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Development of a deep learning 
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Uterine sarcomas have very poor prognoses and are sometimes difficult to distinguish from uterine 
leiomyomas on preoperative examinations. Herein, we investigated whether deep neural network 
(DNN) models can improve the accuracy of preoperative MRI-based diagnosis in patients with uterine 
sarcomas. Fifteen sequences of MRI for patients (uterine sarcoma group: n = 63; uterine leiomyoma: 
n = 200) were used to train the models. Six radiologists (three specialists, three practitioners) 
interpreted the same images for validation. The most important individual sequences for diagnosis 
were axial T2-weighted imaging (T2WI), sagittal T2WI, and diffusion-weighted imaging. These 
sequences also represented the most accurate combination (accuracy: 91.3%), achieving diagnostic 
ability comparable to that of specialists (accuracy: 88.3%) and superior to that of practitioners 
(accuracy: 80.1%). Moreover, radiologists’ diagnostic accuracy improved when provided with DNN 
results (specialists: 89.6%; practitioners: 92.3%). Our DNN models are valuable to improve diagnostic 
accuracy, especially in filling the gap of clinical skills between interpreters. This method can be a 
universal model for the use of deep learning in the diagnostic imaging of rare tumors.

Uterine sarcomas are rare, occurring in approximately 5 in 10,000 women1. Although various treatment meth-
ods have been proposed—including surgery, chemotherapy, radiotherapy, hormone therapy, and immunother-
apy––prognosis among patients with uterine sarcoma remains very poor. Indeed, despite some variation based 
on histopathological type, the 5-year overall survival rate does not typically reach 50%, especially among patients 
in the advanced stages2–4.

The term “uterine sarcoma” is usually exclusive of carcinosarcoma, which is epithelial in origin and is associ-
ated with a relatively better response to treatment and more favorable prognosis when compared with other types 
of sarcomas (in this report, "uterine sarcoma" refers to sarcoma types other than carcinosarcoma)5. Leiomyo-
sarcoma (LMS) represents the major histopathological type of uterine sarcoma, accounting for approximately 
60% of cases, followed by endometrial stromal sarcoma (ESS) and adenosarcoma5. In addition, smooth muscle 
tumors that cannot be diagnosed as benign or malignant are defined as smooth-muscle tumors of uncertain 
malignant potential (STUMPs).

Uterine sarcomas account for only 2–3% of uterine tumors, most of which are benign uterine leiomyomas6. 
Surgical treatments for uterine leiomyoma include myomectomy or total hysterectomy, depending on the patient’s 
desire for preserving fertility. For uterine sarcomas, a total hysterectomy should be performed without fertility 
preservation because of the risk of tumor dissemination caused by dispersal in tumorectomy and morcellation7,8. 
However, unlike cancers of the uterine corpus and cervix, uterine sarcomas are difficult to biopsy, highlighting 
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the importance of accurate preoperative diagnosis. As such, numerous studies have investigated strategies for 
improving the accuracy of diagnostic imaging for uterine sarcomas.

Computed tomography (CT), magnetic resonance imaging (MRI), and fluorodeoxyglucose-positron emission 
tomography-CT are reliable tools for diagnosing uterine sarcomas. Since there is no exposure to radiation, and 
the contrast resolution is high, MRI is considered the most reliable method; previous studies have elucidated 
several important MRI features of uterine sarcomas9. For example, the margin of uterine sarcomas is usually 
irregular, while that of uterine leiomyomas is well-defined. Furthermore, the T2-weighted imaging (T2WI) signal 
of uterine sarcomas is normally high when compared with the normal uterine myometrium, while that of uterine 
leiomyomas is low10. However, due the presence of overlapping imaging findings, differentiating between uterine 
sarcomas and leiomyomas on MRI can be challenging. Uterine leiomyomas with degeneration and cellular vari-
ants frequently mimic uterine sarcomas on MRI, and misdiagnosis of uterine sarcomas as benign leiomyomas is 
not uncommon10–12. Several studies have reported that these overlapping MRI features can lead to misdiagnosis 
of occult uterine sarcomas as benign tumors prior to surgery13–15. Conversely, some patients with uterine leio-
myoma may undergo total hysterectomy due to overdiagnosis of uterine sarcoma16. Such reports demonstrate 
the critical impact of appropriate pre-treatment diagnosis in patients with uterine tumors.

Recent innovations in artificial intelligence (AI) and machine learning technology have advanced the medical 
field. Furthermore, significant improvements in computer hardware performance have led to the development 
of deep neural networks (DNNs)17. The accuracy of DNNs has exceeded that of conventional image process-
ing methods at the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)18, eventually surpassing the 
accuracy of human image recognition19. Despite this, large amounts of data are typically required to train DNN 
models, and their application in the diagnosis of rare diseases such as uterine sarcomas remains challenging.

Given their impressive capabilities, several research groups have aimed to develop machine learning methods 
for improving the accuracy of uterine tumor diagnosis using MRI. However, to our knowledge, none have utilized 
DNNs, which we believe can provide a diagnostic advantage because DNNs can learn with more parameters than 
conventional machine learning methods11,20–25. Therefore, in the current study, we aimed to investigate whether 
DNN models can be used to improve the accuracy of preoperative MRI-based diagnosis in patients with uterine 
sarcomas. In addition, we developed a method for improving the rate of accurate diagnosis for even a small 
number of cases. We also compared our DNN models with assessments performed by radiologists to determine 
their practicability. Notably, our study is the first to demonstrate the feasibility of DNN models for the diagnosis 
of uterine sarcomas using MR images. Our goal is to develop a universal model for the use of deep learning in 
the diagnostic imaging of rare tumors.

Results
Patients and MR images.  Sixty-three cases of the two groups of uterine sarcomas and 200 cases of uterine 
leiomyomas were extracted from the three institutions. Supplementary Table 1 shows the histopathological types 
of uterine sarcomas included in this study. The frequency of LMS was consistent with the general frequency of 36 
out of 63 cases (57%)5. Among the cases of uterine leiomyoma, 23 (11.5%) were diagnosed as uterine sarcomas 
preoperatively. The marginal and degeneration scores assigned by the six radiologists are shown in Supplemen-
tary Table 2. Degeneration alone, irregular margins alone, and both types of findings were noted in 66 (33%), 
11 (5.5%), and nine (4.5%) cases, respectively. These results highlight the heterogenous characteristics of leio-
myomas included in this study. Although 15 types of MRI sequences were adapted for learning and evaluation, 
none of the cases in our study had data for all 15 types of sequences. Supplementary Tables 3a and 3b show the 
numbers of patients and slices in each cross-validation group, respectively.

Performance based on individual MRI sequences.  Figure 1 shows the average of the sensitivity and 
specificity (SS-Avg) of each MRI sequence for the single-model predictions and the sets of ensemble predictions. 
For all sequences, the SS-Avgs show that the ensemble predictions performed better than the single-model pre-
dictions. Figure 1 also shows that the results from the ensemble predictions were more stable than those from 
single models. The top performers in terms of SS-Avg were T2axi (89.8%, SS-Avg), T2sag (86.9%, SS-Avg), and 
diffusion-weighted imaging (DWI) (86.5%, SS-Avg) for the ensemble predictions and T2axi (86.6%, SS-Avg), 
T2cor (84.9%, SS-Avg), and DWI (84.1%, SS-Avg) for the single-model predictions.

Performance bases on combinations of MRI sequences.  The diagnostic results were improved by 
combining MRI sequences. Table 1 lists the combinations and grades of the top 10 MRI sequence combinations 
(out of 32,768 combination sets) in terms of SS-Avg. The average results for these 10 sets of combinations were 
adopted as the final results for our DNN models, which were provided to the radiologists in the second diagnos-
tic examination (accuracy: 90.3%, SS-Avg: 90.8%, sensitivity: 89.8%, specificity: 91.7%, as shown in Table 1). The 
best MRI sequence combination for SS-Avg (combination set 1: T2axi, T2sag, and DWI) included the top three 
among the ensemble predictions. The diagnostic results for the ensemble predictions were also better than those 
for the single-model predictions, when combinations of MRI sequences were used. Supplementary Fig. 1 shows 
each ROC curve for the respective MRI sequences. The median area under the curve (AUC) for the ensemble 
predictions in combination set 1 was 0.9383, and the median AUC of individual models in combination set 1 was 
0.9284 (Fig. 2c and d). The AUC values were also better for the ensemble predictions than for the single-model 
predictions. The average results for the combined MRI sequences (combination sets 1 to 10) indicated that the 
correct rate (sarcoma likelihood) was < 50% among the 6 cases of sarcoma (false negative) and > 50% among the 
19 cases of leiomyoma (false positive). Among the 19 cases of leiomyoma, degeneration was noted in 12 cases 
(63.2%), and irregular margins were noted in one case (5.2%).
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Diagnostic interpretation by radiologists.  To validate the quality of cases and images included in the 
current study, six radiologists performed diagnostic examinations of all 263 cases. The results of the first diag-
nostic examination without AI support are shown in Supplementary Table 4a. Table 2 lists a comparison of the 
results for radiological specialists, radiological practitioners, and the DNN models. In the first diagnostic exami-
nation, the results of radiological specialists were superior to those of radiological practitioners, and the DNN 

Figure 1.   Results of DNN single-model and ensemble predictions of MRI sequences. The means and ranges of 
the SS-Avgs of the MRI sequences are shown. The top 3 MRI sequences of the ensemble predictions are T2axi 
(89.8%), T2sag (86.9%), and DWI (86.5%). The top 3 MRI sequences of the single-model predictions are T2axi 
(86.6%), T2cor (84.9%), and DWI (84.1%). The results of the ensemble predictions are better those from the 
single models for all MRI sequences.

Table 1.   Results of the DNN models for combinations of MRI sequences. The top 10 combinations of MRI 
sequences in terms of the SS-Avg (average of sensitivity and specificity) are shown. The average data for the 
top 10 combination sets were adopted as the results of the DNN models (accuracy: 90.3%; SS-Avg: 90.8%; 
sensitivity: 89.8%; specificity: 91.7%). Combination set 1 (T2axi, T2sag, and DWI) was the most accurate 
combination. DWI: diffusion-weighted imaging.

Combination 
set

SS-Avg 
(%)

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%) ADC DWI dynamicaxi dynamicsag fsT1axi fsT1CEaxi fsT1CEcor fsT1CEsag fsT1sag fsT2axi T1axi T1sag T2axi T2cor T2sag

Combination 
set1

91.3 89.9 88.7 94.0 ● ● ●

Combination 
set2

91.3 90.5 89.8 92.9 ● ● ● ● ● ● ● ● ● ● ● ● ●

Combination 
set3

91.1 91.5 91.9 90.3 ● ● ● ● ● ● ● ● ● ● ● ● ●

Combination 
set4

91.0 89.3 87.8 94.2 ● ● ●

Combination 
set5

90.8 90.7 90.7 90.9 ● ● ● ● ● ● ● ● ● ● ●

Combination 
set6

90.5 90.5 90.5 90.5 ● ● ● ● ● ● ● ● ● ● ● ●

Combination 
set7

90.5 89.4 88.5 92.5 ● ● ● ● ● ● ● ● ● ● ● ● ●

Combination 
set8

90.5 90.0 89.6 91.3 ● ● ● ● ● ● ● ● ● ● ● ●

Combination 
set9

90.4 89.7 89.0 91.8 ● ● ● ● ● ● ● ● ● ● ● ● ●

Combination 
set10

90.3 91.1 91.9 88.8 ● ● ● ● ● ● ● ● ● ● ● ● ●

Average 90.8 90.3 89.8 91.7
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Figure 2.   Comparison of diagnostic examinations. (a) Comparison between the first (no AI support) and 
second (AI-supported) diagnostic examinations for the data averages. For the radiological practitioners, all 
parameters show an increase between the first and second diagnostic examinations. The SS-Avg, accuracy, and 
sensitivity show significant increases (p < 0.05). Error bars indicate means ± SD. *p < 0.01, two-sided; **p < 0.05, 
two-sided. (b) Comparison between first (no AI support) and second (AI-supported) diagnostic examinations 
for the individual data. A comparison of the radiologist results between the first and the second diagnostic 
examinations show an increase in the SS-Avg and sensitivity for all radiologists. (c/d). ROC curves of individual 
results with of the DNN models. The figures show ROC curves of the individual results of the first (no AI 
support, c) and the second (AI-supported, d) diagnostic examinations. The ROC curves are based on the results 
of Combination Set 1 (shown in Table 1). The AI support improved the individual results. (e/f)Correlation 
diagrams of misdiagnosed images are shown for the uterine-sarcoma groups (e) and the uterine leiomyomas 
(f). The cases misdiagnosed by either the DNN models (blue circles), radiologists (red circles), or both (purple 
circles) are shown. The histopathological types of the false negatives from the DNN models included 1 case of 
STUMP, 2 cases of cervical adenosarcoma, and 3 cases of LMS.
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Figure 2.   (continued)

Table 2.   Comparison between radiologists and DNN models in the first diagnostic examination (no AI 
support). S-Avg: Average results for radiological specialists (board-certified radiologists). P-Avg: Average 
results for radiological practitioners (no board-certified radiologists). The results of DNN model were 
calculated using the average for the top 10 combinations of MRI sequences (Table 1). The DNN results were 
equivalent to those of a radiological specialist, and the SS-Avg and sensitivity were significantly higher for the 
DNN models (p < 0.05 for both parameters).

S-Avg (%) P-Avg (%) DNN model (%)

SS-Avg 82.4 69.6 90.8

Accuracy 88.3 80.1 90.3

Sensitivity 71.0 47.6 89.8

Specificity 93.8 91.5 91.7
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models performed significantly better in terms of SS-Avg and sensitivity, even when compared with radiological 
specialists (p < 0.05). After a 1-month interval, all six radiologists performed a second diagnostic examination 
in which they were provided with the interpretation of the DNN model (AI-supported examination). The indi-
vidual results for the second diagnostic examination are shown in Supplementary Table 4b. The comparison 
between the first and second examinations is shown in Table 3 and Fig. 2a and b. SS-Avg, accuracy, and sensitiv-
ity increased significantly among radiological practitioners, while the increase among radiological specialists 
was not significant (p > 0.05). For all parameters, radiological practitioners performed better than radiological 
specialists in the AI-supported examination, although the difference was not significant (p > 0.05). In addition, 
increases in sensitivity and SS-Avg between the first and second examinations were observed for all radiologists. 
Indeed, after the AI-supported examination, many radiologists spent more time and were more careful when 
their interpretation did not match that indicated by the DNN models.

Figure 2c and d also shows the comparison between the first and second examinations of each radiologist 
based on the ROC curve of the DNN models, again highlighting improvements in the AI-supported examination. 
Figure 2e and f shows the relationship between cases in which more than half of the 24 sets of DNN models and 
more than half of radiologists misdiagnosed the findings (false positive and false negative). The DNN models 
had a lower rate of false negatives and a higher rate of false positives than radiologists. An analysis of the rela-
tionship between the tumor diameter and the degeneration score among the 19 cases of false-positive uterine 
leiomyomas indicated that there was no bias in terms of tumor diameter for the DNN models, although 12 of 19 
(63.2%) cases involved degeneration (Supplementary Fig. 2).

Discussion
In this study, we investigated the usefulness of DNN models in differentiating between uterine sarcomas and 
uterine leiomyomas on MRI. Our analysis indicated that the DNN models achieved results comparable to those 
of the radiological specialists (DNN: 90.3% accuracy, 91.3% SS-Avg, 89.8% sensitivity, and 91.7% specificity; 
radiological specialist: 88.2% accuracy, 82.4% SS-Avg, 71.0% sensitivity, 93.8% specificity), although SS-Avg 
and sensitivity were significantly higher for the DNN models. In addition, radiological practitioners exhibited 
improvement in diagnostic skill to comparable levels with radiological specialists (accuracy 92.3% vs. 89.6%; 
SS-Avg 90.8% vs. 87.3%; sensitivity 87.8% vs. 82.8%; and specificity 93.7% vs. 91.7%) when provided with AI 
support. These findings highlight the usefulness of DNN models as diagnostic aids, suggesting that they can 
reduce the risk of misdiagnosis in patients with occult uterine sarcomas by improving sensitivity among both 
specialists and practitioners and fill the gaps between interpreters.

Several previous studies have indicated that AI support increases the diagnostic accuracy for uterine 
sarcomas11,20–25. Because uterine sarcomas are rare and previous reports included only a limited number of cases, 
a major strength of our study is that we used a relatively large number of cases and various of MRI sequences for 
model training, which can train DNN models with adequate number of images. Furthermore, to our knowledge, 
our study is the first to utilize DNN models for the diagnosis of uterine sarcoma by MRI. Conventional machine 
learning algorithms (i.e., non-DNN, Legacy-ML) include an extremely small number of parameters suitable 
for inputting learning/prediction when compared with DNN, and training conventional algorithms requires 
humans to determine the parameters to be learned and quantify them in advance. In contrast, DNN models such 
as MobileNet-V2 can include 50,176 (224 × 224) parameters, meaning that 224 × 224 pixels of the image can be 
input, allowing the model to learn and predict features that cannot be recognized by humans or are difficult to 
quantify. This is the greatest advantage of using DNN models; the current findings suggest the feasibility of DNN 
models for exceeding the accuracy of human interpretation in the future.

Since uterine sarcomas are rare, only a limited number of cases could be included in this study; this made the 
generation of DNN models challenging, given that large amounts of data/cases are required for model training. 
To overcome this, we utilized augmentation, ensemble predictions, a unique parameter “SS-Avg”, various MRI 
sequences with scoring system, and combinations of MRI sequences. The results of the ensemble predictions 
were superior to those of the single-model predictions in every sequence, and the ensemble predictions provided 
more-stable results than the single-model predictions. In addition, we evaluated our results using the SS-Avg 
value because it is influenced more by large values for sensitivity or specificity when they are imbalanced. In this 
study, we adapted “SS-Avg” to assess the well-balanced models capable of accurately diagnosing both uterine 
sarcomas and uterine leiomyomas. Although this is an uncommon method of evaluation, it is a useful strategy 
for investigating rare diseases because of the difficulty in balancing the number of cases between rare diseases and 

Table 3.   Comparison of parameters between the first and second (i.e., AI-supported) diagnostic examinations. 
S-Avg: Average results for radiological specialists. P-Avg: Average results for radiological practitioners. DNN 
model results (sarcoma likelihood and sequences for each patient) were provided to the radiologists for the 
second examination. Remarkably, all parameters were superior among radiological practitioners than among 
radiological specialists, although the difference was not significant (p > 0.05).

DNN model

SS-Avg (%) Accuracy (%) Sensitivity (%) Specificity (%)

90.8 90.3 89.8 91.7

S-Avg P-Avg S-Avg P-Avg S-Avg P-Avg S-Avg P-Avg

1st. Exam. (no AI support) 82.4 69.6 88.3 80.1 71.0 47.6 93.8 91.5

2nd. Exam. (with AI-supported) 87.3 90.8 89.6 92.3 83.1 87.8 91.7 93.7
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control cases. Moreover, since the imbalance of imaging condition among multi-institutions is critical for clinical 
adaptation, we have developed a score calculation for imbalanced combinations of MRI sequences provided by 
multi-institutions, which can be helpful in clinical practice.

Among the 15 sequences used in this study, the top results for the ensemble predictions were T2axi (89.8%, 
SS-Avg), T2sag (86.9%, SS-Avg), and DWI (86.5%, SS-Avg). Our findings also indicated that the top-performing 
combination of MRI sequences included these sequences (Table 1, combination set 1). T2axi (86.6%, SS-Avg) 
ranked first among the single-model predictions, while DWI (84.1%, SS-Avg) and T2sag (83.9%, SS-Avg) were 
ranked third and fourth, respectively. Interestingly, these combinations are clinically important, and a larger 
number of sequences in combination did not yield better results26. However, given the rarity of the disease, the 
number of sequences in each patient was imbalanced, and there were more images for these top three sequences 
in each patient than for other sequences (T2axi [258 cases, 98.0%], T2sag [259 cases, 98.4%], and DWI [254 
cases, 96.5%] (Supplementary Table 3a and 3b), which should be considered when interpreting the findings.

When comparing misdiagnosed cases between the DNN models and radiologists, as well as false positives 
and false negatives, we observed that the DNN models provided substantial diagnostic assistance. As Fig. 2e 
and 4f shows, the DNN models had a lower rate of false negatives and a higher rate of false positives than the 
radiologists.

For the DNN models, the false negatives included two cases of cervical adenosarcoma and one case of STUMP. 
The tumor size of one cervical adenosarcoma was approximately 3 cm in diameter, and STUMPs are normally dif-
ficult to diagnose preoperatively, highlighting the need for future studies to develop more focused AI strategies27. 
Among the false-positive cases for the DNN models, 12 of 19 cases (63.2%) involved degeneration, while only 1 
case (5.3%) had irregular margins. In addition, as shown in Supplementary Fig. 2, there was no bias associated 
with tumor diameter among false-positive cases for the DNN models. These findings suggest that DNN models 
identify sarcomas based on the degeneration inside the tumors rather than the tumor diameter. Visualizing how 
DNN models make decisions is critical for identifying areas for improvement.

The present study has some limitations, including the small number of patients given the rarity of the disease. 
Other limitations include an imbalance in the types of sequences and imaging conditions among the three institu-
tions and the exclusion of patients with other abdominal tumors, such as ovarian tumors. Although the current 
study only involved learning and evaluation after cross-validation, we originally intended to prepare a valida-
tion set. This represents a limitation of DNN models when faced with a limited number of cases. Anatomically, 
uterine leiomyomas often coexist with other tumors such as ovarian endometrial cysts, and it remains necessary 
to distinguish leiomyomas from these other lesions. In addition, to maintain diagnostic accuracy, we limited our 
study to two types of output (uterine leiomyoma for negative or uterine sarcoma for positive). Further studies 
including a larger number of cases and more balanced imaging conditions are required to address these issues. 
Inclusion of additional clinical information (age, blood data, tumor markers, etc.) may also aid in the eventual 
diagnosis of individual histopathological types.

In summary, our analysis indicated that the DNN models developed in this study exhibited high-quality 
results for the diagnosis of uterine sarcomas using MRI images. We could develop a DNN model with an accept-
able diagnostic rate for the rare uterine sarcoma tumors, and our method could be applied to the diagnoses of 
other rare tumors in the future. Specifically, AI support improved the sensitivity of interpretations made by 
radiologists, suggesting that DNN models can aid in reducing the risk of misdiagnosing occult uterine sarcomas. 
In the future, our MRI-based DNN system will be further developed and applied for uterine sarcoma diagnosis 
in clinical practice.

Methods
Patients.  The current study included patients with uterine leiomyomas or sarcomas treated at three Japanese 
institutions (University of Tokyo Hospital, Tokyo Metropolitan Cancer and Infectious Diseases Center Komag-
ome Hospital, and Showa General Hospital) from 2008 to 2020. All MR images were obtained during the study 
period and prior to tumor resection, and film-based MR imaging data were excluded.

To increase the number of training images, the uterine sarcoma set included multiple MR images obtained 
at different times for each patient. There were no restrictions on the preoperative period during which uterine 
sarcoma images were obtained. However, for the uterine leiomyoma image set, we extracted images that were 
taken within 1 year before resection. Patients who had undergone pseudo-menopause therapy within 3 years 
before resection, those with other co-existing tumors such as ovarian tumors, and those with ovarian cysts ≥ 3 cm 
were excluded. There were no restrictions on tumor number or diameter in either group. The detailed inclusion 
and exclusion criteria for each set of MR images are shown in Fig. 3.

All uterine tumors in this study were resected after MRI and pathologically diagnosed by well-trained patholo-
gists. This study also included various histopathological types of uterine sarcomas groups including LMS, ESS, 
adenosarcoma, undifferentiated sarcoma, spindle-cell sarcoma, and smooth-muscle tumors of uncertain malig-
nant potential (STUMPs). For the reasons indicated in the Introduction, carcinosarcomas were excluded.

MR images.  Fifteen types of MRI sequences were used, as shown in Supplementary Table 5. Other sequences 
were excluded. Six radiologists evaluated the tumor margins and degeneration of the uterine leiomyomas. 
Degeneration and margin irregularity were defined as cases in which at least four of six radiologists regarded the 
tumors as degeneration or margins as irregular, respectively. The imaging conditions for each MRI sequence are 
listed in Supplementary Table 6.

Datasets.  MRI slices including the uterine tumors were extracted for model learning and evaluation. First, 
we collected DICOM data from each institution and converted them into normalized JPEG data using the Horos 
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software (https://​horos​proje​ct.​org/) with default settings. For cross-validation, we randomly divided patients 
into six groups and prepared six datasets, using five groups for learning and the remaining group for evaluation. 
Both groups were composed such that the number of slices was as uniform as possible, although the balance of 
MRI sequences was not considered.

Type of neural network.  In this study, we adopted the MobileNet-V2 network, which is a relatively compact 
network consisting of 88 layers with a fixed input image size of 224 × 224 and 3,538,984 learning parameters28. 
We adopted AMSGrad, a variant of Adam, as the optimizer, with the learning rate set to 0.0001. The structure of 
the network we adopted is shown in Supplementary Table 7.

DNN learning.  In this study, 437,500 MRI slices were augmented for both the uterine-sarcoma groups (sar-
comas and STUMPs) and uterine leiomyomas. The augmentation was performed randomly without considering 
the balance between the number of MRI slices for each patient and each sequence. During learning, the DNN 
models learned using images cropped to a size of 224 × 224, keeping the tumor area of the image in the scope. In 
each epoch (training cycle), 35,000 slices were randomly selected from 875,000 slices, and 50 epochs were per-
formed repeatedly to train one DNN model (35,000 slices × 50 = 1,750,000 slices). This 50-epoch training proce-
dure was performed with six datasets, and six models were generated using one learning set (learning set: evalua-
tion set = 5:1). Because DNN models exhibit differences in ability each time they are trained using a large amount 
of data generated via augmentation from a small number of patients, we created 24 training sets (M1 to M24) to 
verify the differences in the abilities of each model. As a result, 144 models were generated (6 datasets × 24 = 144 
models). Figure 4a shows the flow of the model learning and evaluation process. The augmentation method we 
adopted was a very general approach that including flips, rotations, zooms, and changes to the brightness.

DNN evaluation.  We used square MR images that had been cropped and resized to 224 × 224. The six 
models obtained in each learning set were used as a single evaluation set, and predictions for the 24 evaluation 
sets were made based on single slices, single sequences, and combined sequences. In addition to single-model 
predictions, 24 sets (Ens1 to Ens24) of ensemble predictions combining 23 of the 24 models (Supplementary 
Table 8) were used to evaluate the results of the sequence-based and patient-based evaluations (Fig. 4b). Using 
these methods, we developed algorithms to classify images as uterine sarcomas or uterine leiomyomas, although 
we did not evaluate the histopathological types of uterine sarcomas.

The results obtained using the 24 sets of ensemble predictions were evaluated as percentages and defined as 
the possibility of uterine sarcoma, hereafter referred to as “sarcoma likelihood” (see Supplementary Table 9 for 
examples).

Scoring.  As this was a multi-institutional study, different MRI sequences were used to assess patients at each 
institution. Therefore, for each MRI sequence, scores of 1 and –1 were assigned to uterine sarcoma and uterine 
leiomyoma, respectively, and the total score was calculated to predict the result for each patient. A receiver oper-

Figure 3.   Study flow of patients. (a) Sixty-three cases of uterine sarcomas, including smooth muscle tumours 
of uncertain malignant potential (STUMPs), were included. The study excluded film-based MR images and 
carcinosarcomas. (b) Two-hundred cases of uterine leiomyomas sarcomas were included. The study excluded 
film-based MR images and patients who had undergone pseudo-menopausal therapies within 3 years or had 
other coexisting abdominal tumours.

https://horosproject.org/
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ating characteristic (ROC) curve was used to identify the threshold value at which the average sensitivity (true 
positive [TP] rate) and specificity (true negative [TN] rate) were highest.

Diagnostic examination by radiologists.  Six radiologists, including three radiological specialists 
(board-certified radiologists, 14, 13, and 8 years of experience) and three radiological practitioners (no board-
certified radiologists, 4, 4, and 2 years of experience), participated in diagnostic assessments to validate the qual-
ity of the MR images used in this study. In the first diagnostic examination (no AI support), the specialists inter-
preted all MR images learned and evaluated by the DNN models as either uterine sarcoma or uterine leiomyoma. 
After a 1-month break, radiologists were provided with the results of the DNN models (the sarcoma likelihood 
and sequence results for each patient) for a second, AI-supported examination, which was performed using the 
same procedure as the first examination. All diagnostic examinations were performed using anonymized and 
randomized data.

Statistical analysis.  Because the numbers of patients/slices were not the same for the uterine-sarcoma 
groups and uterine leiomyomas, conventional accuracy alone was not suitable for evaluating the usefulness of 
the DNN models, as it is more strongly influenced by large values for sensitivity or specificity. Therefore, we used 
the average of sensitivity and specificity (SS-Avg) as an additional parameter. Note that, when the numbers of 

Figure 4.   Study flow of DNN learning and evaluation. (a) MRI slices of uterine leiomyomas and sarcomas 
are augmented to 875,000 slices. In one epoch, 35,000 slices are selected randomly out of 875,000 slices and 
the model repeats learning 50 times. The ratio of the learning set to the evaluation set is 5:1, which is cross 
validated. The DNN models are evaluated as “a uterine sarcoma” or “a uterine leiomyoma” using either a single-
model prediction or ensemble prediction. The augmentation method we adopted was a very general approach 
that included flips, rotations, zooms, and changes to the brightness. (b) For evaluation, 24 sets of ensemble 
predictions are performed along with single-model predictions. The predictions of the ensemble model combine 
the results of 23 models.
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patients/slices are the same for each group, SS-Avg and conventional accuracy should be equivalent. The final 
results of the DNN models were calculated by averaging the results for the top 10 MRI sequence combinations. 
In these analyses, the uterine-sarcoma groups were defined as positive, and the uterine leiomyomas were defined 
as negative. The methods used to calculate each parameter were as follows:

In addition, the volume of uterine tumors was briefly calculated using the method described below. In cases 
with multiple tumors, the diameter of the largest tumor was measured.

When comparing results between radiologists and the DNN models, significant differences in normally 
distributed data were defined using Welch’s t-test for equal variance and Student’s t-test for unequal variance, 
both of which were two-sided. Statistical significance was set at P < 0.05.

Ethics.  This study was approved by the institutional review boards of each institution (Research ethics com-
mittee of the faculty of medicine of the University of Tokyo, Research ethics committee of Tokyo metropolitan 
cancer and infectious diseases center Komagome Hospital and Research ethics committee of Showa General 
Hospital),The institutional review board approval numbers are 2019127NI at the University of Tokyo Hospital, 
2640 at the Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, and RED255 at the 
Showa General Hospital. In patient application forms, the need for informed consent was waived by these above 
institutional review boards. It was clearly stated that patients were allowed to opt out of the study at any time. 
Information on how they could opt out was provided on our website, and arrangements were made for patients 
to opt out. All methods were performed in accordance with the relevant guidelines and regulations.

Data availability
All data generated and analyzed during this study are included in this published article and its supplementary 
files.
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