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Relating individual cell division 
events to single‑cell ERK and Akt 
activity time courses
Alan D. Stern1, Gregory R. Smith2, Luis C. Santos1, Deepraj Sarmah3, Xiang Zhang4, 
Xiaoming Lu3, Federico Iuricich4, Gaurav Pandey5, Ravi Iyengar1 & Marc R. Birtwistle1,3*

Biochemical correlates of stochastic single‑cell fates have been elusive, even for the well‑studied 
mammalian cell cycle. We monitored single‑cell dynamics of the ERK and Akt pathways, critical cell 
cycle progression hubs and anti‑cancer drug targets, and paired them to division events in the same 
single cells using the non‑transformed MCF10A epithelial line. Following growth factor treatment, 
in cells that divide both ERK and Akt activities are significantly higher within the S‑G2 time window 
(~ 8.5–40 h). Such differences were much smaller in the pre‑S‑phase, restriction point window which 
is traditionally associated with ERK and Akt activity dependence, suggesting unappreciated roles for 
ERK and Akt in S through G2. Simple metrics of central tendency in this time window are associated 
with subsequent cell division fates. ERK activity was more strongly associated with division fates 
than Akt activity, suggesting Akt activity dynamics may contribute less to the decision driving cell 
division in this context. We also find that ERK and Akt activities are less correlated with each other in 
cells that divide. Network reconstruction experiments demonstrated that this correlation behavior 
was likely not due to crosstalk, as ERK and Akt do not interact in this context, in contrast to other 
transformed cell types. Overall, our findings support roles for ERK and Akt activity throughout the cell 
cycle as opposed to just before the restriction point, and suggest ERK activity dynamics may be more 
important than Akt activity dynamics for driving cell division in this non‑transformed context.

The mammalian cell cycle is in large part driven by growth factor activation of the Ras-ERK1–5 and the PI3K-
Akt2,6–11 pathways. Growth factors cause auto-phosphorylation of receptor tyrosine kinases (RTKs). For the 
ERK pathway, RTK phosphorylation recruits the guanine exchange factor SOS to the membrane, catalyzing the 
exchange of GDP for GTP bound to Ras, initiating Raf  activation4–6,12–14. This in turn activates the MEK-ERK 
phosphorylation cascade. When activated, the effector kinases ERK1/2 translocate from the cytoplasm to the 
nucleus and activate transcriptional regulators such as Elk-1 and  CREB15–17. These transcriptional regulators 
induce immediate early genes (IEGs) like c-fos15,16 that then contribute to the expression of cyclin  D14,6,8,17–19, a 
key step in S-phase  entry20.

RTK activation can also initiate Akt pathway signaling. RTK autophosphorylation recruits adapter proteins 
like insulin receptor substrate (IRS-1) and GRB2-associated binder (GAB)2,21–23. These proteins in turn recruit 
Phosphatidylinositol (PtdIns) 3-kinase (PI3K) to the  membrane2,19,24,25 where it phosphorylates the membrane 
phospholipid PtdIns (4,5) P2 (PIP2), generating PtdIns (3,4,5) P3 (PIP3). PIP3 recruits pleckstrin homology 
domain (PH)-containing proteins to the membrane such as phosphatidylinositol-dependent kinase-1 (PDK1)26 
and the serine/threonine protein kinases Akt1/219,26. PDK1 phosphorylates Akt’s activation loop followed by 
mTORC2 phosphorylation of a second site on Akt for full  activation6,7,19. This doubly phosphorylated, activated 
Akt promotes cell cycle progression by: (1) promoting protein translation via 4E-BP and  p70S6K6,19, (2) promot-
ing cyclin  D17,18 CDK4/6, c-Myc, and E2F  activity27 and (3) inhibiting p21 and  p2728 (cyclin-dependent kinase 
inhibitors).

While ERK and Akt pathways have established roles prior to the restriction point marked by S-phase entry, the 
extent to which they are informative of cell cycle completion after S-phase is less clear. Beyond S-phase, studies 
suggest that Ras-ERK29–36 and PI3K-Akt26,37,38 may contribute towards regulating G2 progression. ERK activity 
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was shown to play a role in the duration of DNA damage-induced G2  arrest39. Transient ERK activity maintains 
G2 arrest, whereas sustained ERK activity promotes escape by reducing p53 levels, and inducing the expression 
of pro-mitotic factors such as Plk1 and cyclin  B36. Akt activity also contributes to G2-M progression as its inhi-
bition is associated with reduced cyclin B levels, promoting Chk1 activity and G2  arrest37. These observations 
motivate a closer look at determining how ERK and Akt dynamics are informative of cell cycle completion after 
the canonical restriction point.

On a single cell level, both ERK and Akt activity dynamics have substantial cell-to-cell and dynamic variation, 
exhibiting complex pulses and more simple steady  activity1,24,40–48. Such variation, when coupled with the obser-
vations that cell cycle progression is also  heterogeneous1,49,50, have prompted investigations into the correlation 
between dynamics and cell cycle fate in single cells. What determines proliferation on a single cell level? What 
relative contributions do ERK and Akt activity have to the decision of individual cells to divide? Much prior work 
has focused on activity dynamics. Both Ras-ERK51–53 and PI3K-Akt54 exhibit biphasic growth factor-induced 
activation dynamics, with a transient peak followed by sustained activity hours later. The dynamics of each phase 
contributes differently towards driving progression to S-phase and is cell type  dependent54–56. Live-cell imaging 
and analysis of recently divided sister cells reveal that time-integrated ERK activity has some predictive power of 
the timing to S-phase  entry1. Time-integrated ERK dynamics were found to influence proliferation decisions in 
daughter  cells45. Predicting PC12 cell differentiation/proliferation decisions required both ERK and Akt activity 
dynamics to best define the decision boundary between these two cell fate  outcomes57. Yet, the extent to which 
both ERK and Akt activities throughout the cell cycle are associated with division in single cells remains unclear.

Here, we use live-cell imaging to pair measurements of growth factor-induced ERK and Akt activity to cell 
division outcomes in the same single cells. We aim to assess the extent to which these activities are associated 
with cell cycle progression beyond S-phase entry to single cell division responses, using the well-established 
non-transformed breast epithelial MCF10A cell line, a model system that is commonly used to study epithelial 
signaling biology and cell division  control2,58–63. We found that following treatment of synchronized cells with 
growth factors EGF and insulin, both ERK and Akt activity are significantly higher within the S-G2 interval in 
dividing cells. Such differences were much smaller in the pre-S-phase window, which is traditionally associated 
with ERK and Akt activity  dependence54–56, suggesting unappreciated roles for ERK and Akt in S through G2. 
ERK activity was more strongly associated with cell division events, suggesting Akt activity may play a smaller 
role in this context. Interestingly, we found that ERK and Akt activities are less correlated in cells that divide. 
Network reconstruction experiments demonstrated that this correlation behavior was not due to crosstalk, as 
ERK and Akt do not interact in this context, in contrast to other cell  types64. Overall, our findings support roles 
for ERK and Akt activity throughout the cell cycle as opposed to just before the restriction point, and suggest 
ERK activity dynamics may be more important than Akt activity dynamics for driving cell division in this non-
transformed context.

Results
Association of cell division events with univariate ERK and Akt dynamics. To evaluate associa-
tions between ERK or Akt signaling dynamics and cell division, we first conducted a series of live cell imaging 
experiments in MCF10A cells that express either  ERK41,65 or  Akt43 kinase translocation reporters (KTRs), but 
not yet both at once, and paired those single cell dynamics to cell division events (Fig. 1A). We first verified that 
cell cycle progression and division are related to ERK and Akt activity dynamics in MCF10A cells using small 
molecule inhibitor experiments (Fig. S1). KTR-expressing cells were G0-synchronized by serum and growth 
factor starvation for 24 h. After acquiring 1 h of baseline ERK or Akt activity, cells were treated with EGF and 
insulin, growth factors that promote cell division in MCF10A  cells66. Images were acquired every 15 min for 
48 h, and then single-cell data for kinase activity and division outcome were extracted using custom-built image 
processing pipelines (see “Methods”). Dynamic regimes of KTR specificity were determined using two inde-
pendent (four total) MEK and Akt inhibitors (Fig. S2). ERK KTR was found to be specific in all regimes explored 
here, whereas the Akt KTR was found to be specific >  ~ 1 h after EGF and insulin co-stimulation. Variability 
from cell-to-cell at a particular moment in time, and across a single cell over time, suggested that the probes had 
informative dynamic range outside of the acute time period following the ~ 4–8 h post-growth factor stimulation 
(Supplementary Figs. S9, S10).

Single cell traces of ERK or Akt activity (thin lines) along with the population median (bold line) show rapid 
activation following growth factor treatment, which largely persists for the duration of the experiment (Fig. 1B, 
C). In (blue) dividing cells, population median ERK and Akt activity dynamics are higher throughout the cell 
cycle compared to non-dividing cells, with larger differences evident for ERK. In the pre-S-phase entry window 
(~ < 8 h after growth factor treatment), there are slight differences between dividing and non-dividing cells in 
terms of population median ERK and Akt dynamics. These differences grow larger in the subsequent 8.5–40 h 
interval post growth factor addition, which largely corresponds to S and G2 phases. These trends were also evi-
dent with ten-fold less concentration of growth factors (Fig. 1C). These results suggest that ERK and Akt activity 
may have importance after S through G2 phase.

To assess the statistical significance of this finding, we calculated the median ERK or Akt activity for indi-
vidual single cells within the 8.5–40 h window post-growth factor treatment, and then compared median activity 
between dividing and non-dividing cells with the single tailed rank-sum test (Fig. 1D, E). Individual dots in the 
boxplot represent the median ERK or Akt activity calculated within the 8.5–40 h interval in a single cell. These 
median single cell activities were significantly different in dividing vs. non-dividing populations (Fig. 1E). ERK 
activity was more significantly different in dividing vs non-dividing cells than Akt activity. Nevertheless, there 
is substantial overlap in the two populations, indicating other factors influencing cell division events. We also 
cannot rule out that other dynamic features in addition to the 8.5–40 h median may be additionally informative.
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Figure 1.  Evaluating the association of cell division with univariate single cell ERK or Akt dynamics. In these experiments, 
cells were either expressing the ERK or the Akt KTR. (A) Cell treatment workflow for pairing single cell KTR dynamics to cell 
division. ERK or Akt KTR expressing MCF10A cells were seeded, allowed to attach overnight, and then serum and growth 
factor starved. Following starvation, baseline images were acquired, cells were treated with EGF and insulin, and then imaged 
every 15 min for 48 h. Images were quantified using the analysis pipeline described in the “Methods”. (B, C) Quantified ERK 
or Akt KTR dynamics paired to division events for EGF and Insulin doses that match those used in culture medium (B) or 
tenfold less (C). Single cell traces of dividing (blue) and non-dividing (red) cells are shown with thin lines, and population 
median (per time point) is shown with thick lines. (D) Left, representative single cell trace of ERK KTR for a dividing (blue) 
or non-dividing (red) cell. Median ERK activity within the 8.5–40 h interval for each cell becomes a single dot in the boxplots. 
(E) notBoxplots for single cell median ERK or Akt activity within the 8.5–40 h interval for EGF and Insulin doses that match 
those used in culture medium (top) or tenfold less (bottom). p-values for the right-tailed rank-sum test were calculated at the 
95% confidence interval. D, dividing; ND, non-dividing.
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Measurements of both ERK and Akt dynamics in the same single cells correlated with cell divi‑
sion fate. As shown above, ERK and Akt activity dynamics alone contain information about subsequent 
cell division. Do ERK and Akt activity covariations also correlate with cell division fate? Is one more strongly 
associated than the other? To answer these questions, we performed a similar experiment as described above 
using dual reporter expressing MCF10A cells (see “Methods”). For the duration of the time course, population 
median ERK and Akt dynamics are again elevated in dividing cells compared to non-dividing cells (Fig. 2A), 
with larger differences observed in the 8.5–40 h interval. Median ERK and Akt dynamics together had some 
ability to stratify dividing cells, but again, there is substantial overlap (Fig. 2B). Logistic regression indicated 
that median ERK activity was more strongly associated with cell division events as compared to median Akt 
activity (Fig. 2C). These results were confirmed in an independent experiment (Fig. S3). Moreover, imaging 
data acquired at a 5-min interval corroborated these findings (Fig. S8). We conclude that Akt dynamics add 
comparatively little new information to ERK dynamics for predicting single cell division events in this context. 

Figure 2.  Evaluating the association of cell division with paired, bivariate single-cell ERK and Akt dynamics. 
In these experiments, cells were expressing both the ERK and Akt KTR simultaneously. (A) Quantified ERK 
and Akt dynamics for EGF and Insulin doses that match those used in culture medium (top) or ten-fold less 
(bottom). Single cell traces of dividing (blue) and non-dividing (red) cells are shown with thin lines, and 
population median (per time point) is shown with thick lines. (B) Scatter plot of ERK vs. Akt KTR median 
activity in the 8.5–40 h window from 150 randomly sampled cells. Each dot is a single cell. Dividing cells are 
blue and non-dividing cells are red. Left and right are high and low growth factor concentrations, respectively. 
(C) Statistical significance of logistic regression coefficients for either ERK or Akt median activity (8.5–40 h), 
with regression coefficients shown in parentheses above the respective bars (uncertainty is standard error).
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Although the median in the 8.5–40 h post-growth factor window was analyzed here, we cannot rule out the 
importance of other dynamic features such as pulsing, although in our datasets we did not observe significant 
 pulsing1,24,40–48 (perhaps due to experimental differences such as subconfluency and serum-starvation—see “Dis-
cussion”). Moreover, because of strong growth factor stimulation and potential probe saturation in the 0–8.5 h 
window, we cannot rule out the importance of this earlier signaling window either.

Inferring the topology of the ERK‑Akt network. Information content is related to correlation, so we 
investigated the extent to which ERK and Akt dynamics in the same single cells were correlated, looking across 
every cell and every time point (Fig. 3A, replicate Fig. S3D). Interestingly, in dividing cells, single cell ERK and 
Akt dynamics within the 8.5–40 h window are significantly less correlated than in non-dividing cells, at both 
high and low growth factor doses. Network topology can strongly influence correlated behaviors. In different 
studies, ERK and Akt have been reported to exhibit very different network behavior, such as cross-pathway acti-
vation,  inhibition6,18,19,23,64,67–71 and non-interaction21,64,72. Factors such as cell type and growth factor context can 
influence these discrepant network  topologies3,64. Previous work conducted in panel of growth factors and cell 
lines show varying probabilities of forming an interaction network edge between ERK and  Akt64. The differences 
in network edge formation can affect downstream signaling and cell fate  decisions3. Could ERK and Akt network 
topology give insight into the division-related correlated behaviors observed above?

To reconstruct the ERK and Akt network in MCF10A cells, we implemented recent theory from our lab that 
specifies a sufficient experimental design for such tasks, based on perturbation time course  data73. Specifically, 
for this 2-node network, three time course experiments should be done: response of ERK and Akt activity to 
EGF and Insulin co-treatment with (1) no inhibitor; (2) an ERK pathway inhibitor; and (3) an Akt pathway 
inhibitor. Additionally, we wanted to understand whether the network would be different in the acute phase of 
growth factor treatment from a serum starved state vs. the “chronic” condition where ERK and Akt activities are 
steady over time, particularly because these time regimes seem to have different biological information encoded 
for cell division decisions.

In the acute regime (Fig. 3B), MCF10A cells expressing either ERK or Akt KTR were seeded, serum and 
growth factor starved for 24 h, and then pretreated with either a MEK (PD0325901) or an Akt (MK2206) inhibitor 
for 30 min. The concentrations utilized were determined via titration experiments  to ensure minimum possible 
doses were being used (Figs. S1, S2, S4). Following drug treatment, baseline KTR activity was acquired every 
15 min for 1 h. Then, we treated cells with EGF and insulin and imaged. Single cell traces (thin) and population 
median activity (bold) were calculated for each condition, showing robust ERK and Akt activation (Fig. 3C). MEK 
inhibition ablates ERK activation and has a negligible effect on Akt activation (Fig. 3C). Akt inhibition ablates 
Akt activation and has a negligible effect on ERK activation (Fig. 3C). Although the Akt KTR may reflect kinase 
activity other than Akt in this acute stimulus regime, the fact that complete inhibition of the ERK pathway has 
negligible impact on the Akt KTR readout means that ERK does not impact Akt or the others. These results show 
that in the acute stimulus regime, ERK and Akt exhibit negligible crosstalk after treatment with EGF and insulin.

In the chronic regime, cells were pretreated with either EGF and insulin for 30 min followed by 30 min of 
baseline acquisition, leading to robust ERK and Akt activation (Fig. 3D, E, Replicates in S5). Akt inhibition 
reduces Akt activity, as expected, but negligibly affects ERK activity. MEK inhibition reduces ERK activity, as 
expected, but does not appreciably affect Akt activity. These conclusions are also consistent when a second set 
of MEK and Akt inhibitors are used (Fig. S4). Therefore, in the chronic regime ERK and Akt also do not exhibit 
appreciable cross pathway interactions after EGF and insulin co-treatment. We conclude it is unlikely that cross-
talk interactions account for correlations that change in dividing vs. non-dividing cells.

Discussion
Binary single-cell responses, like division, to perturbations such as growth factor and drug treatments, are almost 
universally heterogeneous even in clonally derived populations. However, biochemical features associated with 
heterogeneous fates, present either before the perturbation, or from dynamics following the perturbation, are 
not well established. The ability to predict such binary responses would not only reflect a deep and fundamental 
understanding of the systems governing important cellular responses, but also have significant translational 
applications such as antibiotic resistance, tissue engineering, and anticancer therapy, where the fates of single cells 
can be of great importance. Here, we investigated growth-factor induced cell division fates in the well-studied, 
non-transformed mammalian epithelial cell line MCF10A, and how they may be associated with the dynamics 
of two central signaling pathways, PI-3 K/Akt and Ras/ERK. Answering such questions requires single-cell, non-
destructive analysis of biochemical features, in this case ERK and Akt activities, that are paired to the eventual 
cell division outcome. They also must be carried out in a high-throughput manner to observe enough events to 
make statistically-supported conclusions. After setting up this experimental system and understanding its ranges 
of validity, we learned that (1) ERK and Akt activities are higher in the 8.5–40 h window after growth factor 
treatment in cells that divide, suggesting underappreciated roles post-restriction point, into S and G2 phases; 
(2) median activities in this time window are associated with cell division outcome, and ERK activity was more 
strongly associated than Akt activity; (3) ERK and Akt activities are less correlated in cells that divide; and (4) 
ERK and Akt do not exhibit crosstalk in this system, so division-related correlation is unlikely related to crosstalk.

We have performed these studies in the MCF10A cell line, a well-established model for non-transformed 
epithelial cells. An obvious next question is how the relationships between ERK, Akt and cell division found 
here translate to different cell lines, and transformation contexts. Many other cell lines are cancer-derived and 
genetically unstable, and/or contain multiple alterations to the systems that control cell cycle progression and 
division. A firm understanding of how ERK and Akt systems control the cell cycle in a system such as MCF10A 
is an important foundation for subsequently understanding how it may be altered in other cell lines, and also 
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across different microenvironmental contexts, such as confluent settings. Indeed, there is a growing body of 
work that focuses on answering fundamental cell biological questions using studies on the MCF10A system 
alone (e.g.,74). It is appealing to consider MCF10A as an emerging model system for mammalian epithelial cells.

Nearly all the cells we observed had relatively simple dynamics for ERK and Akt activity, a rise then a some-
what constant higher than baseline steady-state. Other recent single cell studies have reported pulsatile ERK 
 dynamics1,44,75,76 using a 5 min acquisition frequency. When we used a 5 min acquisition frequency, we still did 
not observe pulsatile activity, although this increased frequency of acquisition required shorter exposure times 
which increased noise in the images. Pulsatile vs non-pulsatile dynamics may be related to differences in growth 
factor concentration, the reporters used, being FRET-based77 or translocation  based65. No live-cell imaging probe 
is perfect and of course has its drawbacks, some of which may be related to off-target responses, which may 
partly explain our Akt activity data in the “acute” phase first following growth factor treatment. For example, 
kinases other than Akt may recognize and phosphorylate the FOXO1-based Akt KTR docking  site78–82. EGF and 
insulin stimulation may also promote activation of such kinases including  PLK183, SGK and  PKA84. Another 
aspect may have to do with cell–cell contact and density. In our study, cells were seeded at low density and serum/
growth factor-starved prior to analysis, whereas pulsatile signaling was reported in high density environments in 
asynchronously cycling  settings1,76. Yet others have found pulsatile dynamics can induce different sets of genes 
as compared to sustained  dynamics41. However, phenotypic consequences, at least in terms of cell proliferation, 
still seem to be related to simple time-integrated signaling  dynamics1,45, similar to what we found here.

ERK and Akt activity dynamics are only a subset of the potentially important variations that drive pheno-
typic variability in cell division responses. ERK activity was substantially more significant than Akt activity. This 
reinforces Akt activity as perhaps more relevant for cell maintenance and health, and more as a “checkpoint” for 
division but not a significant driver, at least in the studied system. As noted above, cell contacts and density are 
important. Such phenomena may potentially be controlled through micropatterning experiments, where cell 
shape and placement can be carefully  controlled85,86. Cell “state”, corresponding to different epigenetic and/or 
metabolic states of cells prior to the experiment, has been reasonably well documented ubiquitously, and can 
contribute to variability, although is difficult to assess in the “track and follow” manner that can be done with 
live-cell kinase reporters. Metabolic or organelle abundance variability may also  contribute87,88. Of course, there 
are other pathways and biochemical correlates that are likely important, such as a balance between p53 and p21 
and/or CDK2  activity49,62,89. Given the multitude of fluorescent proteins, and improvements in cell tracking 
from non-labeled bright field  images90,91, one may be able to measure more important biochemical readouts 
simultaneously for such purposes. There are also multiple checkpoints between growth factor treatment and cell 
division, such as the restriction point, and DNA damage checkpoints, that may contribute. Monitoring division 
with probes like the Fucci system that gives readouts of each cell cycle phase may help explore such  phenomena92.

An interesting aspect of our study was differences between dividing and non-dividing cells in the time 
period that corresponds to S/G2 phases of the cell cycle. The roles of growth factor signaling through ERK and 
Akt pathways historically focused on passing the restriction point into S-phase93. Although we did not see large 
differences pre-S-phase, this may have been due to probe saturation in the acute period following growth factor 
stimulation. Nevertheless, our results suggest potential functional roles for ERK and Akt beyond this canonical 
understanding. Indeed, a recent study found time-integrated ERK activity in a mother cell’s G2 phase influenced 
the cell cycle progression in the subsequently daughter  cells45. The mechanisms that may be driving such func-
tional roles are a potentially interesting area of future study.

We also studied the ERK and Akt activity network, since we found that ERK and Akt activity are less cor-
related with each other in dividing cells compared to non-dividing cells. We found that the observed differences 
in correlation are likely not a result of network topology as ERK and Akt do not appreciably interact. This lack 
of interaction is surprising given that some prior studies describe these pathways as exhibiting cross pathway 
 interactions21,23,64, albeit in other cell lines and in response to other growth factors. However, other studies in 
MCF10A cells across a panel of different growth factors show that ERK and Akt are insular, and do not  interact64. 
Similar to MCF10A cells, 32D-EpoR; BaF3-EpoR; CFU-E cell lines exhibit minimal ERK and Akt cross pathway 
interaction under erythropoietin stimulation, a growth factor that activates both ERK and  Akt72. These studies 
reveal that in non-interacting pathways, differences in protein expression influence the flow of erythropoietin 
 signaling72. Therefore, in our model system, it is possible that the observed differences in ERK and Akt correlation 

Figure 3.  Investigating properties of the ERK and Akt network. (A) Single cell ERK and Akt activity plotted 
across all time points within the 8.5–40 h interval for dividing and non-dividing cells. These cells expressed 
both the ERK and Akt KTR. Pearson correlation coefficient, along with the number of cell-time datapoint 
combinations are indicated. Uncertainty in the correlation coefficients is calculated as described in “Methods”. 
(B) Cell treatment workflow for network reconstruction in the “acute” regime. Single ERK or Akt KTR 
expressing MCF10A cells were seeded, allowed to attach overnight, and then serum and growth factor starved. 
Following starvation, inhibitor was added (PD: PD0325091; MK: MK2206), baseline images were acquired, cells 
were treated with EGF and insulin, and then imaged every 15 min for 12 h. Images were quantified using the 
analysis pipeline described in the “Methods”. (C) Quantified ERK and Akt activity dynamics in the acute regime. 
Solid lines are population median (per time point), and shaded areas denote the standard deviation across 
cells. (D) Cell treatment workflow for network reconstruction in the “chronic” regime. Dual ERK and Akt KTR 
expressing MCF10A cells were seeded, allowed to attach overnight, and then serum and growth factor starved. 
Following starvation, EGF and insulin were added, baseline images were acquired, cells were treated with 
inhibitors, and then imaged every 6.5 min for the remaining ~ hour. Images were quantified using the analysis 
pipeline described in the “Methods”. (E) Quantified ERK and Akt activity dynamics in the chronic regime. Solid 
lines are population median (per time point), and shaded areas denote the standard deviation.

▸
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may arise from differences in protein expression across dividing and non-dividing cells. It may also be that dif-
ferences in upstream signaling capacity to ERK and Akt may be related. Characterizing the differences in protein 
expression level in single cells and following cell signaling and cell division can provide insight; but this becomes 
a quite challenging experiment given the number of probes to be measured simultaneously.

In conclusion, we have studied the relationship between ERK activity dynamics, Akt activity dynamics, and 
cell division, and found that simple measures of central tendency of these dynamics in a time coinciding with S/
G2 phase are strongly associated with division in single cells. This implies unappreciated roles for ERK and Akt 
beyond the canonical restriction point. ERK activity is more strongly associated than Akt activity. Yet, neither 
ERK nor Akt activity perfectly segregate dividing from non-dividing cells, so it is clear other biochemical path-
ways are important factors for driving single cell division events. ERK and Akt do not interact with one another in 
the studied contexts, despite the fact that their activities are more correlated in cells that do not divide. These stud-
ies conducted in the non-transformed context provide a foundation to explore how cell transformation through 
oncogenic and/or loss-of-function mutations shape network topology, signaling dynamics, and cell division 
outcome in cancer, with the potential to identify and target pathway compensation behaviors that promote cell 
proliferation and  survival94 in the diseased context. In addition, exploring the role of spatial temporal propagation 
of ERK and Akt signaling in a 3D tissue context, a model system that MCF10A cells are suited for, can provide 
insight into how these pathways regulate tissue homeostasis and how transformation disrupts this homeostasis.

Methods
Cell culture. MCF10A cells were gifted by Dr. Gordon Mills and cultured in complete sterile filtered (VWR 
10040-436) media, consisting of DMEM F12 (Gibco #11330-032) supplemented with 2 mM l-Glutamine (Gibco 
# 25-005-CI), 20 ng/ml EGF (Peprotech AF-100-15), 10 μg/ml insulin (Sigma #I-1882), 0.5 μg/ml hydrocorti-
sone (Sigma #H-0888), 100 ng/ml cholera toxin (Sigma #C-8052) and 5% horse serum (Invitrogen #16050-122). 
Cells were passaged with 0.25% trypsin (Gibco #25200056) to maintain sub confluency. Cells were maintained 
at 37 °C, 5%  CO2. Starvation media and imaging media is phenol red free DMEM F12 (Fisher #11039-021) sup-
plemented with 100 ng/ml cholera toxin.

HEK293T cells were gifted by the Dr. Dominguez and Dr. Pappapetrou labs and cultured in complete sterile 
filtered (VWR 10040-436) media, consisting of DMEM (Gibco #11965118) supplemented with 2 mM l-Glu-
tamine (Gibco #25-005-CI) and 10% heat inactivated fetal bovine serum (Gibco #16140071). Cells were passaged 
with 0.05% trypsin (Gibco #25300054) to maintain sub confluency.

All inhibitors used for KTR validation were formulated as 10 mM stock solutions in DMSO (Sigma Aldrich 
D2650-5X0ML) and sterile filtered with a 0.22-micron syringe filter. PD0325901 (MEK inhibitor 1) was pur-
chased from Sigma Aldrich (PZ0162-5MG). Trametinib (S2673) (MEK inhibitor 2) and Ipatasertib (S2808) (Akt 
inhibitor 2) were purchased from Selleck Chemicals. MK2206 (#CT-MK2206) (Akt inhibitor 1) was purchased 
from Chemietek.

Imaging. All live cell imaging experiments with a 15  min interval were acquired using an InCell 2200 
microscope (GE Healthcare) under environmental control (37 °C, 5%  CO2) with a Nikon 20X/0.75, Plan Apo, 
CFI/60 objective. For KTR imaging the following filter sets were utilized: FITC (Excitation: 475/28 nm Emis-
sion: 511/23 nm) (ERK-mClover, Akt-mClover KTR); Cy3 (Excitation: 542/27 nm Emission:597/45 nm) (H2B-
mRuby2, mCherry-NLS); Cy5 (Excitation: 632/22 nm Emission: 679/34 nm) (ERK-iRFP); Brightfield.

KTR-expressing MCF10A cell lines (pool-see below) were seeded in separate rows of a 96 well plate (Corning 
#3603) at 5000 cells/well and treated as described. After growth factor and serum starvation, starvation media 
was aspirated, cells were washed with PBS and 100 μL imaging media was then placed in the wells. Following 
baseline imaging, cells were treated as indicated by adding 100 μL of 2× solutions in imaging media. Acquired 
images were processed as described in “Computational image analysis”.

Experiments with a 5-min sampling interval were acquired using the Leica DMI8 (Leica Microsystems) micro-
scope equipped with a HC PL FLUOTAR L 20×/0.40 DRY objective, a pentacube filter (excitation: 458–490 nm, 
524–584 nm, 624–754 nm, emission: 500–530 nm, 579–611 nm, 661–701 nm), a Leica DFC 9000GT camera and 
a CoolLED pE-4000 illumination system. Cells were maintained at 37 °C, 5%  CO2 using a Pecon environmental 
control system. 12-bit images were acquired for each probe: Akt-mClover KTR; mCherry-NLS, ERK-iRFP and 
Brightfield. Raw images were not flatfield corrected or background subtracted due to potential signal loss due 
to the short acquisition times and exposure settings for this dataset.

Flow cytometry. EdU flow cytometry assays were performed using the Molecular Probes Click-iT Plus 
EdU flow cytometry assay kit (C10633 molecular probes). MCF10A cells were seeded in 6 well plates (Corning 
353046) at a density of 127 cells/mm2 in complete DMEM F12 media. The following day, we serum and serum 
and growth factor starved cells in DMEM F12 media supplemented with 100 ng/ml cholera toxin for 24 h. Fol-
lowing starvation, cells were pretreated with a final concentration of 100 nM of MEK inhibitor 1 (PD0325901) 
or 10uM of Akt inhibitor 1 (MK2206) or DMSO control for 30 min. Cells that did not receive inhibitor pretreat-
ment were treated with either MEK inhibitor 1 or Akt inhibitor 1 2, 4, 8, or 12 h post EGF and insulin addition 
(Final growth factor concentration: 20 ng/ml EGF, 10ug/mL insulin). 22 h post growth factor addition, a final 
concentration of 10 μM of EdU was added to each well and incubated for 2 h. 2 h post EdU addition, cells were 
washed with PBS and lifted with 0.25% Trypsin for 10 min. Trypsin was neutralized with complete DMEM F12 
media. Cells were pelleted at 100×G for 5 min, resuspended in 100 μl of PBS, and processed as recommended 
by the manufacturer’s protocol (Molecular Probes Click-iT Plus EdU flow cytometry assay kit). During the last 
5 min of permeabilization, 100 μl of diluted 1 μg/ml Hoechst 33342 (ThermoFisher H3570) stain was added. 
Cells were then washed with a 1% (g/100 ml) bovine serum albumin PBS solution and pelleted at 100 g. Cells 
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were resuspended in permeabilization buffer and stained with EdU Click-iT reaction cocktail for 30  min at 
room temperature protected from light. Following EdU Click-iT labeling, cells were washed and resuspended in 
permeabilization buffer and analyzed using the BD Canto II flow cytometer configured with the following laser 
lines: excitation 640 nm, emission filter 660/20, excitation 405 nm, and emission filter 450/50. Data was gated 
and processed using FCS Express (Denovo Software).

Cloning. Akt KTR was modified from the transposase transfection system PSBbi-FoxO1_1R_10A_3D vector 
(Addgene # 106278)43 for lentiviral production (Fig. S6A). The lentiviral expression vector was developed using 
overlap PCR from fragments generated from the source vector PSBbi-FoxO1_1R_10A_3D: SV40NLS-mCherry-
P2A and Gly-FT2DDD-KTR-mClover. Primer sequences are shown in Fig. S6C and were designed in SnapGene 
and ordered from Sigma Aldrich. Fragments for lentiviral vector construction were generated via PCR using Q5 
polymerase (NEB M0491S) and primers specific to SV40NLS-mCherry-P2A and Gly-FT2DDD-KTR-mClover 
(Fig. S6C) regions of PSBbi-FoxO1_1R_10A_3D (Fig. S6, Fragment 1,2). Fragments were gel purified using the 
NEB Monarch gel extraction kit (NEB T1020S). Following gel extraction, a 10 cycle PCR reaction was performed 
using Q5 polymerase and equimolar SV40NLS-mCherry-P2A and Gly-FT2DDD-KTR-mClover fragments 
using an annealing temperature of 72 °C. 5 μl of the product was amplified using end primers (F: SV40NLS-
mCherry-P2A, R: Gly-FT2DDD-KTR-mClover,  Ta = 69  °C, Fig.  S6C). Gateway ATTB sites were inserted at 
flanking ends using PCR and the ATTB primers (Fig.  S6C). The Gateway cloning compatible fragment was 
inserted into donor vector pDONR221 (Invitrogen™ 12536017) using BP Clonase II (ThermoFisher# 11789020). 
High Efficiency NEB-5-alpha Competent E. coli (NEB C2987I) were transformed with pDONR221 containing 
the Akt KTR. Transformants were miniprepped with the PureYield Plasmid Miniprep System (Promega A1223) 
and Sanger sequence verified using GeneWiz. Akt KTR expression vector was generated by performing a LR 
reaction using pDONR 221-Akt, LR Clonase II (Thermofisher #11791020) and the lentiviral expression vector 
pLenti CMV Hygro DEST (Addgene #17454) generating the final product, a bi-cistronic hygromycin selectable 
lentiviral expression vector. The product was transformed into NEB® 5-alpha Competent E. coli. Transformations 
with the correct sequence were maxiprepped with PureYield Plasmid Maxiprep System (Promega #A2392) and 
used for lentiviral production.

We exchanged the antibiotic selectable marker on the lentiviral expression vector H2B-mRuby2 (Addgene 
#90236) from hygromycin to puromycin. Specifically, we transferred pLentiPGK Hygro DEST H2B-mRuby2 
into pLentiCMV puromycin DEST (Addgene #17452) using BP Clonase II followed by LR Clonase II generating 
pLentiCMV puromycin DEST H2B-mRuby2 (H2B-mRuby2).

Lentiviral production. The lentiviral constructs for each cell line are shown in Fig. S6B. Lentiviral parti-
cles were generated by transfecting 5 million HEK293T cells seeded in a T75 flask allowed to attach overnight 
(Corning® T-75 flasks catalog #430641) using the TransIT-293 transfection reagent (Mirus Bio MIR2704) along 
with expression vector ERK KTR (mClover or iRFP), H2B-mRuby2, or Akt KTR along with packaging plasmid 
pPAX (Addgene #12260), and envelope protein pCMV-VSV-G (Addgene #8454) according to the manufac-
turer’s instructions. Two days post transfection, supernatant from was collected and concentrated using Amicon 
Ultra-15 100 kD centrifugation filters (Millipore #UFC910008). The concentrated lentiviral supernatant was 
aliquoted and stored at − 80 °C.

Lentiviral transduction. 100,000 MCF10A cells were transduced in suspension in a 6 well plate (Corn-
ing 353046) containing complete DMEM F12 medium along with 100 μl lentiviral supernatant. Two days later, 
expression was validated by fluorescence imaging. ERK KTR MCF10A cell lines (ERK KTR-mClover Hygro, 
H2B-mRuby2 Puro) were selected in complete DMEM F12 media supplemented with hygromycin (35  μg/
ml) and puromycin (2 μg/ml). Akt KTR expressing MCF10A cell lines (SV40nls-mCherry-Akt KTR-mClover 
Hygro) were selected with DMEM F12 media containing hygromycin (35 μg/ml). Cells were passaged every two 
to three days in selection media for about 2 weeks. Following selection, cells were expanded in complete DMEM 
F12 maintenance media containing either both hygromycin (1.5 μg/ml) and puromycin (0.1 μg/ml) (ERK KTR-
mClover expressing cells) or hygromycin (1.5 μg/ml) (Akt-KTR-mClover expressing cells). Single clones were 
not selected, rather, analyses were done with pools. Live-cell imaging was conducted in the absence of selection 
antibiotics. Dual reporter expressing cells (ERK KTR-iRFP, Akt-KTR-mClover) lines were not selected, as the 
ERK KTR iRFP (Addgene #59150) lentiviral expression vector does not confer antibiotic resistance. For these, 
ERK KTR iRFP virus was added to cells for 24 h, and then subcultured as above prior to live-cell imaging analy-
sis.

Computational image analysis. While many image analysis tools  exist95–97, each application still requires 
much novel development tuned to the problem at hand. We developed an automated image analysis pipeline 
using both  iLastik98 and  CellProfiler97 software packages, along with MATLAB scripts (Fig. S2C). It is available 
at the Birtwistle Lab github repository (github.com/birtwistlelab/Predicting-Individual-Cell-Division-Events-
from-Single-Cell-ERK-and-Akt-Dynamics), which includes some dockerized scripts. The analysis pipeline con-
sists of (1) cell nuclei and cytoplasmic segmentation, (2) quantification of KTR fluorescence in both nuclei and 
cytoplasmic compartments, (3) tracking single cells across a time series, and (4) automatic detection of cell 
division.

1. Prior to segmentation images were flatfield corrected and background subtracted using CellProfiler. Images 
of nuclear localized fluorescent protein H2B-mRuby2 (ERK KTR) and NLS-mCherry (Akt KTR) were input 
into iLastik. Nuclei were identified using a series of features—object intensity, edge detection and texture.
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2. The binary mask outputs from iLastik were input into CellProfiler to create a perinuclear ring known as 
the ‘Cytoring’65 which extends 10 pixels from the binary nuclei mask and into the cytoplasm (Fig. S2C). 
Calculating the cytoplasmic to nuclear KTR fluorescence ratio provides the relative activity of the pathway 
of interest for that particular cell at that time point.

3. Segmented nuclei identified with iLastik were tracked using CellProfiler’s TrackObjects  module96,97,99 and 
Follow  Neighbors99. Each identified nucleus was assigned a numerical ID, which corresponds to the same 
cell across each timepoint. We filter tracks that are shorter than the duration of the time course to prevent 
quantification of cells that were transiently tracked.

4. Cell division was detected using a feature of cytoplasmic to nuclear KTR fluorescence (C/N ratio) that is 
unique to dividing cells. As cells divide, there is a change in morphology resulting in a rapid decrease in C/N 
ratio (Fig. S7). MATLAB’s findpeaks function was used to detect when this steep decrease occurs. In dual 
reporter cells, the Akt KTR was used. We then truncated the time series 5 timepoints before the identified 
peak, which is attributed to actual kinase activity. For each processed dataset, the output of the cell division 
script was manually reviewed, and any misclassified cells were removed by directly observing ERK and Akt 
KTR time course plots for spurious peaks that erroneously resulted in a cell being marked as a dividing cell, 
or by directly observing the cell nucleus in time-lapse movies for a fusion event. These spurious peaks were 
more common in the 5-min dataset and could be the result of low dynamic range due to the acquisition 
parameters. The remaining cells that were not categorized as dividing were defined as non-dividing if the 
cell was present for 48 h (15-min interval), or greater than or equal to 41.67 h (5-min interval).

The CellProfiler pipeline exports CSV files first preprocessed in Microsoft Excel then analyzed in MATLAB. 
First, the csv are input into batchreader.m, which generates a cell array of tables containing each cell’s measured 
parameters. The data is then input into the script ktrTablePlotter.m, which plots KTR dynamics. Cell division 
events are detected using the script Div_detection.m. For single reporter experiments, ERK or Akt KTR dynam-
ics were utilized for cell division detection. For experiments with cells containing both reporters under 15-min 
acquisition Akt KTR was utilized for division detection; for 5-min acquisition, ERK KTR was utilized. Division 
events were manually curated in addition as described above. Cells were separated by division status, and KTR 
dynamics were plotted for each class.

Statistics, classification, and visualization. Where box plots are shown, right tailed rank-sum tests 
were used to calculate p-values for differences between median dividing and non-dividing cells. For logistic 
regression analysis, individual cell median ERK and Akt activity were calculated across the 8.5–40 h interval. 
The MATLAB function fitglm, with the following parameters (’Distribution’,’binomial’,’link’,’logit’) was applied 
to cell median activity and cell division response to generate the generalized linear regression model along with 
its coefficients, and p-values.

NotBoxPlot was retrieved from MATLAB Central File Exchange (Rob Campbell, 2021). Scatter plots of single 
cell ERK and Akt activity across all timepoints within the 8.5–40 h interval was generated using the MATLAB 
Central File Exchange script Scatplot.m—Alex Sanchez (2020). To assess statistical significance of the correlation 
coefficient, the mean (µ) and covariance (σ) between ERK and Akt were calculated across all biological replicates 
and used to sample matched numbers of data points from random multivariate normal distributions for dividing 
cells and non-dividing cells. This was repeated 1000 times to define the range of correlation coefficients between 
the 5th and 95th percentiles, which was reported and rounded up to the nearest 0.01.

Data availability
Analysis pipelines can be found on our lab’s GitHub, along with host links for sample datasets (github.com/
birtwistlelab/Predicting-Individual-Cell-Division-Events-from-Single-Cell-ERK-and-Akt-Dynamics).
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