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Qualitative analysis 
and phase of chaos control 
of the predator‑prey model 
with Holling type‑III
Mohammed O. AL‑Kaff 1,2*, Hamdy A. El‑Metwally 1 & El‑Metwally M. Elabbasy 1

In this study, we investigate the dynamics of a discrete-time with predator-prey system with a 
Holling-III type functional response model. The center manifold theorem and bifurcation theory are 
used to create existence conditions for flip bifurcations and Neimark-Sacker bifurcations. Bifurcation 
diagrams, maximum Lyapunov exponents, and phase portraits are examples of numerical simulations 
that not only show the soundness of theoretical analysis but also show complicated dynamical 
behaviors and biological processes. From the point of view of biology, this implies that the tiny 
integral step size can steady the system into locally stable coexistence. Yet, the large integral step size 
may lead to instability in the system, producing more intricate and richer dynamics. This also means 
that when the intrinsic death rate of the predator is high, this leads to a chaotic growth rate of the 
prey. The model has bifurcation features that are similar to those seen in logistic models. In addition, 
there is a bidirectional Neimark-Sacker bifurcation for both prey and predator, and therefore we obtain 
a direct correlation in symbiosis. This means that the higher the growth rate of the prey, the greater 
the growth rate of the predator. Therefore, the operation of predation has increased. The opposite is 
also true. Finally, the OGY approach is used to control chaos in the predator and prey model. which led 
to a new concept which we call bifurcation phase of control chaos.

It is generally recognised that when there are non-overlapping generations in populations, discrete-time models 
defined by difference equations are more useful and trustworthy than continuous-time models. Furthermore, 
as compared to continuous models, these models give efficient computing results for numerical simulations as 
well as richer dynamical properties1–7. Many fascinating works on the stability, bifurcation and chaotic occur-
rences in discrete temporal models have appeared in the literature in recent years8–15. Because of its widespread 
occurrence and relevance, research into the dynamic connection between prey-predator has been and will con-
tinue to be a hot issue for a long time. In 1959, a Canadian researcher called Holling16 presented the matching 
functional response function for different sorts of species to show the predation rate of predator population to 
prey population based on his experimental data, which included three primary categories. Holling types I, II, 

and III, with Holling-III being the functional response function, i.e., 
αx2n

β + x2n
 is applicable to both terrestrial and 

marine organisms (applies to whales, deer, and other vertebrates). Since then, research into the functional 
response of Holling type III has grown in importance as a new avenue for studying predator-prey interactions17,18. 
We consider the following set of equations to describe the dynamics of a prey-predator system:

where x and y denote prey population and predator population densities, respectively; a, b, c, d and e are positive 
constants, a a stands for prey intrinsic growth rate, b is the predation coefficient of the predator, which reflects 
the size of the predator’s ability, c is death rate of the predator, d is the conversion factor denoting the number of 
newly born predators for each captured prey and e is half capturing saturation and the predation rate.

(1)















x′ = ax − bx2y

e + x2
,

y′ = dbx2y

e + x2
− cy,
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The term 
(

bx2

e+x2

)

 denotes the responses function of the predator. This function is termed as holling-III 
responses function.

Using Euler technique on System (1), we get the following system:

where h is the step size integral, we may assume that the prey is located in a spot isolated from predators where 
the impact of the death of the newly born prey due to predators can be neglected, including its death due to 
natural conditions. We are only looking at the capabilities of predators for predation. Thus, in System (2), the 
predator-prey model with the response function of the third type is given by the following system:

In this work, we focus on the dynamical behavior of System (3) in the interior first quadrant R2
+ from the 

standpoint of biology. Specifically, the stability of System the fixed points is discussed. Using the center manifold 
theorem and bifurcation theory, we strictly establish that System (3) undergoes the flip bifurcation, FB in short, 
and hopf bifurcation, HB in short. Moreover, the research shows a new phase of chaos control using the feedback 
control approach to stabilise chaos on unstable paths. Numerical simulations that support our findings.

Existence and stability of the fixed points
In this section, we present some results related to the existence and stability of the fixed points in the model 
(3). In System (3) x and y have to be positive values in order to be biologically viable. We have at most two fixed 
points under various conditions: 

	 (i)	 The demise state of the total population p0(0, 0),
	 (ii)	 The cohabitation state of the prey and predator p1( ce√

(b−c)ce
, ae√

(b−c)ce
) is inside fixed point exist for b > c

.

We rewrite System (3) as follows:

The Jacobian matrix (J) of System (4) about the fixed point p(x, y) is given by

where

The characteristic equation of the variational matrix can be written as

where this is a one-variable quadratic equation with T(x, y) = −(j11 + j22) and D(x, y) = j11j22 − j12j21.

Lemma 1  19,20. Let F(R) = R2 + TR + D . Suppose that F(1) > 0, R1 and R2 are two root of F(R) = 0 . Then 

(i)	 |R1| < 1 and |R2| < 1 if and only if F(−1) > 0 and D < 1.
(ii)	 |R1| < 1 and |R2| > 1 (or |R1| > 1 and |R2| < 1 ) if and only if F(−1) < 0.
(iii)	 |R1| > 1 and |R2| > 1 if and only if F(−1) > 0 and D > 1.
(iv)	 R1 = −1 and |R2| �= 1 if and only if F(−1) = 0 and T  = 0, 2.
(v)	 R1 and R2 are complex and |R1| = |R2| = 1 if and only if T2 − 4D < 0 and D = 1 .

(2)















xn+1 = (1+ ah)xn −
hbx2nyn

e + x2n
,

yn+1 = (1− ch)yn +
hdbx2nyn

e + x2n
,

(3)















xn+1 = (1+ ah)xn −
hbx2nyn

e + x2n
,

yn+1 = (1− ch)yn +
hbx2nyn

e + x2n
.

(4)















xn+1 = η(xn, yn) = (1+ ah)xn −
hbx2nyn

e + x2n
,

yn+1 = µ(xn, yn) = (1− ch)yn +
hbx2nyn

e + x2n
.

(5)J(x, y) =
(

j11 j12
j21 j22

)

,

j11 = ∂η(xn ,yn)
∂xn

|(xn ,yn) = 1+ ah− 2behxy

(e+x2)2
, j12 = ∂η(xn ,yn)

∂yn
|(xn ,yn) = − hbx2

e+x2
,

j21 = ∂µ(xn ,yn)
∂xn

|(xn ,yn) =
2behxy

(e+x2)2
and j22 = ∂µ(xn ,yn)

∂yn
|(xn ,yn) = 1− ch+ hbx2

e+x2
.

(6)R2 + T(x, y)R + D(x, y) = 0,
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Let R1 and R2 be two roots of (6). We recall some definitions of topological types for a fixed point p(x, y). 
p(x, y) is called a sink if |R1| < 1 and |R2| < 1 . A sink is locally asymptotic stable. p(x, y) is called a source if 
|R1| > 1 and |R2| > 1 . A source is locally unstable. p(x, y) is called a saddle if |R1| < 1 and |R2| > 1 (or |R1| > 1 
and |R2| < 1 ). And p(x, y) is called non-hyperbolic if either |R1| = 1 or |R2| = 1.

Theorem 1  For the trivial fixed point P0(0, 0) , the following statements hold: 

(1)	 When 0 < h < 2
c is a saddle point.

(2)	 When h = 2
c is a non-hyperbolic fixed point.

(3)	 When h > 2
c is a source fixed point.

Proof  The Jacobian matrix at p0(0, 0) takes the following form:

which has two eigenvalues R1 = ah+ 1 and R2 = 1− ch . Clearly, by applying Lemma 1, we get the result directly.
From Theorem 1, when h = 2

c , we observe that one of the eigenvalues around the fixed point p0(0, 0) is −1 . So, 
a flip bifurcation may happen when the parameter converts in the small neighborhood of h = 2

c . For h ∈ [0, 2] 
and c ∈ [0, 2] topological classification of boundary fixed point p0(0, 0) is depicted in Fig. 1. 	�  �

Theorem 2  When b > 2c, then the following statements hold true: 

	 (i)	 If one set of the following conditions are true, then p1( ce√
(b−c)ce

, ae√
(b−c)ce

) is locally asymptotically stable 
(sink):

	 (ii)	 (b− 2c)2a− 8bc(b− c) ≥ 0 and 0 < h <
(b−2c)a−

√
a((b−2c)2a−8bc(b−c))
2ac(b−c) .

	 (iii)	 (b− 2c)2a− 8bc(b− c) < 0 and 0 < h < b−2c
2c(b−c).

	 (iv)	 If one set of the following conditions are true, then p1( ce√
(b−c)ce

, ae√
(b−c)ce

) is unstable (source):

	 (v)	 (b− 2c)2a− 8bc(b− c) ≥ 0 and h >
(b−2c)a+

√
a((b−2c)2a−8bc(b−c))
2ac(b−c) .

	 (vi)	 (b− 2c)2a− 8bc(b− c) < 0 and h > b−2c
2c(b−c).

	 (vii)	 If one set of the following conditions are true, then p1( ce√
(b−c)ce

, ae√
(b−c)ce

) is unstable (non-hyperbolic):

(7)J(p0) =
(

ah+ 1 0

0 1− ch

)

,

Figure 1.   Topological classification of boundary fixed point p0(0, 0) at h ∈ [0, 2] and c ∈ [0, 2].
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	(viii)	 (b− 2c)2a− 8bc(b− c) ≥ 0 and h = (b−2c)a±
√

a((b−2c)2a−8bc(b−c))
2ac(b−c)  , and h  = 2b

a(b−2c) , 
4b

a(b−2c)

	 (ix)	 (b− 2c)2a− 8bc(b− c) < 0 and h = b−2c
2c(b−c).

	 (x)	 the fixed point p1( ce√
(b−c)ce

, ae√
(b−c)ce

) is unstable (saddle point) if
	 (xi)	 (b− 2c)2a− 8bc(b− c) > 0,

	 (xii)	 (b−2c)a+
√

a((b−2c)2a−8bc(b−c))
2ac(b−c) < h <

(b−2c)a−
√

a((b−2c)2a−8bc(b−c))
2ac(b−c) .

Proof  The Jacobian matrix at p1( ce√
(b−c)ce

, ae√
(b−c)ce

) which has the form

where

Let

where

then, we get

From Lemma 1, we say that the fixed point is locally asymptotically stable If and only if D < 1 and F(−1) > 0 
and the fixed point is non hyperbolic if and only if T  = 0, 2 and F(−1) = 0 . The results are therefore obtained 
by calculating (8).This completes our proof.

From Theorem 2, it is clear that one of the eigenvalues related to the unique positive equilibrium point is 
p1(

ce√
(b−c)ce

, ae√
(b−c)ce

) is −1 and the other is neither 1 nor −1 if (iii-1) in Theorem 2 holds. When (iii-2) in Theo-
rem 2 is true, the eigenvalues related to p1( ce√

(b−c)ce
, ae√

(b−c)ce
) are two conjugate complex numbers with the same 

modulus.
Let

and

Then the unique positive equilibrium point p1( ce√
(b−c)ce

, ae√
(b−c)ce

) may undergo the Flip bifurcation (period-
doubling bifurcation) when the parameters vary in a small neighborhood of F1P1 or F2P1 . Let

Then the unique positive equilibrium point p1( ce√
(b−c)ce

, ae√
(b−c)ce

) may undergo the Neimark-Sacker bifurca-
tion (hopf bifurcation) when the parameters vary in a small neighborhood of HP1.

Bifurcations analysis
This section deals with the positive fixed point p1( ce√

(b−c)ce
, ae√

(b−c)ce
) where, using the center manifold theorem 

and bifurcation theory, we define the integral step size h as a bifurcation parameter to investigate the flip bifurca-
tion and Neimark-Sacker bifurcation of p1( ce√

(b−c)ce
, ae√

(b−c)ce
).

Flip bifurcation.  Here we investigate the flip bifurcation of the discrete-time model (3) with respect to the 
unique positive fixed point p1( ce√

(b−c)ce
, ae√

(b−c)ce
) , when the parameters vary in a small neighborhood of F1P1 

(similar arguments can be applied to the case of F2P1).
Taking the parameters (a, b, c, e, h) arbitrarily from F1P1 , we consider System (3) with (a, b, c, e, h) ∈ F1P1 

described by

J(x∗, y∗) =
[

j11 j12

j21 j22

]

,

j11 = 1− ah(b− 2c)

b
, j12 = −hc, j21 =

2ah(b− c)

b
and j22 = 1.

F(R) = R2 − TR + D,

T = j11 + j22 and D = −j12j21 + j11j22,

(8)F(−1) = 4+ 2ah(hc − 1)+ 2ah(2c − hc2)

b
.

F1P1 =
{

(a, b, c, e, h) : h = h1 = (b−2c)a−
√

a((b−2c)2a−8bc(b−c))
2ac(b−c) , b > 2c and a(b− 2c) > 8bc

}

,

F2P1 =
{

(a, b, c, e, h) : h = h
′
1 =

(b−2c)a+
√

a((b−2c)2a−8bc(b−c))
2ac(b−c) , b > 2c and a(b− 2c) > 8bc

}

.

HP1 =
{

(a, b, c, e, h) : h = h2 = b−2c
2c(b−c) and b > 2c

}

.
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From Eq. (6), it is easy to obtain that the eigenvalues related to p1( ce√
(b−c)ce

, ae√
(b−c)ce

) are R1 = −1 and 

R2 = 3− h1(b−2c)a
b  with |R2| �= 1 by Theorem 2.

Choosing h∗ as a bifurcation parameter, we consider a perturbation of (9) as follows:

where |h∗| << 1 is a small disturbance parameter.
Assume that u = x − x∗ , u = y − y∗ . Then we transform the fixed point p1( ce√

(b−c)ce
, ae√

(b−c)ce
) or p1(x∗, y∗) 

of System (10) into the origin. Then we have

where

and h = h1.
The invertible matrix M defined by

and apply the translation (x, y)T = M(x̄, ȳ)T . Then Map (11) may be changed into

where

(9)







xn+1 = xn + h1

�

axn − bx2nyn
e+x2n

�

,

yn+1 = yn − h1

�

cyn + bx2nyn
e+x2n

�

.

(10)







xn+1 = xn + (h1 + h∗)
�

axn − bx2nyn
e+x2n

�

,

yn+1 = yn − (h1 + h∗)
�

cyn + bx2nyn
e+x2n

�

,

(11)

�

u

v

�

→















Ê11u+ Ê12v + Ê13uv + Ê14u
2

+P̂1uh∗ + P̂2vh∗ + P̂3uvh∗ + P̂4u
2h∗

Ê21u+ Ê22v + Ê23uv + Ê24u
2

+P̂5uh∗ + P̂6vh∗ + P̂7uvh∗ + P̂8u
2h∗















,

(12)

Ê11 = ah+ 1− 2hbex∗y∗

(x∗2+e)
2 , Ê12 = − bhx∗2

x∗2+e
, Ê13 = − 2hbex∗

(x∗2+e)
2 ,

Ê14 = − hbey∗(−3x∗2+e)

(x∗2+e)
3 , P̂1 = a− 2bex∗y∗

(x∗2+e)
2 , P̂2 = − bx∗2

x∗2+e
,

P̂3 = − 2bex∗

(x∗2+e)
2 , P̂4 = − bey∗(−3x∗2+e)

(x∗2+e)
3 ,

Ê21 = 2hbex∗y∗

(x∗2+e)
2 , Ê22 = 1− ch+ bhx∗2

x∗2+e
, Ê23 = 2hbex∗

(x∗2+e)
2 ,

Ê24 = hbey∗(−3x∗2+e)

(x∗2+e)
3 , P̂5 = 2bex∗y∗

(x∗2+e)
2 , P̂6 = bx∗2

x∗2+e
− c,

P̂7 = 2bex∗

(x∗2+e)
2 and P̂8 = bey∗(−3x∗2+e)

(x∗2+e)
3 ,

M =
(

Ê12 Ê12
−1− Ê11 k2 − Ê11

)

,

(13)

(

x

y

)

→
(−1 0

0 k2

)(

x̄

ȳ

)

+
(

f (u, v, h∗)

g(u, v, h∗)

)

,
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with u = Ê12x̄ + Ê12ȳ and v = −(1+ Ê11)x̄ + (k2 − Ê11)ȳ.
Next, the center manifold theorem is then applied see21 to determine the dynamics of the fixed point 

(x̄, ȳ) = (0, 0) at h∗ = 0 . Then there exists a center manifold Wc(0, 0) of Map (13). It may be expressed as follows:

where o((|x̄| + |h∗|)3) is a function with at least three orders in its variables (x̄, h∗)
and

Therefore, Map (14) restricted to Wc(0, 0) is given by

where

and

(14)

f (u, v, h∗) =

(

Ê14

(

k2 − Ê11

)

− Ê12Ê24

)

Ê12(1+ k2)
u2 +

(

Ê13

(

k2 − Ê11

)

− Ê23Ê12

)

Ê12(1+ k2)
uv

+

(

P̂4

(

k2 − Ê11

)

− P̂8Ê12

)

Ê12(1+ k2)
h∗u

2 +

(

P̂3

(

k2 − Ê11

)

− P̂7Ê12

)

Ê12(1+ k2)
h∗uv

+

(

P̂1

(

k2 − Ê11

)

− P̂5Ê12

)

Ê12(1+ k2)
h∗u+

(

P̂2

(

k2 − Ê11

)

− P̂6Ê12

)

Ê12(1+ k2)
h∗v

+ o((|u| + |v| + |h∗|)4),

g(u, v, h∗) =

(

Ê14

(

1+ Ê11

)

+ Ê12Ê24

)

Ê12(1+ k2)
u2 +

(Ê13

(

1+ Ê11

)

+ Ê12Ê23)

Ê12(1+ k2)
uv

+

(

P̂4

(

1+ Ê11

)

+ Ê12P̂8

)

Ê12(1+ k2)
h∗u

2 +

(

P̂3

(

1+ Ê11

)

+ Ê12P̂7

)

Ê12(1+ k2)
h∗uv

+

(

P̂1

(

1+ Ê11

)

+ Ê12P̂5

)

Ê12(1+ k2)
h∗u+

(P̂2

(

1+ Ê11

)

+ Ê12P̂6)

Ê12(1+ k2)
h∗v

+ o((|u| + |v| + |h∗|)4),

Wc(0, 0) = {(x̄, ȳ) : ȳ = c1x̄
2 + c2x̄h∗ + c3h

2
∗ + o((|x̄| + |h∗|)3},

c1 =
Ê212Ê24 + (1+ Ê11)(Ê14 − Ê23)Ê12 − Ê13(1+ Ê11)

2

(

1− k22
) ,

c2 =
P̂2(1+ Ê11)

2 − Ê212P̂5 − (1+ Ê11)(P̂1 − P̂6)Ê12

Ê12(1+ k2)
2

,

c3 =0.

F : x̄ → −x̄ + s1x̄
2 + s2x̄h∗ + s3x̄

2h∗ + s4x̄h
2
∗ + s5x̄

3 + O((|x̄| + |h∗|4),

s1 =
1

k2 + 1
(Ê211Ê13 +

((

−Ê14 + Ê23

)

Ê12 − Ê13(−1+ k2)
)

Ê11

− Ê212Ê24 + (Ê14k2 + Ê23)Ê12 − k2Ê13),

s2 =
1

Ê12(k2 + 1)
((Ê11(P̂6 − P̂1)+ k2P̂1 + P̂6)Ê12 − P̂2(1+ Ê11)

(

k2 − Ê11

)

− Ê212P̂5),

s3 =
1

Ê12(k2 + 1)
(−Ê312

(

2Ê24c2 + P̂8

)

+ (

((

2Ê23 − 2Ê14

)

c2 − P̂4 + P̂7

)

Ê11

+
((

2Ê14 − Ê23

)

c2 + P̂4

)

k2 − c1P̂5 + c2Ê23 + P̂7)Ê
2
12

+
(

k2 − Ê11

)

((−2Ê13c2 − P̂3)Ê11 + Ê13c2k2 − Ê13c2

+ (P̂1 − P̂6)c1 − P̂3)Ê12 + c1P̂2(k2 − Ê11)
2),

s4 =
1

Ê12(k2 + 1)
((−Ê212P̂5 + (P̂1 − P̂6)

(

k2 − Ê11

)

Ê12 + P̂2(k2 − Ê11)
2)c2),

s5 =
1

(k2 + 1)
((−2Ê212Ê24 + (

(

2Ê14 − Ê23

)

k2 +
(

2Ê23 − 2Ê14

)

Ê11

+ Ê23)Ê12 + Ê13(k2 − Ê11)(k2 − 2Ê11 − 1))c1).
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Let

and

From the previous discussion, we get the following theorem:

Theorem 3  If Ŵ1  = 0 and Ŵ2  = 0 , then System ( 3) undergoes a flip bifurcation at the unique positive fixed point 
p1(

ce√
(b−c)ce

, ae√
(b−c)ce

) when the parameter h varies in a small neighborhood of FP1 . Moreover, if Ŵ2 > 0 (resp., 
Ŵ2 < 0 ), then the period-2 orbits that bifurcate from p1( ce√

(b−c)ce
, ae√

(b−c)ce
) are stable (resp., unstable).

Neimark‑Sacker bifurcation.  Next, we discuss the Neimark-Sacker bifurcation of p1( ce√
(b−c)ce

, ae√
(b−c)ce

) 
when the parameters (a,  b,  c,  e,  h) vary in a small neighborhood of Hp1 . We consider System (3) 
with(a, b, c, e, h) ∈ Hp1 represented by

Then Map (15) has a unique positive fixed point p1( ce√
(b−c)ce

, ae√
(b−c)ce

).

Then we choose h̄∗ as a bifurcation parameter and consider a perturbation of (15) as follows:

where 
∣

∣h̄∗
∣

∣ << 1 is a small perturbation parameter.
Assume that u = x − x∗ , u = y − y∗ . Then we transform the fixed point p1( ce√

(b−c)ce
, ae√

(b−c)ce
) of Map (10) 

into the origin. Then we have

where Ê11, Ê12, Ê13, Ê14, Ê21, Ê22, Ê23, Ê24 are given in (14) by substituting h for h2 + h̄∗.
Then Map (15) has a unique positive fixed point p1(x∗, y∗) , where x∗ = ce√

(b−c)ce
 , y∗ = ae√

(b−c)ce
.

Then the characteristic equation model (16) at p1(x∗, y∗) is given by

where

and

Since parameters (a, b, c, e, h) ∈ Hp1 , the eigenvalues of p1(x∗, y∗) are a pair of complex conjugate numbers 
R,  R with modulus 1 by Theorem 2, where

Then we have

Ŵ1 =
(

∂2F

∂ x̄∂h∗
+ 1

2

∂F

∂h∗

∂2F

∂ x̄2

)

|(0,0) = s2,

Ŵ2 =
(

1

6

∂3F

∂ x̄3
+ (

1

2

∂2F

∂ x̄2
)2
)

|(0,0) = s21 + s5.

(15)







xn+1 = xn + h2(axn − bx2nyn
e+x2n

),

yn+1 = yn − h2(cyn + bx2nyn
e+x2n

).

(16)







xn+1 = xn + (h2 + h̄∗)(axn − bx2nyn
e+x2n

),

yn+1 = yn + (h2 + h̄∗)
�

cyn + bx2nyn
e+x2n

�

,

(17)

�

u

v

�

→





Ê11u+ Ê12v + Ê13uv + Ê14u
2

Ê21u+ Ê22v + Ê23uv + Ê24u
2



,

R2 − p(h̄∗)R + q(h̄∗) = 0,

p(h̄∗) = 2+
a
(

h2 + h̄∗
)

(2c − b)

b
,

q(h̄∗) = 1+
2ac

(

h2 + h̄∗
)2
(b− c)

b
+

a
(

h2 + h̄∗
)

(2c − b)

b
.

R,R =− p(h̄∗)

2
± i

√

4q(h̄∗)− p2(h̄∗)

2
,

=2b− a(h2 + h̄∗)(b− 2c)

2b

±i(h2 + h̄∗)
√

a(8bc(b− c)− a(b− 2c)2)

2b
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In addition, we require that when h̄∗ = 0 , Rn , Rn  = 1 , n = 1, 2,  3,  4, which is equivalent to p(0)  = −2, 0,  1,  
2. Note that (a, b, c, e, h) ∈ Hp1 , so p(0)  = −2, 2. Thus we only need to satisfy p(0)  = 0, 1, which leads to

In the following, we investigate the normal form of Map (17) at h̄∗ = 0.
Put

and

Using the translation

the model (17) becomes

where

In addition,

and

Then Map (19) can undergo the Neimark-Sacker bifurcation when the following discriminatory quantity is 
not zero:

where

|R| =
√

q(h̄∗), ℓ =
d|R|
dh̄∗

|h̄∗=0 =
a(b− 2c)

2b
> 0.

(18)a(b− 2c)2 �= 4bc(b− c), 6bc(b− c).

m = 1− ah(b− 2c)

2b
,

ω = h
√

a(8bc(b− c)− a(b− 2c)2)

2b
.

�

u

v

�

=





Ê12 0

m− Ê11 − ω





�

X

Y

�

,

(19)

(

X

Y

)

→
(

m − ω

ω m

)(

X

Y

)

+
(

f (X,Y , h∗)

g(X,Y , h∗)

)

,

f̌ (X,Y , h∗) =
1

Ê12
(Ê13uv + Ê14u

2),

ǧ(X,Y , h∗) =
((m− Ê11)Ê14 − Ê12Ê24)u

2

Ê12ω

+ ((m− Ê11)Ê13 − Ê12Ê23)uv

Ê12ω
.

f̌XX = 2(m− Ê11)Ê13 + 2Ê12Ê14, f̌XY = −ωÊ13, f̌YY = 0,

f̌XXX = 0, f̌XXY = 0, f̌XYY = 0, f̌YYY = 0,

ǧXX = 2

ω
((Ê14 − Ê23)(m− Ê11)Ê12 + (m− Ê11)

2Ê13 − Ê212Ê24),

ǧXY = −(m− Ê11)Ê13 + Ê12Ê23,

ǧYY = 0, ǧXXX = 0, ǧXXY = 0, ǧXYY = 0, ǧYYY = 0.

� = Re[ (1− 2R)R̄2

1− R
�11�20] +

1

2
|�11|2 + |�02|2 − Re(R�21),
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Based on this analysis and the Neimark-Sacker bifurcation theorem discussed in22,23, we arrive at the fol-
lowing theorem.

Theorem 4  If condition (18) holds and �  = 0 , then System (3) undergoes a Neimark-Sacker bifurcation at the 
unique positive fixed point p1( ce√

(b−c)ce
, ae√

(b−c)ce
) when the parameter h varies in a small neighborhood of Hp1 . 

Furthermore, if � < 0 (resp., � > 0 ), then an attracting (resp., repelling) invariant closed curve bifurcates from the 
fixed point for h > h2 (resp., h < h2).

Remark 1  According to bifurcation theory discussed in24, the bifurcation is called a supercritical Neimark-Sacker 
bifurcation if the discriminatory quantity � < 0 . In the following section, numerical simulations guarantee that 
a supercritical Neimark-Sacker bifurcation occurs for the discrete-time model (4).

Chaos control
In this section, our goal is to apply a feedback control method known as Ott-Grebogi-Yorke (OGY)25–27, to System 
(3). For controlling chaos under the effect of Neimark-Sacker and Period-doubling bifurcation at positive fixed 
point of System (3). To apply the OGY method, we write System (3) as follows:

where c is taken for chaos control parameter. Furthermore, c it is assumed that c ∈ (c0 − δ, c0 + δ) with δ > 0 
and c0 denotes the nominal value of c. Moreover, we consider p1(x∗, y∗) = p1(

ce√
(b−c)ce

, ae√
(b−c)ce

) as positive fixed 
point of System (3). Then, one can approximate System (20) in the neighborhood of the fixed point 
p1(x

∗, y∗) = p1(
ce√

(b−c)ce
, ae√

(b−c)ce
) as follows:

where

and

Moreover, System (20) is controlled by the following matrix:

has rank 2. Since 
√
(b− c0)c0e > 0 , therefore rank of Ť is 2. Next, we assume that [c − c0] = −K

[

xn − x∗

yn − y∗

]

 , 

where K =
[

ρ1 ρ2
]

 , then System (21) can be written as

Furthermore, the positive fixed point p1(x∗, y∗) is locally asymptotically stable if and only if both eigenvalues 
of the matrix J − CK lie in an open unit disk. Now the matrix J − CK can be written as follows:

�20 =
1

8
[f̌XX − f̌YY + 2ǧXY + i(ǧXX − ǧYY − 2f̌XY )],

�11 =
1

4
[f̌XX + f̌YY + i(ǧXX + ǧYY )],

�02 =
1

8
[f̌XX − f̌YY − 2ǧXY + i(ǧXX − ǧYY + 2f̌XY )],

�21 =
1

16
[f̌XXX + f̌XYY + ǧXXY + ǧYYY + i(ǧXXX + ǧXYY − f̌XXY − f̌YYY )].

(20)
xn+1 =(1+ ah)xn −

hbx2nyn

e + x2n
= f (xn, yn, c),

yn+1 =(1− ch)yn +
hbx2nyn

e + x2n
= g(xn, yn, c),

(21)
[

xn+1 − x∗

yn+1 − y∗

]

≈ J(x∗, y∗, c0)

[

xn − x∗

yn − y∗

]

+ C[c − c0],

J(x∗, y∗, c0) =







∂f (x∗ ,y∗ ,c0)
∂x

∂f (x∗ ,y∗ ,c0)
∂y

∂g(x∗ ,y∗ ,c0)
∂x

∂g(x∗ ,y∗ ,c0)
∂y






,

C =
[

∂f (x∗ ,y∗ ,c0)
∂c

∂g(x∗ ,y∗ ,c0)
∂c

]

=
[

0

− ah
√
(b−c0)c0e

(b−c0)c0

]

,

Ť = [C : JC] =





∂f (x∗ ,y∗ ,c0)
∂c

∂f (x∗ ,y∗ ,c0)
∂x · ∂f (x∗ ,y∗ ,c0)

∂c

∂g(x∗ ,y∗ ,c0)
∂c

∂g(x∗ ,y∗ ,c0)
∂x · ∂g(x∗ ,y∗ ,c0)

∂c



,

[

xn+1 − x∗

yn+1 − y∗

]

≈ [J − CK]

[

xn − x∗

yn − y∗

]

.
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where

The characteristic equation of the Jacobian matrix J − CK is given by

Let R1 and R2 are the eigenvalues of characteristic Eq. (22), then we have

and

Moreover, we take R1 = ±1 and R1R2 = 1 . Thus, the lines of marginal stability for (23) and (24) are computed 
as follows:

Next, we suppose that R1 = 1 , then Eqs. (24) and (23) yield that:

Finally, if R1 = −1 and using equations (23) we get

Then, stability region for (20) is triangular region bounded by H1,H2 and H3 in ρ1ρ2-plane.

Numerical simulations
In this section, we present bifurcation diagrams, phase images, and maximum Lyapunov (ML in short) exponents 
of System (3) in order to highlight our theoretical analysis and demonstrate complex dynamical behaviors using 
numerical simulation.

Flip bifurcation. 

Example 1  Case 1 We consider h as a parameter and consider the following subcases:
(I) a = 4, b = 2, c = 0.1, e = 0.7 . We have only one positive fixed point. By calculation the flip bifurcation 

of model (3) shows from the fixed point p1(x∗, y∗) = (0.191942974, 7.67771896) at h = 0.5926274349 with 
Ŵ1 = −3.374801576 , Ŵ2 = 0.2675441516 , and (a, b, c, e, h) ∈ FP1 , which illustrates Theorem 3. From Fig. 2(i), 
(ii) we observe that the fixed point p1(x∗, y∗) is stable for 0.58 ≤ h < 0.5926274349 and loses its stability at the 

J − CK =
[

j11 j12

−�ρ1 + j12 −�ρ2 + j22

]

,

j11 =
ah(2c − b)+ b

b
, j12 = −hc,

j21 =
2ah(b− c)

b
, j22 = 1,

� =− ah
√
(b− c)ce

(b− c)c
.

(22)ρ(R) = R2 − (j11 + j22 −�ρ1)R + j11(j22 −�ρ2)− j12(j12 −�ρ1).

(23)R1 + R2 = j11 + j22 −�ρ1,

(24)R1R2 = j11(j22 −�ρ2)− j12(j21 −�ρ1).

(25)H1 : j11(j22 −�ρ2)− j12(j21 −�ρ1)− 1 = 0.

(26)H2 : j22 + j12j21 +�(j11ρ2 − ρ1(j12 + 1))+ j11(1− j22)− 1 = 0.

(27)H3 : j22 − j12j21 +�(ρ1(j12 − 1)− j11ρ2)+ j11(1+ j22)+ 1 = 0.

Figure 2.   Bifurcation diagrams and ML exponents for the model (i) for values of a = 4, b = 2, c = 0.1, e = 0.7, h 
ϵ [0.58, 0.8875].
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flip bifurcation parameter value h = 0.5926274349 . Also, there is a cascade of period -2, 4, 8, 16 orbits emerging. 
The maximum Lyapunov exponents corresponding to Fig. 2(i), (ii) are shown in Fig. 2(iii).

(II) a = 3, b = 2.5, c = 0.2, e = 0.5 . By computation the flip bifurcation of model (3) Shows from the 
fixed point p1(x

∗, y∗) = (0.2085144141, 3.127716212) at h = 1.022801547 with Ŵ1 = −1.955413544 , 
Ŵ2 = 1.553116178 , and (a, b, c, e, h) ∈ FP1 , which illustrates Theorem 3. From Fig. 3(i), (ii). we observe that the 
fixed point p1(x∗, y∗) is stable for 0.95 ≤ h < 1.022801547 and loses its stability at the flip bifurcation parameter 
value h = 1.022801547 . Also, there is a cascade of period -2, 4, 8, 16 orbits emerging. The maximum Lyapunov 
exponents corresponding to Fig. 3(i ), (ii). are shown in Fig. 3(iii).

Case 2 We consider a as a parameter and consider the following subcases:
(I)

′ b = 2, c = 0.1, e = 0.7, h = 0.5926274349 . from Fig. 4(i), (ii) we observe that the fixed point p1(x∗, y∗) is 
stable for 3.4 ≤ a < 4 and loses its stability at the flip bifurcation parameter value a = 4 . The maximum Lyapunov 
exponents corresponding to Fig. 4(i), (ii) are shown in Fig. 4(iii).

(II)
′ b = 2.5, c = 0.2, e = 0.5, h = 1.022801547 . from Fig. 5(i), (ii) we observe that the fixed point p1(x∗, y∗) is 

stable for 2.9 ≤ a < 3 and loses its stability at the flip bifurcation parameter value a = 3 . The maximum Lyapunov 
exponents corresponding to Fig. 5(i), (ii) are shown in Fig. 5(iii).

Case 3 We consider c as a parameter and consider the following subcases:
(I)

′′ a = 4, b = 2, e = 0.7, h = 0.5926274349 . from Fig. 6(i), (ii) we observe that the fixed point p1(x∗, y∗) 
is stable for 0.05 ≤ c < 0.1 and loses its stability at the flip bifurcation parameter value c = 0.1 . The maximum 
Lyapunov exponents corresponding to Fig. 6(i), (ii) are shown in Fig. 6(iii). local amplification (LA in short) 
corresponding to Fig. 6(iv) for 0.533 ≤ c ≤ 0.55 is shown in Fig. 6(i)

(II)
′′ a = 3, b = 2.5, e = 0.5, h = 1.022801547 . from Fig. 7(i), (ii) we observe that the fixed point p1(x∗, y∗) 

is stable for 0.2 < c ≤ 0.39 and loses its stability at the flip bifurcation parameter value c = 0.2 . The maximum 
Lyapunov exponents corresponding to Fig. 7(i), (ii) are shown in Fig. 7(iii).

Neimark‑Sacker bifurcation. 

Example 2  Case 4 We consider h as a parameter and consider the following subcases:
(I) a = 1.5, b = 0.5, c = 0.1, e = 2 . By computation the Neimark-Sacker bifurcation with positive fixed 

point of model (3) shows from the fixed point p1(x∗, y∗) = (0.7071067810, 10.60660172) at h = 3.7328 with 

Figure 3.   Bifurcation diagrams and ML exponents for the model (i) for values of a = 3, b = 2.5, c = 0.2, e = 0.5, 
h ϵ [0.95, 1.43].

Figure 4.   Bifurcation diagrams and ML exponents for the model (i) for values of b = 2, c = 0.1, e = 0.7, 
h = 0.5926274349, a ϵ [3.4, 5.89].
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Figure 5.   Bifurcation diagrams and ML exponents for the model (i) for values of b = 2.5, c = 0.2, e = 0.5, 
h = 1.022801547, a ϵ [2.9, 4.084].

Figure 6.   Bifurcation diagrams and ML exponents for the model (i) for values of a = 4, b = 2, e = 0.7, 
h = 0.5926274349, c ϵ [0.05, 0.5529] and LA corresponding to (i) for c ϵ [0.533, 0.55].
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Figure 7.   Bifurcation diagrams and ML exponents for the model (i) for values of a = 3, b = 2.5, e = 0.5, 
h = 1.022801547, c ϵ [0.03, 0.39].

Figure 8.   Bifurcation diagrams and ML exponents for the model (i) for values of a = 1.5, b = 0.5, c = 0.1, e = 2, 
h ϵ [3.71, 3.7948] and LA corresponding to (i) for h ϵ [3.785, 3.7946].
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� = −0.3951153931 and (a, b, c, e, h) ∈ Hp1 . This proves that Theorem 4 is correct. From Fig. 8(i), (ii) we observe 
that the fixed point p1(x∗, y∗) is stable for 3.71 ≤ h < 3.7328 and loses its stability at the Neimark-Sacker bifur-
cation parameter value h = 3.7328 . Then an attracting invariant cycle bifurcates from the fixed point since 
� = −0.3951153931 < 0 by Theorem 4. Therefore if h = 3.7328 > 0 then the model (3) undergoes a supercritical 
Neimark-Sacker bifurcation see Table 1. The maximum Lyapunov exponents corresponding to Fig. 8(i), (ii) are 
calculated and shown in Fig. 8(iii). Figure 8(iv) is a local amplification for h ∈ [3.785, 3.7946] . The phase portraits 
associated with Fig. 8(i), (ii) are displayed in Fig. 9.

Figure 9.   The phase portraits associated with Fig. 8(i), (ii).

Table 1.   Numerical values of � for h > 3.7328.

Value of bifurcation parameter when h > 3.7328 Numerical value of �

3.7489 −0.3909924957 < 0

3.75 −0.3906958052 < 0

3.7516 −0.3902607865 < 0

3.7606 −0.3877366479 < 0

3.7948 −0.3769148619 < 0

Figure 10.   Bifurcation diagrams for the model (i) for values of a = 0.5, b = 1.5, c = 0.5, e = 1.2, h ϵ [0.43, 0.58] 
and LA corresponding to (i) for h ϵ [0.56, 0.58].
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(II) a = 0.5, b = 1.5, c = 0.5, e = 1.2 . By computation the Neimark-Sacker bifurcation of model (3) shows 
from the fixed point p1(x∗, y∗) = (0.7745966692, 0.774596669) at h = 0.44 with � = −0.0008133888886 , and 
(a, b, c, e, h) ∈ HP1 , which illustrates Theorem 4. From Fig. 10(i), (ii) we observe that the fixed point p1(x∗, y∗) is 
stable for 0 < h < 0.44 and loses its stability at the Neimark-Sacker bifurcation parameter value h = 0.44 , and 
for h ∈ [0.56, 0.58] its local amplification is depicted in Fig. 10(iii). The phase portraits associated with Fig. 10(i), 
(ii) are displayed in Fig. 11.

Case 5 We consider a as a parameter and consider the following subcases:
(I)

′ b = 0.5, c = 0.1, e = 2, h = 3.75 . We get New bifurcation diagrams are obtained, as shown in Fig. 12. This 
explains that the prey-predator of model (3) experiences a Bidirectional Neimark-Sacker bifurcations in the 
range 1.4727 ≤ a < 1.527 . The system first undergoes chaotic dynamics for small value of a. Yet, with increas-
ing value, the chaotic dynamics of the prey-predator system suddenly disappear through the bifurcation of the 
Neimark-Sacker to a steady state for a ∈ [1.48092, 1.48175] . Next, we find that the dynamics of the predator-prey 
system jump to a chaotic state through the second Neimark-Sacker bifurcation until it reaches a steady state for 
a ∈ [1.52525, 1.52646] . The maximum Lyapunov exponents corresponding to Fig. 12(i), (ii) are calculated and 
shown in Fig. 12(iii). Which confirms the dynamic transition in the System (3) from the state of chaos to the 
stable state and then back again to the state of chaos.

(II)
′ b = 1.5, c = 0.5, e = 1.2, h = 0.5 , from Fig. 13(i), (ii) we observe that the fixed point p1(x∗, y∗) is stable 

for 0 < a < 0.00627 . and loses its stability at the Neimark-Sacker bifurcation parameter value a = 0.00627 . The 

Figure 11.   The phase portraits associated with Fig. 10(i), (ii).

Figure 12.   Bifurcation diagrams and ML exponents for the model (i) for values of b = 0.5, c = 0.1, e = 2, 
h = 3.75, a ϵ [1.4727, 1.527].
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maximum Lyapunov exponents corresponding to Fig. 13(i), (ii) are shown in Fig. 13(iii). The phase portraits 
associated with Fig. 13(i), (ii) are displayed in Fig. 14.

Case 6 We consider c as a parameter and consider the following subcases:

Figure 13.   Bifurcation diagrams and ML exponents for the model (i) for values of b = 1.5, c = 0.5, e = 1.2, 
h = 0.5, a ϵ [0, 1.068].

Figure 14.   The phase portraits associated with Fig. 13(i), (ii).
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(I)
′′ a = 1.5, b = 0.5, e = 2, h = 3.75 . with initial conditions x∗ = 0.7071067810 and y∗ = 10.60660172 . Then, 

System (3) undergoes both flip bifurcation and Neimark-Sacker bifurcation as c varies in small neighborhoods 
c1 ≃ 0.09120395559 and c2 ≃ 0.09942 , respectively. If a = 1.5, b = 0.5, e = 2, h = 3.75 and c1 = 0.09120395559 
the positive fixed point (0.6679877411, 10.98616398) of System (3) and The characteristic equation for (3) is 
calculated as follows:

Furthermore, the roots of the above equation are R1 = −1 and R2 = −0.5729109977 with 
Ŵ1 = −0.5333333321 , Ŵ2 = −1.339568037 < 0 and (a, b, c, e, h) ∈ FP1 . This proves that Theorem (3). Similarly, 
If a = 1.5, b = 0.5, e = 2, h = 3.75 and c2 = 0.09942 the positive fixed point (0.7045425810, 10.62979151) of 
System (3) and The characteristic equation for (3) is calculated as follows:

Furthermore, the roots of the above equation are R1,2 = −0.6940250000± 0.7004067856i with 
� = −0.4090765553 and (a, b, c, e, h) ∈ Hp1 . This proves that Theorem (4). Figure 15 shows bifurcation diagrams 
and maximal Lyapunov exponents.

(II)
′′ a = 0.5, b = 1.5, e = 1.2, h = 0.5 , from Fig. 16(i), (ii) we observe that the fixed point p1(x∗, y∗) is stable 

for 0.43 < c < 0.5076 . and loses its stability at the Neimark-Sacker bifurcation parameter value c = 0.47819 . The 
maximum Lyapunov exponents corresponding to Fig. 16(i), (ii) are shown in Fig. 16(iii), and for c ∈ [0.48, 0.505] 
its local amplification is depicted in Fig. 16(iv).

Chaos control.  In order to discuss chaos control for System (3), we apply OGY method and for this taking 
parameters a = 9, b = 2, c = 0.25, e = 0.5 and h = 0.5.

Example 3  then System (3) has a unique positive equilibrium point p1(x∗, y∗) = (0.2672612419, 9.621404709) 
which is unstable. We can take c0 = 0.25 as the nominal value. Then, corresponding controlled system is given by:

where K=
[

ρ1 ρ2
]

 be gain matrix and p1(x∗, y∗) = (0.2672612419, 9.621404709) is unstable equilibrium point 
of System (3 ). Furthermore, we have

and

R2 + 1.57291R + 0.572910999 = 0

R2 + 1.38805R + 0.972240366 = 0

(28)
xn+1 =(1+ ah)xn −

hbx2nyn

e + x2n
,

yn+1 =(1−
(

c − ρ1(xn − x∗)− ρ2(yn − y∗)
)

h)yn +
hbx2nyn

e + x2n
,

J =
[

−2.375 −0.125

7.875 1

]

,

C =
[

0

−4.810702355

]

,

Ť = [C : JC] =
[

0 − 0.6013377944

−4.810702355 4.810702355

]

.

Figure 15.   Bifurcation diagrams and ML exponents for the model (i) for values of a = 1.5, b = 0.5, e = 2, 
h = 3.75, c ϵ [0.082, 0.10065].
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Then, it is easy to check that rank of Ť is 2, therefore System (28) is controllable. Moreover, the Jacobian matrix 
J − LK of the controlled System (28) is given by

Then, characteristic equation of (29) is given by

Then, the roots of (30) lie inside a unit disk |µ| < 1 if the following conditions are satisfied:

(29)J − LK =
[

−2.375 −0.125

7.875+ 4.810702355ρ1 −1+ 4.810702355ρ2

]

(30)
ρ(R) =R2 + (1.375− 4.810702355ρ2)R − 1.390625

− 11.42541809ρ2 + 0.6013377944ρ1.

Figure 16.   Bifurcation diagrams and ML exponents for the model (i) for values of a = 0.5, b = 1.5, e = 1.2, 
h = 0.5, c ϵ [0.43, 0.5076] and LA corresponding to (i) for c ϵ [0.48, 0.505].
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or

In this case, the lines of marginal stability are given by

and

Then, the stable triangular region bounded by the marginal lines H1 , H2 and H3 for the controlled System 
(28) is shown in Fig. 17.

0.05263157893ρ1 <0.2092374195+ ρ2,

17.30516545 >ρ1 ≥ 6.080193252, 0.06062870768

+0.03703703706ρ1 >ρ2,

6.080193252 > ρ1 > 1.507056450, 0.09090909096ρ1 < ρ2 + 0.2669237909.

H1 : 0.6013377944ρ1 = 1.765625+ 6.614715735ρ2,

H2 : 11.42541809ρ2 + 2.390625 = 0.6013377944ρ1,

H3 : 16.23612044ρ2 = 0.6013377944ρ1 + 0.984375.

Figure 17.   Stability region of the controlled System (28).

Figure 18.   Bifurcation diagrams for the controlled system (28) with ρ1 = 1.55 , 
p1(x

∗, y∗) = (0.2672612419, 9.621404709) and ρ2 ∈ [−0.16, 0.3].
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Next, we take ρ1 = 1.55 , then the unique positive equilibrium point of the controlled System (28) is 
locally asymptotically stable if and only if −0.1260146999 < ρ2 < 0.1180361151 . Choosing ρ1 = 1.55 and 
ρ2 ∈ [−0.16, 0.3] , then the bifurcation diagrams of the controlled System (28) are shown in Fig. 18.

Finally, we will introduce a new concept the phase of Chaos Control bifurcation . We consider ρ2 as variable 
and show the behavior of xn for ρ2 ∈ [−0.12, 0.3] . We will choose some values of ρ1 as shown in Fig. 19.
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