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A systematic study of HIF1A 
cofactors in hypoxic cancer cells
Yuxiang Zhang1, Saidi Wang2, Haiyan Hu2,3* & Xiaoman Li4*

Hypoxia inducible factor 1 alpha (HIF1A) is a transcription factor (TF) that forms highly structural and 
functional protein–protein interactions with other TFs to promote gene expression in hypoxic cancer 
cells. However, despite the importance of these TF-TF interactions, we still lack a comprehensive view 
of many of the TF cofactors involved and how they cooperate. In this study, we systematically studied 
HIF1A cofactors in eight cancer cell lines using the computational motif mining tool, SIOMICS, and 
discovered 201 potential HIF1A cofactors, which included 21 of the 29 known HIF1A cofactors in public 
databases. These 201 cofactors were statistically and biologically significant, with 19 of the top 37 
cofactors in our study directly validated in the literature. The remaining 18 were novel cofactors. These 
discovered cofactors can be essential to HIF1A’s regulatory functions and may lead to the discovery of 
new therapeutic targets in cancer treatment.

Most human cells typically require normal levels of oxygen to carry out their metabolic functions. When these 
cells are in a low oxygen/hypoxic environment, they will consequently activate a variety of adaptive responses to 
maintain oxygen  homeostasis1. The effects of hypoxia are especially evident in cancer cells, as their ability to rap-
idly replicate and proliferate forces them to quickly exceed their oxygen  supply2. To survive, cancer cells, mainly 
solid tumors, have developed various defense mechanisms to adapt to hypoxic  environments3. Such defense 
mechanisms primarily rely on the activation of hypoxia inducible factor 1 alpha (HIF1A), a transcription factor 
(TF) that interacts with other cofactor TFs to activate transcriptional responses like increased glucose uptake 
and angiogenesis. Since the responses HIF1A regulates facilitate a cancer cell’s survival in hypoxic  conditions4, 
many resources have been diverted in HIF1A targeted  treatments5,6.

Though many attempts to target HIF1A have been proposed, one of the most appealing prospects has been to 
focus on targeting HIF1A through its protein–protein interactions (PPIs). This method has demonstrated high 
diagnostic  potential7. Like many TFs, HIF1A interacts with a multitude of cofactor TFs to effectively control 
gene  expression8. For instance, HIF1A is known to dimerize with its binding partner aryl hydrocarbon recep-
tor nuclear translocator (ARNT) to cooperatively co-regulate target genes. PPIs between different TFs such as 
HIF1A and ARNT are extremely important due to their ability to confer high specificity and drive differential 
gene  expression9,10. Despite their importance, we found that in many databases containing experimentally curated 
PPIs—BioGRID11,  HPRD12, and  BIND13—very few of the HIF1A cofactors listed were TFs. The undiscovered TF 
cofactors could have novel therapeutic responses and contribute to a much deeper understanding of hypoxia’s 
regulatory mechanisms.

In this study, we systematically investigated the potential TF interactions of HIF1A. Measuring possible PPIs 
in an experimental setup, usually done using co-immunoprecipitation arrays, is time-consuming and costly. 
Instead, using computational methods to find such cofactors possesses many benefits due to their high recall 
rate for predicting cofactors in a time-efficient  manner14–16. We computationally identified 201 potential HIF1A 
TF cofactors, many of which were supported by PPI databases and literature. These cofactors were conserved 
across multiple cell lines and crucial to regulating HIF1A regulated pathways. Our study facilitates an increased 
understanding of HIF1A’s regulatory functions with transcriptional cooperativity.

Material and methods
Retrieving genomic sequences that HIF1A binds. To systematically study HIF1A cofactors in cancer 
cell lines, we retrieved raw ChIP-seq data in the following eight human cell lines:  501A17, MDA-MB-23118, 
 HepG219,  HKC819,  HUVEC20,  K56221,  LNCaP22, and  PC323, from the corresponding BioProjects at National 
Center for Biotechnology Information (NCBI) (Supplementary Tables S1A & S1B). The primary tissue-derived 
cell lines we have chosen represent the most common cancer types in each organ or system including blood, 
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prostate, breast, liver, skin, and kidney. Next, we applied the tool  Trimmomatic24 to the raw ChIP-seq read data 
to trim adaptor sequences and filter low-quality reads. We then mapped the processed reads in each cell line onto 
the human genome hg38 using  Bowtie225 and defined the ChIP-seq peaks of the HIF1A binding regions using 
 MACS226. To discover TF binding sites (TFBSs) in these ChIP-seq experiments, we extended each MACS2 peak 
region so that each peak region was at least 800 base pairs long, which is about the median length of a cis-regu-
latory  region27,28. Finally, we extracted the repeat-masked genomic sequences from the UCSC genome  browser29 
for each peak region. These sequences are likely to contain TFBSs of HIF1A and its cofactors.

Identifying potential HIF1A TF cofactor motifs and cofactors. To find the potential TF cofactors 
of HIF1A in a cell line, we applied the tool SIOMICS to the above sequences from the extended ChIP-seq peak 
regions in this cell line to identify motifs (Fig. 1)16. A motif is a pattern of the TFBSs a TF binds, often represented 
by a position weight matrix. Many computational tools are developed for motif discovery in ChIP-seq  data16,30–35. 
We chose SIOMICS here because it de novo identifies motifs by discovering motif modules, which can effectively 
work with large sequence datasets and significantly reduces false positive  predictions15,16,36. A motif module is a 
group of motifs that significantly co-occurs in the input sequences, mimicking the group of motifs for a TF and 
its cofactors under a given experimental condition. In biological terms, these discovered motif modules are the 
binding patterns of TFs and their TF cofactors that frequently bind to the HIF1A ChIP-seq peak regions, which 
thus represent HIF1A and its cofactor motifs.

With the identified motifs in motif modules, we compared the predicted motifs with the known motifs in the 
JASPAR  database37. We claimed that a predicted motif was similar to a known motif if their STAMP comparison 
E-value was smaller than 1.0E−538. A predicted motif similar to a known motif suggests that the TF correspond-
ing to this known motif may play a regulatory role in the data. As a side product, we considered this correspond-
ing TF the HIF1A TF cofactor that binds to this predicted motif. In this way, we obtained 201 HIF1A cofactors.

Validating the predicted motifs and cofactors. To validate the predicted motifs and cofactors, in addi-
tion to comparing the predicted motifs with known motifs, we compared the predicted motifs across the eight 
cell lines (Supplementary Table S2). Two predicted motifs were similar if they had a STAMP E-value smaller 
than 1.0E−8. This more stringent E-value cutoff was used as  previously39 because these motifs were predicted by 

Figure 1.  The pipeline to study hypoxia motifs and cofactor pairs.
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the same tool and might be intrinsically more similar. A more stringent cutoff than the comparison of predicted 
with known motifs may control the false positives better.

Similarly, we compared the predicted motif pairs across cell lines. Recall that SIOMICS outputs motif mod-
ules, and a motif module is a group of motifs that co-occur in a significant number of input sequences. We 
considered all motif pairs in every motif module as the motif pairs in each cell line. Two predicted motif pairs 
from two cell lines were similar if the corresponding predicted motifs in the two pairs were similar (STAMP 
E-value < 1.0E−8).

In our study, motif pairs are significant since if the TFs are indeed cofactors of HIF1A, they should be interact-
ing with one another. This combinatorial interaction of TFs within the TF complex is crucial to gene expression. 
Thus, with the predicted motif pairs, we investigated whether their corresponding cofactor pairs were enriched 
with known interacting TF pairs in BioGRID V4.4.20911. BioGRID is a database that stores curated PPIs, includ-
ing TF-TF interactions. We gathered these TF-TF interactions and split them into two categories—direct and 
indirect. A direct interaction meant that the two TFs physically interacted, and an indirect interaction indicated 
that the TFs interacted through a third protein. Following this procedure, we gathered 6904 direct and 101,455 
indirect TF-TF interactions. The predicted TF pairs that correspond to the predicted motif pairs in motif modules 
were then compared with these curated TF-TF interactions in BioGRID in enrichment analysis. Since each motif 
could correspond to multiple TFs, all of which had STAMP E-value smaller than 1.0E−5, we obtained the cor-
responding TF pairs from the predicted motif pair in two ways. One was to consider only the TF with its motif 
most similar to a predicted motif as the TF cofactor behind this predicted motif. The other was to consider up to 
the top five TFs with their motifs similar to a predicted motif as the TF cofactors of this predicted motif, because 
the default STAMP outputs only up to the top five TFs. For each of the obtained two sets of predicted cofactor 
pairs, the enrichment of known TF pairs in the set of predicted cofactor pairs in every cell line was carried out 
by the hypergeometric testing described in the next section.

Finally, we studied the predicted HIF1A cofactors. We compared the HIF1A direct cofactors with the known 
HIF1A-interacting-TFs in  BioGRID11,  HPRD12, and  BIND13, obtained from the NCBI page of the HIF1A gene 
(https:// www. ncbi. nlm. nih. gov/ gene/ 3091). Using PubMed, we also searched for additional HIF1A cofactors 
that were not found in these databases by looking at if a predicted cofactor and HIF1A interact with each other, 
creating a high likelihood of a regulatory cascade. We used various experiments in the literature to further analyze 
and verify the predicted HIF1A cofactors.

Testing the enrichment of known interacting TF pairs in the predicted ones. We tested the 
enrichment of known interacting TF pairs in the predicted ones by hypergeometric testing. Assume there were 
N TFs and M interacting TF pairs in the database. Assume there was n of the N TFs in a given group of predicted 
cofactor pairs in a cell line, and m cofactor pairs were known to interact. The p value of the enrichment of the 
known interacting TF pairs was then calculated as phyper
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40,41.

Gene Ontology (GO) and pathway analysis. To study the regulatory mechanisms of the identified 
cofactors and the impacts of their cooperativity with HIF1A, we analyzed the binding specificity of the cofactors 
and their common target genes. We identified the target genes using the annotatePeaks tool from  HOMER42 
with the  GENCODE43 annotation files and assigned every ChIP-seq peak to a gene according to the peak’s 
distance to the nearest transcription start site (TSS). Using the GO and Reactome pathway analysis offered by 
 STRING44, the identified target genes and TFs were then researched regarding their roles in hypoxia-related 
pathways. Moreover, the tool  ChIPseeker45 was also used to analyze the data, which allowed us to visualize the 
distance of the ChIP-seq peaks to the nearest gene and the pathway enrichment analysis of the ChIP-seq peaks.

Results
The predicted motifs and TF cofactors are biologically meaningful. Using the process shown in 
Fig. 1, we could identify motifs and TF cofactors in every cell line (Supplementary Table S1A and S1B). To see 
whether the predicted motifs and TF cofactors are biologically meaningful, we compared the predicted motifs 
with known motifs in the JASPAR  database37. In every cell line, on average, approximately 65.6% (Supplemen-
tary Table S2) of the predicted motifs were similar to known motifs (STAMP E-value < 1.0E−5) (Table 1). Not 
every predicted motif has a similar known JASPAR motif because JASPAR does not have known motifs for many 
TFs, and the current tools to compare motif similarity are  imperfect36,46. When we lowered the cutoff to 1.0E−4, 
more than 83.8% of the identified motifs were similar to a known motif. The high percentages of the predicted 
motifs similar to the known motifs indicate that these predicted motifs are biologically sound.

We also compared the predicted motifs across cell lines. The rationale for this comparison is that if a motif is a 
bona fide one, it is likely to occur in other cell lines, as different cell lines may share certain regulatory pathways. 
We found that, on average, approximately 88.9% of the predicted motifs in each cell line were independently 
identified across cell lines (STAMP E-value < 1.0E−8). This high percentage of motif conservation across cell 
lines corroborates the biological significance of the predicted motifs and cofactors.

Note that such a high percentage of motif conservation across cell lines was not due to sharing ChIP-seq 
peaks by cell lines. We observed that the overlap percentage of ChIP-seq peaks did not correlate with the percent-
age of similar motifs between cell lines. For instance, although more than 87.7% of peaks in HKC8 overlapped 
with those in HepG2, only 25.9% of the motifs were similar between the two cell lines. Moreover, we removed 
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the overlapping peaks in two cell lines and still observed a large percentage of shared motifs. For instance, the 
two cell lines, 501A and HepG2, which had a similar number of ChIP-seq peaks, shared 40.1% of their HIF1A 
ChIP-seq peaks and 83.0% of the predicted motifs. After removing all overlapping peaks, 59.0% of the motifs 
in 501A were similar to those in HepG2, and 52.0% of the motifs in HepG2 were similar to those in 501A. The 
substantial number of motifs still similar after removing overlapping peaks demonstrated that the sharing of the 
motifs was not due to overlapping peak regions across cell lines. It also suggested that the predicted motifs and 
cofactors were biologically meaningful.

Finally, we compared the predicted motif pairs across cell lines. More than 63.9% of the motif pairs were 
independently discovered in other cell lines. To see the significance of such a high percentage of motif pairs inde-
pendently discovered across cell lines, we generated the same numbers of random motif pairs in each cell line. 
We randomly chose the predicted motifs in each cell line to form the same number of random motif modules, 
with each random motif module composed of the same number of motifs as the corresponding predicted motif 
module. We then similarly obtained random motif pairs from these random motif modules. We observed that 
a much lower percentage of random motif pairs occurred in more than one cell line (Supplementary Table S2, 
p value < 2.1E−15).

Databases and literature support the predicted cofactor interactions. To evaluate the biologi-
cal significance of the predicted cofactors, we studied whether the predicted cofactor pairs were enriched with 
known interacting TF pairs in BioGRID. In brief, for every predicted motif module in each cell line, we obtained 
the corresponding cofactor pairs in two ways, with every motif pair in each motif module corresponding to 
one or multiple cofactor pairs (Material and Methods). For the set of all cofactor pairs in each cell line, we 
then applied hypergeometric testing to see whether the known interacting TF pairs in BioGRID were signifi-
cantly overrepresented in this set of the predicted cofactor pairs. We found that the known interacting TF pairs 
were significantly enriched in the predicted ones in all cell lines except HUVEC (Fig. 2A,B, and Supplementary 
Table S3). As discussed in the following sections, many interacting TF pairs buried in literature were not curated 
in BioGRID, such as KLF4, EGR1, NFE2L2, TFAP2A, etc. In this sense, one should consider the above enrich-
ment significance being underestimated. We did not identify any known cofactor pair in HUVEC, likely because 
HIF1A is not a dominant hypoxia-related TF here, as discussed in the next section.

The above analysis was for all predicted cofactor pairs in a cell line. We next sought to study how compre-
hensively the predicted cofactors included known TFs interacting with HIF1A. We obtained the curated known 
HIF1A cofactors from  BioGRID11,  HPRD12, and  BIND13, large databases containing many experimentally veri-
fied PPIs. We filtered out the curated cofactors that were not TFs using the GO  database47 and those that did not 
have a known motif in JASPAR. In this way, only 49 of the 431 curated cofactors in these databases are TFs, and 
only 29 of the 49 cofactors have motifs in JASPAR. We found that the predicted cofactors included 21 of these 
29 (72.4%) curated cofactors. We also compared the predicted HIF1A cofactors with those in another study by 
 Semenza48 that listed 20 HIF1A TF cofactors, many of which differed from the TFs gathered from BioGRID, 
HPRD, and BIND. We predicted 15 of the 20 (75.0%) HIF1A cofactors (STAMP E-value < 1.0E−5).

We next investigated why eight of the 29 known cofactors were missed. Two cofactors, RORA (STAMP 
E-value 2.9E−3) and ELK1 (STAMP E-value 4.5E−04), were identified in HKC8 and PC3, respectively, while 
excluded because they did not meet the STAMP E-value cutoff of 1.0E−5. All of the remaining six cofactors 
were paralogous to the predicted cofactors. Similarly, two of the twenty cofactors from Semenza did not satisfy 
the STAMP E-value cutoff, and all of the remaining three cofactors were paralogous to our predicted cofactors.

Although the motifs of paralogous TFs are highly similar, there are subtle differences. The STAMP tool may 
have recognized such differences and predicted that the known motifs of only certain paralogs are similar to a 
predicted motif. Furthermore, the default STAMP analysis outputs only up to the top 5 TFs with their known 
motifs similar to a predicted motif, which may prevent discovering these missed paralogous cofactors. When we 
allowed STAMP to output more top TFs, all missed paralogous cofactors were discovered. For instance, the six of 
the 29 known cofactors we missed, CEBPA, TP63, TP73, RUNX2, RUNX3, and ESRRB, had a STAMP E-value of 
7.0E−5, 1.7E−4, 1.4E−3, 2.9E−3, and 1.6E−3, respectively. They were missed because their STAMP E-value did 
not satisfy our cutoff, and they were not in the top five TFs with motifs similar to the corresponding predicted 
motifs. Interestingly, the missed paralogous TFs might not be involved in the eight cell lines we considered 
here. We analyzed the experiments where the known interaction was gathered and found that the cell lines used 

Table 1.  The predicted motifs in eight cell lines.

Cell lines #peaks #motifs
%motifs similar to known motifs 
(STAMP E-value ≤ 1.0E−5)

%motifs similar to known motifs 
(STAMP E-value ≤ 1.0E−4) %motifs in other cell lines

%Peaks overlapped across cell 
lines (%)

501A 13,061 100 60/100 = 60.0% 81/100 = 81.0% 90/100 = 90.0% 66.2

MDA-MB-231 1500 32 25/32 = 78.1% 29/32 = 90.6% 32/32 = 100% 94.1

HepG2 12,600 100 68/100 = 68.0% 88/100 = 88.0% 97/100 = 97.0% 60.9

HKC8 391 100 58/100 = 58.0% 77/100 = 77.0% 71/100 = 71.0% 97.2

HUVEC 661 27 13/27 = 48.1% 20/27 = 74.1% 25/27 = 92.3% 59.3

K562 4156 100 71/100 = 71.0% 88/100 = 88.0% 90/100 = 90.0% 58.7

LNCaP 1563 98 58/98 = 59.2% 77/98 = 78.6% 75/98 = 76.5% 69.1

PC3 39,025 100 82/100 = 82.0% 93/100 = 93.0% 94/100 = 94.0% 66.2
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to verify their interaction with HIF1A differed from the ones we used. For instance, to the best of our knowl-
edge, RUNX3 has only been demonstrated in human gastric cells and RUNX3 transfected cells to interact with 
 HIF1A52, and CREB3L1 has a high tissue-specific expression and is preferentially expressed in only osteoblasts 
and  astrocytes55, which are thus not validated in the eight cell lines we considered under the hypoxia conditions.

Because the number of the predicted HIF1A-interacting cofactors was large, we focused on the top 37 pre-
dicted cofactors that had their motifs co-occur with the HIF1A motif in motif modules (Fig. 2C). Intuitively, 
a top cofactor should have its motif more similar to a known motif and be active in more cell lines. We thus 
ranked the predicted cofactors based on the product of the -log of the STAMP E-value of its predicted motif 
and the number of cell lines in which its motif was predicted. A cutoff of 15 was used because a top cofactor 
should have an average STAMP E-value smaller than 1.0E−5 (Materials and Methods) and occur in more than 
three of the eight cell lines. We obtained the top 37 cofactors with this cutoff of 15. We found that 19 of these 
37 cofactors were directly supported by literature and the PPI databases. This high success rate in discovering 
known HIF1A cofactors supports the validity of the study and suggests that the predicted cofactors are likely 
biologically meaningful. Surprisingly, of these 19 cofactors, 12 (63.1%) cofactors were not reported in the current 
PPI databases (Fig. 2C), suggesting that the current PPI databases are far from complete. For instance, four of 
the top five cofactors—NFE2L249,  KLF550,  TFAP2A51, and  EGR152—have all been experimentally identified to 
interact with HIF1A while not being found in the PPI databases. For the remaining 18 novel cofactors, as shown 
in the last section, we could find experimental evidence to support the direct interaction of HIF1A with at least 
11 cofactors. In other words, at least 30 of the top 37 cofactors are most likely interactors of HIF1A.

HIF1A and cofactors regulate significant cancer-related pathways. After validating the statistical 
and biological significance of the cofactors, we next sought to identify the mechanisms behind their contribu-
tions to hypoxia pathways, especially across different cell lines. We assigned the closest gene to each HIF1A 
ChIP-seq peak and analyzed the regulation of those genes and their relation to the cofactors (Supplementary 
Tables S4–S6).

The regulatory regions, especially enhancers in mammalian genomes, are often far from their target  genes53–56. 
We thus first investigated how far the HIF1A ChIP-seq peaks are relative to their closest genes and whether it is 
proper to assign the closest genes as the target genes of the peak regions. Using the Homer  tool42, annotePeaks.
pl, we labeled all HIF1A ChIP-seq peaks by analyzing their distances to the nearest TSS. A representation of 
the binding specificities was then gathered using the tool ChIPseeker (Fig. 3). We observed that HIF1A and its 
respective TF cofactors have binding sites that are mostly found to be clustered around the TSS (Fig. 3), show-
ing that HIF1A and most of the TF cofactors identified regulate gene expression by binding to promoters and 

Figure 2.  The predicted cofactors are biologically sound. (A) and (B) Overrepresentation of the known TF-TF 
interactions in the predicted cofactor pairs. One predicted motif may correspond to multiple TFs in (A) while 
only one TF in (B). (C) The top 37 HIF1A cofactors ranked by the multiple of the -log of the STAMP E-value 
of its predicted motif and the number of motif modules in which this predicted motif occurred. An orange bar 
indicates that these cofactors were in BIND, HPRD, or BioGRID. A green bar indicates that they were not in the 
above databases but supported by literature. A blue bar indicates the remaining novel cofactors.
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are primarily promoter-centered TFs, a trend supported by other  literature19,57. Most HIF1A ChIP-seq peaks 
are thus close to the protein-coding genes and likely to regulate the closest protein-coding genes in all cell lines 
except HUVEC.

With the closest genes as the target genes, we next sought to identify pathways through GO, Reactome, and 
ChIPseeker pathway analysis (Supplementary Tables S4–S6). We discovered that among the most overrepre-
sented GO terms and pathways, several of them identified were heavily related to hypoxia-induced pathways in 
cancers. For instance, GO terms like canonical glycolysis, glucose metabolism, IRE1-mediated unfolded protein 
 response58, peptidyl-proline hydroxylation to 4-hydroxy-1-proline4, RHO GTPase  cycle59, transcriptional regu-
lation by  TP5360, and cellular response to hypoxia were identified, while similar processes were found in the 
Reactome and ChIPseeker pathway analysis—transcriptional regulation by TP53, glycolysis, cellular responses 
to stress, etc. Consistently with all three methods, we found no enriched biological processes in HUVEC.

Surprisingly, HUVEC differs greatly from the rest of our cell lines. As shown in Fig. 3, we also noticed that 
HIF1A’s binding distributions differed from those of other cell lines. One possible explanation is that endothelial 
PAS domain protein 1 (EPAS1, also known as HIF2A) instead of HIF1A is characterized as the predominant 
hypoxia inducible factor isoform in  HUVEC20. However, it is still uncharacteristic that HIF1A does not have 
some other regulatory role. Instead, we propose that this is due to HIF1A’s lack of cofactors in the HUVEC cell 
line. It has been well documented that the cofactors involved in a complex are crucial to binding specificity and 
gene regulation. Consistent with our claim, according to Table 1, we can see that HUVEC has a low cofactor 
discovery rate, and in Fig. 2, there is a low enrichment for the TF pairs in HUVEC. As a result, we hypothesize 
that it is due to the lack of cofactors that HIF1A’s binding specificity is different and gene enrichment is minimal. 

Figure 3.  The distance of the HIF1A ChIP-seq peak regions to the proximal genes. Using the ChIPseeker tool, 
the HIF1A peaks were visualized in terms of their proximity to nearby genes.
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Thus, this further supports the validity of the discovered cofactors in our study and the crucial roles they play 
in HIF1A’s functions.

We next analyzed how different TF cofactors play different roles in different cell lines, resulting in potential 
cell-type-specific expression. Despite a high number of cofactors identified across cell lines, the identified cofac-
tors were quite distinct when comparing two cell lines. On average, more than 71.1% of the cofactors in each cell 
line were not found in another cell line (Supplementary Table S7). Since the difference in cofactors is essential to 
differential gene expression, we expect that the more different the cofactors are, the more different the enriched 
GO terms are. To quantify this, we graphed the difference in GO terms against the difference in cofactors in every 
pair of cell lines (Supplementary Figure S1). We found that for most of the cell lines, a high difference between 
TF cofactors resulted in a high difference in the enriched GO terms (average  R2 = 0.77) in all cell lines except 
MDA-MB-231  (R2 = 0.53) and HKC8  (R2 = 0.23). This conclusion still held when we compared the difference 
in the identified pathways with the difference in the cofactors in pairs of cell lines. For instance, through the 
ChIPseeker pathways, although only 6.7% of the cofactors in MDA-MB-231 and 3.5% of the cofactors in HKC8 
were shared (Supplementary Table S7), four of the five most enriched pathways in HKC8 and four of the five 
most enriched pathways in MDA-MB-231 were identified in both cell lines (Supplementary Table S6). The above 
analysis suggested that while different TF cofactors help promote various transcriptional responses, HIF1A may 
also cooperate with different TF cofactors in different cell lines to regulate overlapping target genes and pathways.

The novel HIF1A cofactors make biological sense. We gathered the leftover TF cofactors that were 
not supported by external evidence, as found in Fig. 2C. In this study, we labeled a predicted cofactor as a prob-
able HIF1A cofactor if it is confirmed to interact with HIF1A directly or indirectly, controlling the expression of 
HIF1A and vice versa and possess a high similarity in their target genes. We could not go into details about the 
201 HIF1A cofactors discovered (Supplementary Table S8), including those in Fig. 2C. Instead, we decided to 
validate the top TF cofactors (Fig. 4A) that were not in the databases or directly supported by literature, namely: 
heat shock transcription factor 1 (HSF1), E2F transcription factor 4 (E2F4), E2F6, nuclear respiratory factor 1 
(NRF1), FOS like 2, AP-1 transcription factor subunit (FOSL2), signal transducer and activator of transcription 
1 (STAT1) and Kruppel like factor 4 (KLF4) (Fig. 4B). For the remaining top cofactors, we filled the supporting 
evidence as HIF1A cofactors to the best of our knowledge in Supplementary Table S9.

HSF1 is the main human protein responsible for regulating responses to severe heat and inflammation. It 
activates heat shock proteins like HSP70 and HSP90, which plays an essential role in tumorigenesis, as they 
allow cancer cells to manage their elevated heat and stress levels resulting from their rapid  proliferation61. Due 
to the connection between hypoxia and cancer, it has also been demonstrated that HSF1 and HIF1A are closely 
related to tumor  formation62. HSF1 regulates the mRNA binding protein, HuR, which controls the expression 
of HIF1A, and VEGF, a protein that stimulates neovascularization and plays an essential role in responses to 
hypoxia. A lack of HSF1 has been shown to dramatically deplete HIF1A and decrease angiogenesis, which is 
directly linked to a cancer cell’s growth and development. Our analysis further supports the importance of HSF1 
in hypoxia-related pathways as the GO term “cellular responses to heat stress” was found in all cell lines except 
HUVEC. Interestingly, though it could mistakenly be inferred that HSF1 is a transcriptional regulator of HIF1A, 
there are very complex relations between the two TFs. It was found that while HIF1A upregulates HSF1 expres-
sion in Drosophila cells to activate the heat shock response pathway, HSF2 and HSF4 were found to upregulate 
HIF1A in mammalian  cells62 to activate a hypoxic one. Moreover, we found that HSF1 was ranked as a top ten 
predicted cofactor by the tool  PIP63, and seven of the top nine predictions by which were experimentally verified 
by previous studies. PIP predicts a potential interacting cofactor by testing the co-expression of the two proteins, 
orthology, domains, transitive scores, and other factors. All the above evidence shows the interconnectedness of 
the two TFs, which demonstrates a high possibility of HSF1 engaging in a PPI with HIF1A.

Figure 4.  Interactions between discovered HIF1A cofactors. (A) Cytoscape representation of the top 37 
TFs and their interactions with one another. (B) Cytoscape network of interactions between six top novel TF 
cofactors, HSF1, E2F4, E2F6, STAT1, FOSL2, NRF1, and KLF4. SIOMICS predicted the edges shown.
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E2F4 and E2F6 are members of the E2F family of TFs and have a high potential to interact with HIF1A 
directly. They are responsible for regulating cell  cycle64. GO terms like “mitotic DNA damage checkpoint, regula-
tion of transcription from RNA polymerase II promoter in response to hypoxia, and cell cycle phase transition” 
were found in our enrichment analysis (Supplementary Table S5). Extensive studies have also linked both TFs and 
their functions to hypoxia-related pathways in cancers. For instance, E2F4 was found to work cooperatively with 
MYC and NRF1 to promote tumorigenesis in hypoxia-driven  apoptosis65. Furthermore, Tiana et al. hypothesized 
that HIF1A might directly interact with E2F4/E2F6 to regulate the activity of SIN3A, a protein essential for a 
cell’s complete response to  hypoxia20. E2F7, a paralog of E2F4/E2F6, has also been found to interact physically 
with HIF1A to form a repressor  complex66.

Interestingly, in the E2F4-NRF1-MYC complex mentioned above, NRF1 was also identified as a potential 
cofactor, while MYC is a known TF cofactor of  HIF1A67. A previous study showed that NRF1 was found to 
be a regulator of HIF1A in HEK293T cells. Furthermore, Wierenga et al. performed a motif search on HIF1A 
binding  sites68 and found that NRF1 was significantly enriched alongside  SP169 and  ELK170, both of which are 
known HIF1A cofactors. NRF1 has also been discovered to be a pioneer  TF71. Pioneer TFs remodel their nearby 
landscape to allow non-pioneer TFs to interact with a specific DNA sequence, and in this case, HIF1A may 
interact with NRF1 to increase binding specificity and so that it can regulate target genes that it did not previ-
ously have access to.

Much evidence supports the rest of the possible TF cofactors that were identified. For instance, FOSL2 is 
another potential cofactor. FOSL2 and other members of the FOS family usually dimerize with proteins of the 
JUN family to form the AP-1  complex72. Our analysis identified many components of the AP-1 complex, includ-
ing JUN, JUND, JUNB, FOS, FOSL1, and FOSL2. The AP-1 complex has conclusively been shown to interact 
with HIF1A to express a variety of hypoxia inducible factor target genes, including VEGF, the master regulator 
of angiogenesis. FOSL2 is also shown to have bound to several of HIF1A’s target genes and is itself upregulated 
by  HIF1A73. Thus, it is very probable that FOSL2 is a possible HIF1A cofactor, either through interacting with 
HIF1A through the AP-1 complex or as an individual TF. STAT1 is another significant possible HIF1A cofac-
tor identified in this study. While HIF1A has been shown to repress  STAT174, STAT1 has been, in turn, shown 
to repress  HIF1A75. Furthermore, it has been well documented that STAT1 and STAT3 are closely related in 
terms of the pathways that they regulate, to the point where interfering with the expression of one protein may 
indirectly affect the expression of the  other76. Since STAT3 is a known TF cofactor of  HIF1A77, we predict that 
since the two TFs are so closely related, both may engage in an interaction with HIF1A. STAT1 and FOSL2 were 
found in the PIP database due to a high possibility of co-expression, many similar domains, and several common 
cofactors. Finally, KLF4 also shows high potential as, like NRF1, KLF4 additionally acts as a pioneer TF. It has 
been shown that while HIF1A upregulates KLF4 in vascular smooth  cells78, KLF4 was found to inhibit HIF1A 
in Huh7 and HepG2  cells79. This high interconnectivity between the two TFs demonstrates a high possibility of 
them engaging in crosstalk or a regulatory loop.

Discussion
In this study, we sought to study HIF1A cofactors and how they connect to the role of HIF1A as a master regu-
lator of a cancer cell’s response to hypoxia. Through the analysis of ChIP-seq data in eight cancer cell lines, we 
identified 201 potential HIF1A cofactors. Most of these identified cofactors were likely to be meaningful, as they 
were independently identified in other cell lines, enriched with known interacting TF-pairs, supported by curated 
databases and literature, and were connected to HIF1A’s gene regulatory pathways.

We compared the predicted cofactors with the known HIF1A cofactors curated in public databases. We 
identify 21 of the 29 known TF cofactors. Two cofactors were missed due to the STAMP E-value cutoff used, 
suggesting the limitation of the current motif comparison tools. The other six missed cofactors are paralogous 
TFs to the identified cofactors, likely inactive in the eight cell lines we considered. For instance, the missed 
cofactor TP63 is paralogous to the identified cofactor TP53. The expression of TP63 was undetectable under 
hypoxic  conditions80,81. The high percentage of the identification of the known HIF1A cofactors suggests that 
our pipeline to identify cofactors is reliable, and the predicted HIF1A cofactors are biologically meaningful and 
worth further experimental validation.

We also examined the cofactors not curated in the PPI databases. These cofactors could have not been 
included either because the PPI databases were not up to date, or they had not yet been discovered. We found 
that many of these cofactors were supported by the literature. For instance, of the top five cofactors that were 
not curated in the PPI databases, four of them—NFE2L2, KLF5, TFAP2A, and EGR1—had been experimentally 
verified as HIF1A cofactors in the literature. We also discovered that more than 51.3% of the top 37 cofactors 
were directly supported by experimental evidence in literature. We analyzed the remaining top cofactors that 
were not curated in databases or had their interaction with HIF1A experimentally validated. We found evidence 
supporting their interaction with HIF1A to modulate gene expression during hypoxia.

Recent advancements in understanding the PPI’s role in diseases have made targeting PPIs a promising 
venture, especially in cancer  therapies82. Due to the essential role that many of the discovered cofactors play in 
regulating HIF1A target genes, these new cofactors may have regulatory mechanisms that could be exploited 
for novel therapies. For instance, TFAP2A, an identified cofactor not found in any of the major databases, was 
demonstrated to interact with HIF1A to target the VEGF pathway in nasopharyngeal carcinoma cells. Shi et al. 
showed that inhibiting TFAP2A led to decreased tumor growth and conclusively proved that TFAP2A had 
the potential to be investigated as a therapeutic  target51. Many of the other new potential cofactors identified 
also have similar implications. For instance, Toth et al. predicted that simultaneously targeting the HIF1A and 
NFE2L2 presents a novel approach for cancer therapies and proposed several molecular inhibitors that would 
target both  proteins83.
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In five of the eight cell lines, we predicted 100 motifs, which was the upper limit when running the default 
SIOMICS. The discovered 100 motifs suggested that there could be more motifs unreported. In the future, we 
could explore the remaining motifs and study other cell lines and types. Moreover, of the 201 cofactors identified, 
only the top 37 was fully analyzed in this study. This was because it was too time consuming to find evidence 
that supports each and every single cofactor left. To gain a more comprehensive view of the HIF1A cofactors in 
hypoxic cancer cells, more studies will have to be conducted and experimental research like co-immunoprecip-
itation arrays would help verify our predictions. We look forward to further investigating the effects of HIF1A’s 
cofactors and the importance of TF cooperativity in many of its pathways.

Data availability
The human genome used is from https:// www. ncbi. nlm. nih. gov/ assem bly/ GCF_ 00000 1405. 26/. The ChIP-seq 
data in the eight cell lines are from the following  publications17–23. The links to these ChIP-seq data are provided 
in Supplementary Table S1.
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