2 Level 3 Level 4

Positive ionization mode

Upregulated
248 2 ≤ FC < 5 234 0 5 66 163

5 ≤ FC ≤ 10 9 0 1 4 4

10 < FC 5 0 0 3 2

Downregulated
359 0.2 < FC ≤ 0.5 188 5 11 112 60

0.1 ≤ FC ≤ 0.2 82 2 2 53 23

FC < 0.1 89 0 2 62 27

Negative ionization mode

Upregulated
50 2 ≤ FC < 5 35 0 1 23 11

5 ≤ FC ≤ 10 11 0 0 4 7

10 < FC 4 0 0 1 3

Downregulated
333 0.2 < FC ≤ 0.5 144 0 5 97 42

0.1 ≤ FC ≤ 0.2 56 0 2 42 12

FC < 0.1 133 0 3 81 49

Figure 4.   Pathway analysis plot of altered metabolic pathways after acute stress. Dots represent metabolic 
pathways altered after 24 h of major stress. The Y-axis represents the logarithm transformed P-value adjusted 
for multiple comparisons. The X-axis represents the pathway impact, calculated by overrepresentation of 
metabolites from the same pathway, as well as highly important metabolites to the pathway. The pathways that 
were most associated with stress are a combination of high pathway impact and -log10 (Adj P-value) > 1.1220, 
which is equivalent to a P-value < 0.05 (the top right corner of the graph). Colour represents significance, from 
White (not significant) to Red (significant), and larger dot size represents a higher impact score. The figure was 
created by the online tool MetaboAnalyst 5.0 (www.​metab​oanal​yst.​ca/​Metab​oAnal​yst/).

http://www.metaboanalyst.ca/MetaboAnalyst/
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In this study, we found several hundreds of metabolite features that display a 2.00 to 333.33 fold change after 
major stress (600 metabolite features in the positive ionization mode and 382 metabolite features in the negative 
ionization mode). These metabolite features (detailed in Table 1 and Table S1) are divided into two main groups; 
The first, are metabolite features for which the retention time, as measured by the liquid chromatography, and 
the molecular mass of the molecule and its fragments, as measured by the mass spectrometer, could be used 
to identify the feature as a specific metabolite (identification confidence levels 1 and 2). The second group, are 
metabolite features that are part of the metabolic fingerprint of stress and may provide potential biomarkers, but 
for which identification requires additional analytical methods (confidence levels 3 and 4). The main metabolic 
changes identified were decreases in amino acids and metabolites synthesized endogenously by amino acids and 
B vitamins. Many types of stress including psychosocial stress, injuries, surgeries, infection and cancer activate 
metabolic pathways that consume amino acids24–26. In this study, the ratio of relative concentrations of arginine 
after versus before stress was 0.154, indicating that arginine was significantly lower after 24 h of stress. Arginine 
is a conditionally essential amino acid, because while it can be synthesized, it becomes essential during trauma 
and disease24,27,28. Lysine and tryptophan also decreased after stress in this study (ratios of 0.162 and 0.492 respec-
tively). Prolonged lysine insufficient diets are correlated with impaired quality of life and mental health29. Thus, a 
decrease under prolonged stress might be consequential, especially if the diet is deficient in lysine. Tryptophan is 
also an essential amino acid, which functions as a precursor of serotonin, as well as in the synthesis of kynurenine. 
The tryptophan-kynurenine pathway is associated with cognitive symptoms and neurodegenerative diseases30. 
While the role of serotonin in regulating mood and cognition is known, the complete mechanism of kynurenine 
and the unwanted symptoms of neurodegenerative diseases is not fully discovered30. There is controversial evi-
dence in the literature regarding the influence of tryptophan and its supplementation in diet on mood change 
and stress-related disorders such as major depression31,32. B vitamins relative abundances also decreased in our 
study; the ratio of relative concentrations of nicotinamide after stress versus before was 0.498. Nicotinamide, 
the amide form of vitamin B3, has a role as a precursor in the synthesis of coenzymes nicotinamide adenine 
dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADPH), which are responsible for 
various functions including oxidative deamination and lipid catabolism33. Nicotinamide has a key role in devel-
opment, growth and maintenance of the central nervous system and is also considered to have protective effects 
on the nervous system, providing protection from neurodegenerative diseases such as Alzheimer’s, Parkinson’s 
and age-related macular degeneration (AMD)34. Another B vitamin that was relatively decreased in this study 
after stress was pyridoxine, vitamin B6 (0.359). Pyridoxine has a key role in amino acids metabolism and cell 
functioning35. Moreover, as for other B vitamins, pyridoxine is considered to have protective effects against cog-
nitive decline and the related pathologies such as Alzheimer’s disease36. The decrease in these three metabolites 
(tryptophan, nicotinamide and pyridoxine) under acute stress may be important in elucidating the effect of stress 
on the later trajectories. Additional metabolites that may shed the light on these trajectories, were also decreased 
under stress in this study. Carnosine decreased after stress (ratio of 0.467). Carnosine, a dipeptide, which is 
endogenously synthesized from the amino acids alanine and histidine, has many physiological functions and is 
dominant in tissues such as the brain, heart, muscles, liver, brain, and kidneys37. L-carnosine has been shown 
to function as an antioxidant, an anti-inflammatory, an accelerator of wound healing and it might even have 
antidepressant effects38. Furthermore, L-carnosine has been shown to act as an inhibitor of the toxic amyloid-β 
peptide (Aβ) present in the vascular plaques in Alzheimer’s patients, as well as in reducing aging-related mito-
chondrial dysfunctions37–40. Hypoxanthine which also decreased under stress (0.416) is a derivative of purines, 
and is associated with abnormal purine metabolism in Alzheimer’s patients41. Agmatine, which is also induced 
endogenously as part of the stress and inflammatory response, has a role as a neuromodulator. It has been sug-
gested that agmatine has a protective effect on the development of trauma and stress related disorders, such as 
PTSD, anxiety, and depression42. Moreover, it may have protective effect against neurodegenerative diseases such 
as Alzheimer’s and Parkinson43–45. In this study after 24 h in stressful conditions, saliva agmatine also decreased 
(ratio of 0.377). It has been shown that as a result of stress, trauma and inflammation, agmatine level is increased, 
but cannot compensate fully for its harmful impact, at least not the endogenous production46,47. We hypothesize 
that the agmatine that was produced under stress was consumed as part of the protective mechanism for neural 
functioning, and therefore was already decreased after 24 h in stressful conditions. It has been described that 
agmatine is elevated after the first few hours from stressful exposure, but the exact mechanism of agmatine as 
part of the stress response, as well as the longer term effect remained unclear48. Moreover, it was also demon-
strated in rodents that agmatine has anxiolytic effect, as well as suppression of depression-like behaviour49,50. 
Further investigation requires measuring the levels in saliva and other biofluids, as well as in the brain, from the 
stressful exposure, and after different time periods, in order to get a comprehensive understanding. Individual 
sampling might also be considered in complementary future research. In this research, group level sampling 
was chosen in order to ensure results are not affected by the sampling method. Individual sampling is stressful 
for the animals and could not be performed non-invasively, without direct contact with the pigs in the study. 
This is a trade-off between group sampling to non-invasive sampling. Here we decided it is best to compromise 
on group samples rather than compromising on the sampling method. Thus, we ensured that baseline samples 
were uncontaminated by sampling stress.

The main limitation of this study, as in all untargeted metabolomics studies, is the inability to identify several 
metabolite features. Identification of metabolites is the main bottleneck in the workflow in untargeted metabo-
lomics. Identification is based on the mass of the intact metabolite (more specifically, the mass to charge ratio, 
m/z), its fragments (MS/MS), and the retention time in the analytical column. Although we can record this 
information for thousands of metabolite features in one analysis, still many of the metabolite features remain 
unidentified as a specific metabolite. This limitation is due to the lack of available standards, limited databases 
and the available algorithms51. It is likely that several unidentified metabolites have the potential to serve as novel 
biomarkers and are thus worthy for further investigation. For example, Table S1 includes metabolite features that 
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are significantly differentially regulated after stress, with at least a ten-fold change ratio (Adj P < 0.05; FC > 10; 
FC < 0.1). These features are putatively annotated as level 3 or not annotated at all (level 4). One future solution 
to the large number of unidentified metabolite features will be a cross-species analysis of the effects of stress. 
Triangulating the overlap in the metabolite features altered by different types of stress, in different species, and 
in different biological matrices, might help to narrow down the list of potential biomarkers from hundreds, to a 
shorter list of interest for further identification and validation.

In light of all the above, this research shed light on the metabolic changes under acute stress, by metabolomics 
analyses in a unique pig saliva model. It lays the foundations for further research for the identification of the 
unidentified metabolite features, as well as provide a new perspective about stress. Previous studies have focused 
on upregulated metabolites, such as cortisol, that are elevated under stressful conditions. The current research 
emphasizes a decrease in several metabolites that are downregulated under acute stress. The decrease in these 
metabolites, several of which might have protective effects on the nervous system, reducing the likelihood of 
neurodegenerative diseases and psychological disorders, suggests a novel future direction in research on trauma 
and stress-related disorders. Perhaps, focusing on downregulated metabolites, as we did in this research, would 
lead to new future discoveries. This is similar to what has been suggested regarding stress-related disorders, 
whereby focusing on the mechanism of resiliency, rather than the stress, may bridge this gap of knowledge and 
lead to new therapeutic targets52,53. Clinically, focusing on these downregulated metabolites as prophylactic 
treatment may allow individuals to cope better with stress, and stay for longer on the left side of the inverted 
U-shape, as resilient, before getting to the turning point of vulnerability. There are studies in both humans and 
animals that provided amino acids and other metabolites that were relatively decreased under stress in our study 
as experimental supplements. However, probably due to the complexity in these kinds of nutritional studies 
under specific conditions, as well as the gap of knowledge in the systemic stress response, there is not sufficient 
scientific-based evidence for the use of these metabolites as treatment. In addition, as far as we are aware, there 
have been no studies that examined the use of these metabolites prophylactically. Future direction may include 
targeted analysis of the concentration of these metabolites and other related metabolites for their individual 
exact concentration before exposure to stress, and prophylactic personal treatment accordingly. Moreover, there 
are similar opportunistic animal models, including nutritional studies in farm animals that can be beneficial 
for both human and non-human animals for the research of stress-related diseases and its potential treatments.

In summary, our study indicates that after acute stress of 24 h, in a unique pig model, while several metabo-
lites are upregulated, a higher number of metabolites are downregulated, and their related metabolic pathways 
changed accordingly. The main metabolic changes that we identified were a decrease in amino acids and metabo-
lites synthesized endogenously by amino acids and B vitamins, as well as potential unidentified metabolite fea-
tures that require further investigation. The metabolic fingerprint of stress that we reveal provides new insights 
into the trajectory of stress and the related disorders. This research demonstrates a clear future direction for the 
investigation of stress and resiliency, as well as potential therapeutics and nutritional targets.

Materials and methods
Sample collection.  Saliva samples were collected non-invasively from 200 pigs, ages ~ 165  days, mixed 
breed of Landrace, Large-White, Pietrain and Duroc. The study was performed at Lahav Animal Research Insti-
tute (LAHAV C.R.O; Kibbutz Lahav, Israel) and the non-invasive sample collection protocol was approved by 
the official Tel Aviv University Institutional Animal Care and Use Committee. All experiments were performed 
in accordance with relevant guidelines and regulations.

The pigs were housed in groups and each saliva sample represented a pooled sample from 5–10 pigs. Saliva 
was collected by providing 100% cotton ropes as environmental enrichment, similar to the method recently 
published16–18. In brief, pigs chew the cotton ropes for about 20 min; the saliva is collected by squeezing the 
rope with a sterile bag, and immediate transferring it into 15 mL plastic tubes; centrifugation of the saliva and 
aliquots into 2 mL tubes. Saliva was collected from the same 200 pigs twice: (1) 24 h before slaughter, while pigs 
were still in their pens, in their familiar environment (n = 31); (2) After a short transport to the slaughterhouse 
(10 min including loading time), random regrouping with unfamiliar pen-mates, and 24 h wait in new environ-
ment at the slaughterhouse (n = 32). Although the same 200 pigs are represented in the samples collected both 
before and after stress, the individual samples represent different combinations of individuals before and after 
stress due to the regrouping that occurred. Thus, the samples represent independent pooled samples from the 
same population of pigs collected before and after stress. The samples collected before the stressful conditions 
are the control for the samples collected after 24 h under stressful conditions. It cannot be ruled out that there 
are interactions of metabolites with the cotton ropes, but the procedure was exactly the same for samples of the 
pigs before and after the stressful conditions. The measures are relative abundances and not the concentration 
in the sample. Here we make use of an opportunistic pig model, taking advantage of the common procedures 
pigs undergo in the last 24 h of their lives, without any intervention for experimental purposes only. Despite, 
the ARRIVE guidelines 2.0 were followed54 and the complete checklist was reported. The relevant criteria to this 
model are reported in the main text.

Saliva samples were stored on ice immediately after collection, and within two hours aliquoted and stored at 
−80 °C until the extraction procedure and data acquisition.

Sample preparation.  Metabolites were extracted from the pig saliva samples using an extraction proce-
dure targeting primarily polar metabolites, similarly to recently published methods55,56. Saliva samples were 
thawed on ice and briefly vortexed (10 s). Saliva samples were centrifuged at 1300 rpm, 4 °C, for 10 min and 
the clear fluids were transferred to new 1.5 mL laboratory centrifuge tubes. Samples were vortexed again and 
50 μL of each sample, including four QC samples were transferred to a new 1.5 mL laboratory centrifuge tube 
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(from a pooled sampled prepared from 75 µL from each sample in a 15 mL tube as a pooled QC vial. Then, 150 
µL of ice-cold 50:50 methanol:acetonitrile (v/v) was added to each. Next, vortex for 15 s and centrifugation at 
14,000 rpm, at 4 °C for 20 min was performed. Finally, 150 μL from each sample were transferred to LC vials 
with inserts for immediate analysis. Samples were injected in randomized order with quality control samples 
every eight injections.

Quality assurance and quality control.  In order to assure the quality of the data, several actions took 
part: (1) A pooled quality control sample (QC) was prepared by taking 75 µL from each experimental sam-
ple, extracted as described above, and injected from the same vial every eight samples. The pooled QC sample 
injected along the sequence, serves as quality control for the instrument performance. (2) A pooled QC sample 
was extracted four times (QA), injected randomly along the sequence as quality assurance for the extraction 
procedure. (3) Extracted water sample was used as a blank, to subtract background ions in data analysis. R 
package RawHumus57 was used to evaluate the data quality based on QC samples. The resulting QC reports are 
shown in File S2 for QC data obtained in positive ionization mode and File S3 for QC data obtained in negative 
ionization mode.

Ultra‑high‑performance liquid chromatography‑tandem mass spectrometry.  High perfor-
mance liquid chromatography was performed by Vanquish UHPLC using analytical Accucore™ 150 Amide 
HILIC column (100 × 2.1 mm, 2.6 μm), coupled to a high-resolution mass spectrometer Orbitrap Q-Exactive™ 
Focus (Thermo Scientific™) equipped with a HESI ion source. All samples were first analysed in positive ioniza-
tion mode and then injected again for analysis in the negative ionization mode. Mass calibration was performed 
on the day of starting the data acquisition.

Positive ionization mode: mobile phase A: 10 mM ammonium formate, 0.1% formic acid, 95% acetoni-
trile/water (v/v). Mobile phase B: 10 mM ammonium formate, 0.1% formic acid, 50% acetonitrile/water (v/v). 
Gradient: t = 0.0 min, 1% B, t = 1.0 min, 1.0% B, t = 3.0 min, 15.0% B, t = 6.0 min, 50.0% B, t = 9.0 min, 95% B, 
t = 10.0 min, 95% B, t = 10.5 min, 1% B, t = 15.0 min, 1% B. Negative ionization mode: mobile phase A: 10 mM 
ammonium acetate, 0.1% acetic acid, 95% acetonitrile/water (v/v). Mobile phase B: 10 mM ammonium acetate, 
0.1% acetic acid, 50% acetonitrile/water (v/v). Gradient: t = 0.0 min, 1% B, t = 1.0 min, 1.0% B, t = 3.0 min, 15.0% 
B, t = 6.0 min, 50.0% B, t = 9.0 min, 95% B, t = 10.0 min, 95% B, t = 10.5 min, 1% B, t = 15.0 min, 1% B. For both 
ionization modes, the column temperature was 35 °C and injection volume was 5 μL. Autosampler compart-
ment was kept at 7 °C. Tune file settings: Sheath gas flow rate 30 (arbitrary units), aux gas flow rate 13 (arbitrary 
units), spray voltage 3.2 kV (2.7 kV negative ionization mode), capillary temperature 350 °C, aux gas heater 
temperature 400 °C.

Mass spectrometric settings.  Full scan mass resolution 35,000, Scan range 70 to 1050 m/z, ACG target 1 
e6, spectrum data type: profile. dd-MS2 discovery mode, MS2 mass resolution 17,500, isolation window 3.0 Da, 
collision energy 30 eV.

MS‑data pre‑processing and data analysis.  Post-acquisition data processing was accomplished using 
Compound Discoverer™ (Thermo Scientific™) software 3.2, commonly used for untargeted metabolomics analy-
ses. In brief, raw data was uploaded and processed; missing values imputation was automatically performed by 
the software. Then, features with more than 20% missing values across sampled were filtered.

The obtained mass to charge ratio (m/z), including MS/MS fragments and retention time were searched 
against large spectral libraries for metabolite annotation. After data evaluation and cleaning process, including 
background spectral filtering (noise elimination) and quality control (QC)-based filtering (metabolite features 
with CV ≥ 30% were removed), the dataset was suitable for statistical analysis. First, Principal Component Analy-
sis (PCA), as an unsupervised statistical method, was utilized. Then, the screening for biomarkers was done 
by step-wise filtering of Adj P-value < 0.05, and different fold change ratios as detailed in the results section. 
Data exploration also included further investigation of the affected metabolic pathways by the online tool of 
MetaboAnalyst 5.0 software21. Finally, the detected potential biomarkers were confirmed manually by spectra 
evaluation and comparison to the fragmentation pattern and retention time of commercial standards or online 
library mzCloud™ and commercial standards by Sigma. Adjusted P-value < 0.05 was reported as significant.

Data availability
All data analysed during this study is included in this paper and its Supplementary files.
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