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Massive and massless plasmons 
in germanene nanosheets
Michele Pisarra1, Cristian Vacacela Gomez2 & Antonello Sindona1,3*

Atomically thin crystals may exhibit peculiar dispersive electronic states equivalent to free charged 
particles of ultralight to ultraheavy masses. A rare coexistence of linear and parabolic dispersions 
yields correlated charge density modes exploitable for nanometric light confinement. Here, we use 
a time-dependent density-functional approach, under several levels of increasing accuracy, from the 
random-phase approximation to the Bethe-Salpeter equation formalism, to assess the role of different 
synthesized germanene samples as platforms for these plasmon excitations. In particular, we establish 
that both freestanding and some supported germenene monolayers can sustain infrared massless 
modes, resolved into an out-of-phase (optical) and an in-phase (acoustic) component. We further 
indicate precise experimental geometries that naturally host infrared massive modes, involving two 
different families of parabolic charge carriers. We thus show that the interplay of the massless and 
massive plasmons can be finetuned by applied extrinsic conditions or geometry deformations, which 
constitutes the core mechanism of germanene-based optoelectronic and plasmonic applications.

The understanding of collective electron phenomena at the nanoscale is a main theme in the research on novel 
artificial heterostructures and related device  architectures1–4. In this exploration, a number of superior qualities 
are offered by two-dimensional (2D) crystals with linear electronic bands, or Dirac cones, crossing around the 
Fermi energy EF.

Such 2D Dirac cone materials (2DDMs) host massless charge carriers of large group  velocities5,6, which 
strongly couple to light via excited charge density waves quantized as plasmons7–9. The Dirac cones with vertices 
at EF are commonly characterized at the corners (K points) of the first Brillouin zone (1stBZ) in graphene, the 
first isolated 2DDM composed of carbon atoms in a honeycomb  lattice10–13.

However, in spite of the hundreds of 2D materials discovered so far, experimental observations of 2DDMs 
other than graphene are rather  few14–28. In particular, a number of single and multiple low-buckled hexagonal 
phases of germanium were characterized on  gold15,  aluminum16,17, and  silver18,19. Some alternative realizations 
of this kind, grown on large to moderate gapped substrates, such as  AlN23 and MoS224,25, showed clear hallmarks 
Dirac cones near EF . The corresponding overlayers, here referred to as quasifreestanding germanene (QFGe) 
sheets, additionally exhibited another bunch of parabolically dispersing electronic states approaching or even 
crossing EF.

These achievements, while confirming the massless nature of the charge carriers, derived from the linear 
bands, also indicate coexistence of massive charge carriers, originating from the parabolic bands, which further 
boosts the interest in germanene-based 2DDMs. Similar features were observed in metal quantum well struc-
tures grown on  graphene29, while a more extreme correlation of linear and flat bands was recognized in twisted 
sandwiched  graphene30.

Given these premises, a major issue is on the dielectric response and related plasmon modes of the QFGe 
sheets, as compared to freestanding germanene (FGe). In this respect, particular attention sholud be given to 
the role played by plasmons in extreme light trapping.

Here we provide such a study, starting from a time-dependent density-functional  theory31–34 (TDDFT) 
approach, in the random phase approximation (RPA), with a local kernel designed for 2D  systems35–44. Accord-
ingly, we compute the optical absorption and energy loss function of the FGe and QFGe monolayers that allow 
us to explore their leading single-particle excitations (SPEs) processes and charge density modes, over the infra-
red (IR) to the ultraviolet (UV) range.

Next, we consider the explicit inclusion of quasiparticle GW  corrections45–50, in an RPA+GW approach. 
Finally, we compare our results with optical macroscopic permittivity calculations, performed within the Bethe-
Salpeter equation (BSE) and BSE+GW  frameworks51–54.
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We demonstrate the existence of tunable massless and massive plasmons as a unique manifestation of strongly 
interacting 2D quantum matter, providing at the same time careful control tools to monitor their correlated 
propagation and damping.

Results
Band dispersions and density of states. We carried out the electronic structure calculations using the 
plane-wave (PW)  approach57,58 to Kohn–Sham (KS) density-functional-theory (DFT), within the local density 
 approximation59,60 (LDA) supported by an efficient norm-conserving  pseudopotential61.

Figure 1 reports the energy bands, along the high-symmetry ŴKMŴ path of the 1 stBZ, and the density of 
states (DOS) of the two above outlined QFGe sheets, in comparison with FGe. The key electronic states impli-
cated in optical processes belong to the two highest bands below and the two lowest bands above the Dirac cone 
vertex, at energy EC . The energy-wave-vector dispersion of these bands are highly affected by the equilibrium 
geometry of the corresponding lattices, which also determines the peak positions and widths of the associated 
DOS profiles. Nonetheless, some typical trends of group IV monolayers with honeycomb lattice can be identified.

In particular, the Dirac cones emerge at the K point, being characterized by two bands of dominant π and π∗ 
character, apparent in the projected band structures (see Supplementary Information, Sec. I). The cone shape is 
practically untouched by geometry effects, with a slope (or Fermi velocity) of 0.24, in units of the Bohr velocity, 
being about 63% of the Fermi velocity of freestanding graphene, as calculated within the  LDA43. The π-like and 
π∗-like bands approach the M point with flat dispersions, associated to the first van Hove singularity (VHS) 
pair in the DOS profiles. The second highest band, below EC , exhibits two non-degenerate minima with σ-like 
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Figure 1.  Band structure and DOS profiles of (a) FGe, (b) QFGe onAlN , and (c) QFGe onMoS2 , within an 
energy window of 6 eV centered at the Fermi level (EF=0 ). The energy dispersions are associated to occupied 
or empty states with dominant σ (σ ∗ ) and π (π∗ ) characters. The DOS curves are shown convolved with a 
Lorentzian lineshape having a phenomenological broadening of 0.01 eV. The other energy labels, and related 
horizontal lines, denote the positions of the Dirac cone (EC ), the highest (degenerate) σ-like states at Ŵ (EŴσ  ), the 
lowest σ ∗-like states at Ŵ (EŴσ ∗ ), the highest π-like VHS at M (EπM ), and the lowest π∗-like VHS at M (Eπ

∗
M  ). (d) 

Real and (e) reciprocal space information, i.e., unit cell (UC), crystal basis, lattice constant a, buckling distance 
� , 1 st BZ and irreducible 1 stBZ, delimited by the ŴKMŴ path, being also the horizontal axis in the left panels 
of (a)–(c).
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character towards the middle of the ŴK and MŴ lines, where the first lowest band, above EC , presents two non-
degenerate maxima with π∗-like character.

An unparalleled feature is the behavior of the highest occupied and lowest unoccupied states around Ŵ , 
which respectively form two σ-like bands, approaching the degenerate energy EŴσ  , and one σ ∗-like or π∗-like 
band, depending on the system’s geometry. Unlike graphene and  silicene26, the energies of the σ-like states are 
sufficiently close to EF that substrate-induced lattice deformations gradually turn the nature of the germanene 
overlayer from zero gap semimetal (FGe and QFGe onAlN ) to metal (QFGe onMoS2).

Specifically, the AlN-induced compression (2.1%) shifts up the σ-like and σ ∗-like bands of the QFGe overlayer, 
leaving unaltered the π-like and π∗-like bands, with inclusion of the Dirac cone at vertex EC=EF and the VHSs’ 
structure (Fig. 1b). This QFGe system is still a semimetal, along with FGe, though the degenerate top level of the 
σ-like bands is increased by 0.30 eV towards EF , which corresponds to a higher onset of the decreasing behavior 
of the occupied DOS, vanishing at the Dirac cone.

The MoS2-induced compression (7.4%) produces a more significant upshift of the σ-like bands that cross the 
Fermi level at Ŵ , with EŴσ  lying at ∼0.11 eV above EF , which yields a small spike in the associated DOS (Fig. 1c). 
As a result, this other QFGe system is a metal with the Dirac cone downshifted to EC=−0.29 eV below EF , cor-
responding to a non-vanishing DOS point, and a hole pocket left at Ŵ with two different dispersions. The latter 
are equivalent to two families of positive charge carriers of effective masses 0.45me and 0.07me , with me denoting 
the electron rest mass.

Further tuning of EF in synthesized germanene overlayers can be achieved by proper combination of chemical 
doping or electrostatic gating and mechanical stress or  strain62–66.

Dielectric properties. The above outlined electronic structures are primarily involved in the macroscopic 
permittivity response ǫm of the FGe and QFGe monolayers. The other key element is the interaction generated 
by light-induced changes in charge density that we approximated to a truncated Coulomb potential, specific for 
2D  materials40–44, see sections "Absorption Spectra and Loss Spectra". We used the same potential, in conjunc-
tion with a plasmon pole  model47, to correct the band energies of Fig. 1 at the level of the GW  approximation48–50, 
as reported in section  "Many-body quasiparticle and excitonic effects". We further considered other two-parti-
cle excitonic effects within the BSE  approximation52–54, see also section "Many-body quasiparticle and excitonic 
effects".

In the following, we present the behavior of im(ǫm) and −im(1/ǫm) vs the probing energy ω and transferred 
momentum q . These two quantities, being respectively proportional to the absorption cross-section and the 
so-called energy-loss function, provide complementary spectral representations of plasmon propagation and 
damping. The peak structures of −im(1/ǫm) are blueshifted relative to im(ǫm) , with the plasmon resonances 
following the absorption peaks and lying just below the loss peaks, at the closest-to-zero permittivity  point67. 
Undamped plasmons are more markedly spotted in the double sign change of re(ǫm) , in particular, at the larg-
est zero of re(ǫm) , which matches the negligibly small value of im(ǫm) relative to its peak (see Supplementary 
Information, Sec. III).

Charge carrier concentration. Our main concern is on doping- or gating- induced shifting of EF at fixed 
(room) temperature. This amounts to inject or eject small electron concentrations ne or nh that cause positive or 
negative shifts �EF , while leaving unaltered the underlying electronic structure of the intrinsic systems.

Figure 2 shows the ne/h profiles against �EF , within the range where the highest occupied valence band, and 
the lowest unoccupied conduction band, have linear (π-like or π∗-like), parabolic (σ-like), and flat (π∗-like) 
dispersions around K, Ŵ , and M, respectively.

In FGe, the filling or emptying of the Dirac cone states is the main mechanism for doping or gating, which 
activates a 2D optical plasmon (2DP) similarly to graphene and  silicene37,38.

In QFGe onAlN , a moderate shift �EF�−0.3 eV , i.e., an ejected electron density nh�3×1013 cm−2 , is suffi-
cient to empty part of the σ-like bands and leave a hole pocket at Ŵ , which produces another σ-like plasmon (σ P) 
interacting with the 2DP.

In QFGe onMoS2 , a consistent hole pocket is already present in the intrinsic system (set by �EF=0 or 
ne/h=0 ), along with strongly overlapping 2DP and σ P modes. Significant variations of ne/h , around 1011 cm−2 , 
may be locally induced by point defects in MoS225. Nonetheless, much larger injected electron densities, 
ne�5.5×1013 cm−2 , are required to shift EF above the σ-like bands and deactivate the σ P. Conversely, an ejected 
electron density nh=9.8×1013 cm−2 can restore EF at the Dirac cone vertex.

In all cases, the unoccupied VHS states act as a barrier to Fermi level shifting (Fig. 1b,c), making it hard to 
achieve values of �EF larger than 0.4eV in FGe or QFGe onAlN , and 0.25eV in QFGe onMoS2.

Absorption spectra. We begin by analyzing the absorption properties of the germanene monolayers 
in their intrinsic state, at the the level of TDDFT in our RPA approach. Accordingly, we focus on the energy 
dependence of the macroscopic imaginary permittivity im(ǫm) in the optical momentum limit, i.e., at a fixed 
momentum transfer of 2.5-2.6×10−3 Å

−1 , which corresponds to the typical momentum of a photon in the few-
eV energy range.

Three main peak structures are distinguished in the far-infrared (FIR) to mid-infrared (MIR), near-infra-
red (NIR) to visible (VIS), and VIS to mid-ultraviolet (MUV) regimes, as attested by the absorption lineshapes 
of Fig. 3.

The sharp FIR-MIR peak, at ∼0.02 eV , is associated to intraband single particle excitations (SPEs) around 
the Fermi level. In FGe and QFGe onAlN , this feature results from quasivertical transitions occurring at the K 
point of the 1 stBZ, thus involving thermally excited π-like and π∗-like charge carriers at the Dirac cone, which 
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is a consequence of the semimetal nature of the monolayers. A higher peak intensity, of about a factor of eight, 
is recorded in QFGe onMoS2 , because of the Fermi level shifting above the Dirac cone, and the corresponding 
metal nature of the system. By inspecting the differences in the charge-carrier concentration profiles of Fig. 2, 
we have estimated a population of neK = 2.4×1013 cm−2 electrons in the π∗-like part of the Dirac cone, between 
EC and EF . We have further estimated a population of nhŴ = 2.8×1013 cm−2 holes in the σ-like bands, between 
EF and EŴσ  . Accordingly, the FIR-MIR peak in QFGe onMoS2 is determined by intraband SPEs around K and Ŵ.

A shoulder appears in QFGe onMoS2 at MIR to NIR wavelengths, i.e., in the energy range between 0.4 and 
0.8eV. This is a signature of interband SPEs between the occupied and empty σ-like states at the crossing point 
with EF , as confirmed by a joint DOS analysis (see Supplementary Information, Sec. II). These σ-σ excitations 
originate from parabolic-like bands and contribute with a broader and much less intense peak, being partly 
superimposed with the MIR tail of the FIR-MIR peak.

The NIR to VIS peak structure extends from 1.2eV in FGe, 1.4eV in QFGe onAlN , and 1.5eV in 
QFGe onMoS2 , to 1.8eV, being mostly determined by interband SPEs around Ŵ and M (see Supplementary 
Information, Sec. II).

In FGe and QFGe onAlN the onset energy, on the NIR range, coincides with the gap between the σ-like and 
σ ∗-like bands at Ŵ , thus involving σ-σ ∗ SPEs between the corresponding band maxima and minima.
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around EF , yielding the sharp FIR-MIR peak. Interband SPEs (cyan-box labels) result from transitions from the 
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MUV peak structures in (a)–(c), plus the MIR-NIR shoulder in (c).
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In QFGe onMoS2 , the initial NIR structure has a smoother trend, originating from transitions from the 
occupied σ-like states to the unoccupied σ ∗-like states at Ŵ . Accordingly, the σ-σ ∗ SPEs lead to a broad maximum 
around 1.6eV, due to transitions to the σ ∗ band minimum.

In all monolayers the VIS peak at 1.8eV arises from transitions from the π-like to π∗-like bands, at the 
corresponding VHS points. The latter appears as a weak feature in QFGe onMoS2 , being superimposed to the 
spectrum of σ-σ ∗ SPEs, away from Ŵ.

The VIS to MUV peak structure, covering the 2.6-4.6 eV range, involves SPEs between the highest (or second-
highest) valence band and the second-lowest (or lowest) conduction band, with dominant transitions from π-like 
(or σ-like) to σ ∗-like (or π∗-like) states, around the corresponding DOS peaks (see Supplementary Information, 
Sec. II).

In FGe and QFGe onAlN , the 3.1 and 3.3–3.4 eV peaks mainly originate from σ-π∗ SPEs, with a maximum 
intensity due to transitions towards Ŵ , and around the mid points the ŴK and MŴ segments. The weak 3.7-3.9 eV 
peak is mostly due to π-σ ∗ SPEs around the mid points of the KM and MŴ lines. The 4.1-4.2 eV peak has a main 
contribution from σ-σ ∗ SPEs along the ŴK and MŴ lines, close to Ŵ.

In QFGe onMoS2 , all the 2.6, 3.2, 3.5, and 4.1 eV peaks mainly originate from σ-π∗ SPEs around the mid 
points of the ŴK and MŴ segments. Other contributions at 3.4 eV and 3.5 eV are respectively due to π-σ ∗ SPEs 
around M and σ-σ ∗ SPEs along ŴK , close to Ŵ.

The different peak positions and intensities of the VIS to MUV feature in QFGe onMoS2 , as compared to 
FGe and QFGe onAlN , are a consequence of the different positions of the DOS peaks around the π-like (or σ
-like) band minima and the σ ∗-like (or π∗-like) band maxima.

Loss spectra. We now move to the energy loss properties of the three monolayers, within the TDDFT-RPA 
framework. As a preliminary analysis, we focus on the behavior of −im(1/ǫm) at small momentum transfers 
along ŴM , say, q<5.4×10−2 Å

−1 down to the optical limit, displayed in Fig. 4. We notice the existence of distinct 
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Figure 4.  (Top) Intrinsic loss functions [∝−im(1/ǫm) , in arb. units] of (a) FGe, (b) QFGe onAlN , and 
(c) QFGe onMoS2 displayed as vertically shifted plots vs ω<4.2 eV, for some fixed sampled momenta 
q<5.4×10−2 Å

−1 with q‖ŴM . The slight differences in the q-values of the three monolayers are a consequence 
of their different lattice constants (see Fig. 1). The ω<0.4 eV dispersive features originate from intraband 
charge density oscillations, namely the 2DP mode in (a), (b), and the 2DP+σ P modes in (c), with the highest 
peak of FGe and QFGe onAlN , at ∼0.02eV, being 20% lower than that of QFGe onMoS2 , at ∼0.04 eV. The 
ω>0.4 eV dispersive peaks exhibit similar intensities at similar momentum transfers, being a signature of 
different interband plasmons, including the σ ′P mode [dashed lines in (c)], plus the more conventional πP and 
πσP modes in (a)–(c). (Bottom) Real macroscopic permittivity [re(ǫm) , in atomic units (au)] of (d) FGe, (e) 
QFGe onAlN , vs ω<0.2 eV, and (f) QFGe onMoS2 vs ω<0.4 eV, with the same sampled momenta of (a)–(c). 
The black boxes highlight the undamped 2DP resonances, and the dashed line follows the effect of the damped σ
P.
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dispersive peak structures, which at the lowest sampled momentum correspond to the FIR-MIR, MIR-NIR, 
NIR-VIS and VIS-MUV absorption features of Fig. 3.

In particular, FGe and QFGe onAlN exhibit a 2DP mode of low intensity at 0.01-0.04 eV, due to charge density 
oscillations of the fraction of thermally excited Dirac cone electrons and holes at room temperature, with the 
2DP peaks in Fig. 4a,b representing the loss counterpart of the FIR-MIR absorption peaks in Fig. 3a,b.

In QFGe onMoS2 , on the other hand, we detect an intriguing scenario where the 0.29 eV shifting of EF above 
EC induces a strong 2DP at 0.04-0.3eV, involving the above-calculated neK concentration of massless Dirac cone 
electrons. This oscillation coexists with the intraband modes (σ P) of the above-calculated nhŴ concentration 
of massive parabolic holes, associated with the two σ-like bands, which cross the Fermi energy close to Ŵ . The 
massless and massive modes are superimposed to each other, and cannot be disentangled in intrinsic conditions. 
This yields the 2DP+σ P peak in Fig. 4b, which corresponds to the FIR-MIR absorption peak of Fig. 3c. The peak 
to peak ratio of the 2DP, in FGe and QFGe onAlN , and the 2DP+σ P, in QFGe onMoS2 , at the lowest sampled 
momentum, parallels the difference in the absorption peak intensities displayed in Fig. 3.

Looking at the real macroscopic permittivity, in Fig. 4d–f, we can further observe that the 2DP propagates 
undamped in the Landau  sense55,56 over a different momentum transfer range, namely, q<0.8×10−2 Å

−1 , in FGe 
and QFGe onAlN , and q<3.2×10−2 Å

−1 , in QFGe onMoS2 , where re(ǫm) presents a well-defined pair of zeros. 
On the other hand, the σ P modes of QFGe onMoS2 are largely damped, being not related to a clear change of 
sign in re(ǫm) , though they leave a signature in re(ǫm) below the 2DP zeros.

Another peculiar collective motion of the σ-like charge carriers in QFGe onMoS2 is related to the 0.4-1.3eV 
dispersive feature in Fig. 4c, whose lowest momentum peak at ∼0.6 eV corresponds to the MIR shoulder in the 
absorption spectrum of Fig. 3c. The sequence of peak positions, ranging from 0.6 to 0.9 eV with increasing q, 
suggests that this feature is a manifestation of the interband plasmon (σ ′ P) assisted by SPEs between the occupied 
and empty metal states at Ŵ.

The other two peak structures, at 1.4-2.2eV and 2.6-5.0eV, are the optical counterparts of the so-called π-like 
plasmon (π P) and πσ-like plasmon (πσP), which are commonly characterized in group IV honeycomb sheets 
and heterostructures. These appear as largely damped charge density oscillations, being respectively superim-
posed to the π-π∗ SPE spectrum and the π-σ ∗ , σ-σ ∗ , σ-π∗ SPE spectra.

An even more informative representation is provided by the density maps of the FIR to VIS modes, given in 
Fig. 5 for a broad range of momentum transfers q<0.15Å

−1 along ŴM . FGe (Fig. 5a) and QFGe onAlN (Fig. 5b) 
present very similar loss spectra, sharing an identical weak 2DP mode with monotonically increasing dispersive 
trend. An appreciable difference is detectable in the onset of the π P structure, based on the positions of the top (σ
-like) and bottom (σ ∗-like) band levels at Ŵ , as discussed above with reference to Figs. 1a,b and 2a,b.

Again, the most interesting feature is due to the 2DP+σ P and σ ′ P modes in QFGe onMoS2 (Fig. 5c), which fol-
low an interfering pathway due to the different massless and massive plasmons involved. Also visible in Fig. 5a–c 
is that the π P peak position increases monotonically with increasing q, though the actual dispersion, width and 
onset of the associated spectral structures in FGe and QFGe onAlN vs QFGe onMoS2 are significantly different, 
as a consequence of the semimetal vs metal nature of the monolayers.

Additional insights come from the zoom on the 2DP+σ P and σ ′ P structures, shown in Fig. 6a, for q<0.08Å
−1 

along ŴK , where we see that the highest peak propagates in the region where Dirac cone SPEs at the K point of 
the 1 st BZ are absent, being mostly determined by the massless 2DP. Such a condition is confirmed by the energy 
position of the same mode in FGe with similar Fermi level shift relative to EC . Complementary, the lowest peak 
occurs in the region where Ŵ-point excitations are absent, being entirely determined by the massive σ ′P.

A way to isolate the σ P mode is to drive the Fermi level of QFGe onMoS2 at the Dirac cone vertex, which 
reduces the massless plasmon to the tiny structure recorded in intrinsic FGe (Fig. 5a) and QFGe onAlN (Fig. 5b). 
This particular extrinsic condition is shown in the loss function of Fig. 6b, where the highest peak must be 
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ascribed to the intraband massive plasmon, because it lies ∼0.2 eV above the expected massless 2DP energy (see 
Supplementary Information, Sec. III and Sec.IV).

As the Fermi level is lowered down from the Dirac cone vertex, the 2DP mode comes into play and interferes 
with the σ P mode, which is shown in Fig. 6c, where an intermediate extrinsic condition is considered, between 
the intrinsic and half-filled Dirac cone cases.

Another important situation pops up when EF is driven around EŴσ  , as displayed in Fig. 7a, where a different 
form of 2DP-σ correlation emerges, with the σ P being shifted in momentum space and assuming a V-shaped 
feature for q�0.1Å−1 . This peculiar massless-massive plasmon interaction can be controlled by finetuning of EF 
and geometry driven band distortion. Indeed, a similar scenario appears in QFGe onAlN , as detailed in Fig. 7b, 
where the different QFGe geometry offers a similar Fermi level positioning relative to the σ-like bands, with 
respect to QFGe onMoS2 . Additionally, the σ P becomes competitive with the 2DP when the σ ∗-like band comes 
into play, as in the case of FGe stretched by 4.4% relative to its LDA  geometry68,69, where the extrinsic condition 
�EF=0.4 eV leads to the strongly correlated 2DP-Vσ P feature given in Fig. 7c.

Finally, when EF is kept within the σ-σ ∗ band gap at Ŵ , the massive plasmon is excluded, which opens up the 
typical scenario of group IV 2D honeycomb lattices, where the 2DP propagates out-of-phase with square-root-
like dispersion, in parallel with a smaller in-phase acoustic plasmon (AP) triggered by momentum transfers 
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along selected directions, e.g., q‖ŴK37,38. The 2DP and AP modes are shown in Fig. 8, with the loss functions 
of the FGe and QFGe monolayers computed at the same Fermi level shift relative to the Dirac cone vertex. The 
massless plasmons are also exclusively implicated in the FIR-NIR dielectric response of FGe and QFGe, within 
a broad range of extrinsic conditions (see Supplementary Information, Sec. III and Sec.IV).

On the other hand, in both the stretched FGe and QFGe geometries, the AP mode can be detected along with 
the 2DP and massive modes for momentum transfers along ŴK , see Fig. 7. The AP disappears for momentum 
transfers along ŴM , as already observed in graphene and  silicene37,38 (see also Supplementary Information, 
Sec. IV).

Many-body quasiparticle and excitonic effects. To improve the reliability of the above presented 
analysis, we first estimated the role of GW quasiparticle corrections to the LDA band  energies45–50. We focused 
in particular on FGe and QFGe onMoS2 as complementary examples of purely massless and massless-massive 
plasmonic substrates, under specific extrinsic regimes. Then, we applied the TDDFT-RPA machinery and cal-
culated the dielectric properties of both overlayers by replacing the LDA band energies with the GW corrected 
band energies, while leaving unaltered the systems’ wave functions.

The GW bands of FGe, shown in Fig. 9a, exhibit a significant narrowing of the Dirac cone relative to the LDA 
bands, equivalent to an increased slope of 0.30, in units of the Bohr velocity. A similar though lower increase rate 
has been reported for the Fermi velocity in  graphene48. Additionally, the GW energy of the top σ-like states are 
downshifted by ∼0.04 eV with respect to the LDA value. All other energies, related with the two highest occupied 
and lowest unoccupied bands, are reported to differ by a maximum value of 0.4eV.

Fig. 9b,c display the loss function of extrinsic FGe, respectively obtained within the RPA and the above out-
lined RPA+GW frameworks. The considered Fermi level shifting, �EF = 0.4 eV, activates highly resolved 2DP 
and AP modes, excluding the massive modes. Indeed, the latter would be present under extreme doping or gating 
conditions, being such that −0.55≤�EF≤0.58 eV with the LDA energies, and −0.60≤�EF≤0.95 eV including 
the GW quasiparticle corrections. By comparing Fig. 9b with Fig. 9c, we see that the RPA and RPA+GW loss 
spectra exhibit qualitatively similar propagation and damping trends, though the change in Fermi velocity results 
in smaller amounts of charge carriers and narrower SPE regions.

On the other hand, as reported in Fig. 9d, both the Dirac cone vertex and the highest σ-like states of 
QFGe onMoS2 experience very small changes, below 0.04eV. Additionally, the GW Dirac cone slope is increased 
by 6% , while the GW mass of the σ-like charge carriers are practically identical to the corresponding LDA values. 
All other energies, within the two highest occupied and lowest unoccupied bands, differ by a maximum value 
of 0.3eV.

Nonetheless, the peculiar RPA plasmon structures of Figs. 6a and 7a correspond to the RPA+GW scenarios 
depicted in Figs. 9e,f, after �EF is adjusted to compensate the differences in the GW and LDA values of the Dirac 
cone energy and Fermi velocity. In particular, the extrinsic condition �EF = −0.10 eV in Fig. 9e drives the 
intrinsic Fermi level at the same position, relative to the Dirac cone vertex, as Fig. 6a, yielding almost identical 
concentrations of massless and massive charge carriers. Furthermore, the extrinsic condition �EF = −0.32 eV 
in Fig. 9f drives the intrinsic Fermi level at the Dirac cone vertex, as in Fig. 7a. Thus, the expected tunability of 
the 2DP, AP, and σ P modes can be improved by correcting the LDA band energies of the germanene monolayers 
with more accurate predictions coming from many-body correlations or experimental data.

As a final scrutiny, we estimated the role of excitonic effects on the dielectric properties of FGe and 
QFGe onMoS2 , using the BSE  framework52–54, which we implemented with the bare, three-dimensional (3D) 
Coulomb potential. In this, we considered a minimum applied momentum of 2.5-2.6×10−3 Å

−2 , equivalent to 
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a reduced accuracy on the 1 st BZ sampling by one tenth, with respect to our RPA and RPA+GW calculations. To 
suppress the increased noise in the BSE spectra, we adopted a lifetime broadening parameter being five times 
larger than the RPA and and RPA+GW spectra shown above. We further performed control tests within the RPA 
approach, here denoted RPA∗ , using the 3D Coulomb potential and the same resolutions as the BSE calculations.

Fig. 10 reports the BSE and BSE+GW macroscopic permittivity of FGe and QFGe onMoS2 against their RPA, 
RPA∗ , and RPA+GW counterparts. To ease the comparison, an overall renormalization factor is applied to the 
RPA and RPA+GW results, to compensate for the use of the 3D Coulomb interaction without our 2D truncation 
in the RPA∗ , BSE and BSE+GW calculations.

Apart from the different broadening in the real and imaginary permittivity parts, we find that the plasmon 
resonances, of the 2DP, π P, and σπ P modes, and the intraband and interband peak positions are well defined 
in both approaches, being in close agreement with each other, within a maximum difference below 0.02 eV. We 
also notice that the overall VIS-NUV features of the RPA and BSE permittivities, or the RPA+GW and BSE+GW 
permittivities, have very similar trends.

At a closer look, the comparison of the BSE and the control RPA∗ calculations suggests that excitonic effects 
may play a non-negligible role at lower and higher ends of the optical band. More importantly, the MIR-NIR 
absorption peaks in the BSE and BSE+GW approximation suffer from the low resolution on the 1 st BZ sampling.

Additionally, the intraband and interband absorption peaks, plus related plasmon modes of the metal states 
in QFGe onMoS2 , are confirmed to exist with both the RPA and BSE approaches, with the interband σ-σ ∗ feature 
being correctly described with the RPA+GW and BSE+GW formalisms. We can thus safely conclude that the 
inclusion of excitonic effects confirms the existence of a competitive interplay of massive and massless plasmon 
in germenene sheets with selected geometries.

Discussion
The key role of optical plasmons in light coupling has been long identified in a wide variety of nano-objects70–81 
and fully elucidated in simple 2D honeycomb  materials35–42.
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In the present study, we have singled out the additional versatility of germanene monolayers and related 
 interfaces87, whose multiple light-matter modes are strongly dependent on both geometry and charge carrier 
concentration. We remark that the latter is a novel feature, which marginally involve other 2DDMs, and as such 
it requires an improved analysis, in line with what has been reported here, for a correct tuning of the input 
parameters of possible germanene-based devices.

Our investigation has provided a complete picture of the massless and differently massive charge density waves 
in currently synthesized germanene sheets, outlining a unique playground of collective states in 2D quantum 
matter that can be manipulated for on-demand optoelectronic or plasmonic purposes.

This may serve to embed germanene-based building blocks in novel van der Waals heterostructures, or 
implement 2D platforms for extreme light confinement, compatible with standard semiconductor technology.

Methods
The TDDFT and GW calculations were carried out using a package of Open-MP/MPI Fortran codes, developed 
by M.P. and A.S., which were interfaced with the DFT output from Abinit57,58, and implemented in one of the 
high- perfo rmanc e compu ting facil ities provided by the CINEC A conso rtium  (Italy).

Density functional calculations. As a routinely established framework, our TDDFT-RPA  calculations40–44 
required a preliminary DFT step to access the ground state of FGe, QFGe onAlN , and QFGe onMoS2 , which 
we reconstructed by the PW pseudopotential  approach57,58. This involves the basis set of space functions 
PWk+G = �−1/2ei(k+G)·r , indexed by the wave vectors k of the 1 st BZ and the reciprocal lattice vectors G , in the 
normalization volume � . Specifically, we expressed the outer electron properties of the three germanene phases, 
artificially replicated in three-dimensions, in terms of KS energy levels ενk associated to single-particle states 
|νk� , accordingly expanded in the PWk+G basis, where ν denotes the band number. We adopted an LDA-scheme, 
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in changes of sign, or attempted change of sign of re(ǫm) , with the linear vertical scale expressed in au. Unlike 
Fig. 3, the macroscopic imaginary permittivities in (b), (c), (e), (f) are given on a linear vertical scale, expressed 
in arb. units. The comparison of the RPA∗ and BSE results in (b), (e) suggests that the sub-peaks in (b), (c), (e), 
(f), superimposed to the main intraband and interband absorption peaks, already identified within the RPA 
or RPA+GW treatments, are an artifact of the reduced resolution in BSE computations. On the other hand, 
the RPA and RPA+GW computations presented here have a much more accurate resolution on the 1 stBZ, thus 
giving a more reliable prediction of the FIR-NIR feature.

https://www.abinit.org/
https://www.hpc.cineca.it/hardware/marconi100/
http://www.cineca.it/
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based on the Teter-Pade exchange-correlation (xc)  functional59,60 combined with a norm conserving Troullier-
Martins  pseudopotential61. In all cases, we chose a periodic out-of-plane separation L of 20 Å between the rep-
licated germanene planes, which resulted in numerically negligible KS wave functions at distances larger than 
∼6 Å from each replica (within an error of 10−6 %). As for the in-plane geometry, our PW-LDA optimizations 
provided the two defining parameters of the FGe lattice, namely, the hexagonal lattice constant a=3.970 Å and 
the buckling distance �=0.640 Å, between the two germanium atoms of the crystal basis [Fig. 1], which turned 
out to be consistent with the  literature68,69. Within the same PW-LDA scheme, we simulated the two QFGe 
geometries, using the experimentally derived values a = 3.928 Å, � = 0.705 Å for AlN-distorted  germanene23 
and a = 3.820 Å, � = 0.860 Å for MoS2-distorted  germanene24, which respectively correspond to a 2.1% and 
7.4% lattice compression, relative to FGe in the LDA geometry. In the self-consistent runs, first we limited the 
number of PWs in |νk� to ∼104 , by the energy cutoff |k + G|2/2 < 25Ha . Then, we sampled the 1 stBZ (Fig. 1e) 
with a Monkhorst-Pack (MP)  grid82 of 90×90×1 k points. Next, we fixed an energy convergence criterion of 
10−12 Ha . The resulting LDA bands and DOS are reported in Fig. 1a–c, while the charge carrier concentrations 
are given in Fig. 2.

For testing purposes, we compared the LDA results with those obtained from the generalized gradient approx-
imation (GGA), based on the Perdew-Burke-Ernzerhof xc  functional83 combined with a Vanderbilt norm-con-
serving  pseudopotential84. Accordingly, we used the GGA optimized parameters a=4.061 Å and �=0.695 Å for 
 FGe69, while leaving unaltered the experimentally derived parameters of the QFGe  structures23,24. We recorded 
minor differences between the LDA and GGA electronic structures, in an energy window of ∼2.5 eV around the 
Fermi level (see Supplementary Information, Sec. V), which covers electronic transitions and collective excita-
tions in the FIR to VIS range, being the core interest of our study.

Time-dependent density functional approach. As a second step of the TDDFT machinery, we refined 
the KS eigensystem {ενk , |νk�} in non-self-consistent runs on an MP grid of 720×720×1 k points. We further 
included more than 10 unoccupied bands to encompass all possible SPEs below ∼5 eV . Then, we plugged this 
information into the Adler-Wiser  formula31,32

to obtain the non-interacting density-density response function of the KS electrons. Here, χ0
GG′ is triggered by 

an optical photon of in-plane momentum q and energy ω . fνk and fν′k+q respectively denote the Fermi-Dirac 
occupations of the energy levels ενk and εν′k+q , with the factor of 2 arising from electron spin degeneracy. 
ρ
kq
νν′(G)=�νk|e−i(q+G)·r̂|ν′k + q� and ρkq

νν′(G
′)∗ are oscillator (or screened) matrix elements. Retarded propaga-

tion or damping is governed by the positive infinitesimal broadening η , replaced by η = 0.01 eV for numerical 
convenience.

Subsequently, we calculated the interacting density-density response function by the fundamental equation 
of TDDFT, namely, χGG′=χ0

GG′+[χ0(v + fxc)χ]GG′ . In the procedure, we neglected the exchange-correlation 
part fxc of the interaction kernel v + fxc . Additionally, we replaced the v-operator with the RPA local kernel

based on the 2D Coulomb potential v2dgg′ = 2πδgg′/|q + g| , with g, g′ and Gz , G′
z respectively labeling the in-plane 

and out-of-plane components of G and G′ . The advantage of vGG′ is the deletion of redundant density-density 
interactions among the replicated monolayer  slabs35–44, which provides far more accuracy to the low-momentum 
dielectr ic  response of  2D mater ia ls  with respect  to  the  usual  Coulomb potent ia l 
v3dGG′ = lim

L→∞
vGG′=4πδGG′/|q + G|2.

Next, we treated the fundamental equation of TDDFT at the RPA level in the small interaction limit, to obtain 
χGG′=[χ0(1+vχ0)−1]GG′33,34. Finally, we determined the inverse dielectric matrix ǫ−1

GG′=δGG′+(vχ)GG′ , which 
gives access to the macroscopic permittivity ǫm=1/ǫ−1

00  . In doing so, we efficiently included crystal-local field 
effects, associated with the off-diagonal elements of χ0

GG′ , χGG′ , and ǫ−1
GG′

85, by restricting the calculation to the 
smallest ∼100 G-vectors of the form (0, 0,Gz).

The TDDFT-RPA framework just outlined can be tuned by adjusting the occupation factors in χ0
GG′ to account 

for changes in both Fermi level and temperature. Working at room temperature, we simulated the intrinsic and 
extrinsic dielectric responses of the germanene sheets by replacing EF with EF+�EF in fνk and fν′k+q , while 
leaving unaltered the KS energies, ενk and εν′k+q , and oscillator matrix elements, ρkq

νν′(G) and ρkq
νν′(G

′)∗.
The main outputs from such calculations are given in Figs. 3–8. In particular, the optical absorption features 

were computed at the smallest sampled momenta allowed by the chosen MP-grid, namely, q0ŴM=π/(180
√
3a) , 

along ŴM , and q0ŴK=π/(180a) , along ŴK , with a the lattice constant. The q‖ŴM absorption spectra of Fig. 3 
were found to be identical to the q‖ŴK absorption spectra, within the numerical errors. The energy loss spectra 
of Figs. 4–8 were computed over a broad range of sampled momenta q=q0ŴM-100 q0ŴM , along ŴM , and q=q0ŴK
-60 q0ŴK , along ŴK.

GW calculations. We probed the accuracy of our TDDFT-LDA-RPA framework by implementing the sim-
plest first-order GW expansion of the self-energy �νk , around the LDA xc potential vlda

νk
49. Specifically, we com-

puted the quasiparticle energy corrections

χ0
GG′ =

2

�

∑

k,ν,ν′

(fνk − fν′k+q)ρ
kq
νν′(G)ρ

kq
νν′(G

′)∗

ω + ενk − εν′k+q + iη
,

vGG′ = v2dgg′

∫ L/2

−L/2
dz

∫ L/2

−L/2
dz′ei(Gzz−G′

z z
′)−|q+g||z+z′|,
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to the unperturbed LDA energies {ενk} of FGe and QFGe. Accordingly, we evaluated the static, exchange part 
of the total self-energy

with cutoffs of 5Ha on the unperturbed KS wave functions and 10Ha on the G vectors. As for the dynamic, cor-
related self-energy

we reduced the G-vector cutoff to 5Ha, and replaced the J kernel with a plasmon pole  model47. We found well 
converged results using a 72×72× 1 MP grid to represent the unperturbed PW-LDA eigensystem {ενk , |νk�} , 
over a total of 50 occupied and unoccupied bands. We further adopted the 2D-truncated local kernel of our 
TDDFT-RPA approach for the vGG′ matrix elements. The GW bands from FGe and QFGe onMoS2 are respec-
tively reported in Fig. 9a,d, in comparison with the LDA bands of Fig. 1a,c.

As a final exploration, we implemented a modified TDDFT machinery, by replacing the LDA energies, sam-
pled over the 720×720× 1 MP-grid, with the GW energies of Fig. 9a,d, interpolated over the 720×720× 1 MP-grid. 
In this way, we obtained the RPA+GW loss spectra of Fig. 9c–f.

BSE calculations. We further compared our RPA and RPA+GW permittivity calculations with the macro-
scopic dielectric function

obtained from the BSE and BSE+GW approximations, as implemented in the YAMBO  code86, which relies on the 
bare 3D Coulomb potential elements v3d00 = 4π/|q|2 . Accordingly, we refined the DFT-LDA electronic structures 
of the monolayers on an MP grid of 72×72× 1, thus adopting a reduced resolution on the transferred momenta by 
one tenth, relative to our TDDFT-RPA computations. To compensate for the lack in resolution, and reduce the 
noise in the behavior of ǫMbse vs ω , we adopted a broadening parameter η of 0.05eV, that is five times larger than 
our TDFT+RPA computations. We then considered the lowest sampled momentum q1ŴM along ŴM , in the above 
mentioned coarse grid, with q1ŴM=π/(18

√
3a) . Such a value is ten times larger than the optical momentum q0ŴM 

used to derive the absorption spectra in our TDDFT-RPA approach. Next, we computed the eigenvalues ε� and 
eigenvectors a�

νν̄k of the two-particle hamiltonian

on a limited number of states, allowing the ν , ν̄ , ν′ , and ν̄′ indexes to run over the three highest occupied and 
lowest unoccupied bands. Finally, we computed the electron-hole exchange interaction matrix elements

with ∼104 reciprocal lattice vectors, and the electron-hole attraction matrix elements

with ∼102 reciprocal lattice vectors, to obtain the BSE permittivity of Fig. 10a,b,d,e. We further corrected the 
LDA band energies with suitable renormalization factors on the first conduction and first valence bandwidths, 
derived from our GW calculations. In this way we obtained the BSE+GW permittivity of Fig. 10c,f.

Data availability
The authors declare that the data supporting the findings of this study are available within the paper (and its 
Supplementary Information files). Further data, concerning the outputs and codes from DFT and TDDFT cal-
culations, are also available from the corresponding author upon reasonable request.
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