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Experience of the COVID‑19 
pandemic in Wuhan leads 
to a lasting increase in social 
distancing
Darija Barak1,4, Edoardo Gallo1,4*, Ke Rong2*, Ke Tang2* & Wei Du3

On 11th Jan 2020, the first COVID‑19 related death was confirmed in Wuhan, Hubei. The Chinese 
government responded to the outbreak with a lockdown that impacted most residents of Hubei 
province and lasted for almost three months. At the time, the lockdown was the strictest both within 
China and worldwide. Using an interactive web‑based experiment conducted half a year after the 
lockdown with participants from 11 Chinese provinces, we investigate the behavioral effects of this 
‘shock’ event experienced by the population of Hubei. We find that both one’s place of residence 
and the strictness of lockdown measures in their province are robust predictors of individual social 
distancing behavior. Further, we observe that informational messages are effective at increasing 
compliance with social distancing throughout China, whereas fines for noncompliance work better 
within Hubei province relative to the rest of the country. We also report that residents of Hubei 
increase their propensity to social distance when exposed to social environments characterized by the 
presence of a superspreader, while the effect is not present outside of the province. Our results appear 
to be specific to the context of COVID‑19 and are not explained by general differences in risk attitudes 
and social preferences.

The COVID-19 pandemic has brought the most significant and devastating global disruption since World War 
II with an estimated 5.5 million deaths  worldwide1–3. Most countries implemented drastic lockdown policies 
to minimize infection levels, prevent healthcare systems from being overwhelmed, and reduce the number of 
 deaths4–7. The first COVID-19 related lockdown started on 23rd Jan 2020 in Wuhan (Hubei) and for the subse-
quent 3 months the measures taken in Hubei were the strictest both within China and worldwide. In particular, 
according to the Oxford COVID-19 Government Response Tracker (OxCGRT), the average government response 
index value for Hubei in this period was 75.8 (with 0 being no measures and 100 being the maximum)4. Mean-
while, China as a whole scored 58.5, and the closest scoring countries—Italy and Mongolia—had an average 
index of 53.0 and 49.9 respectively. It is estimated that the measures implemented by the Chinese government 
have potentially prevented 100,000 s of COVID-19  infections8, and possibly contributed significantly to public 
health in China  overall9.

The policies aimed at containing the spread of the pandemic have had a profound impact. Research into the 
impact of lockdowns and other Non-Pharmaceutical Interventions (NPIs) has documented a deterioration in 
physical and mental health in  China10,11 as well as other  countries12–14. Recent evidence shows there are mental 
health and burnout effects associated with the Zero-COVID  policies15. However, to date, little attention has been 
paid to the effects of the pandemic on human behavior. Our paper addresses this gap.

Previous research suggests that shock events and/or drastic institutional interventions can have a long-lasting 
impact on  behavior16,17. For example, colonial conscription rules in sixteenth century Bolivia and Peru led to 
differences in household consumption that survive to this  day18. More recently, the 2004 tsunami in Thailand 
led to significant increases in prosocial behavior, risk aversion, and impatience in rural  areas19. The sudden and 
drastic nature of the COVID-19 outbreak and associated lockdown policies in Hubei compared to the rest of 
China means they may have persistent effects on the behavior of Hubei’s residents in the short and medium 
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term, especially when it comes to reacting to post-lockdown policies to contain the pandemic. The sudden and 
drastic nature of the COVID-19 outbreak and associated lockdown policies in Hubei compared to the rest of 
China means they may have persistent effects on the behavior of Hubei’s residents in the short and medium term, 
especially when it comes to reacting to post-lockdown policies to contain the pandemic.

Using an interactive web-based experiment conducted half a year after the end of the lockdown, we show 
that Hubei residents behave differently compared to inhabitants of other provinces in China in terms of social 
distancing, receptiveness to COVID-19 policies, and when exposed to a superspreader environment. In par-
ticular, we estimate that every extra 1000km between Wuhan and one’s place of residence contributes to a 7% 
decrease in social distancing. Using OxCGRT, we show that an increase in the harshness of lockdown measures 
is associated with an increase in distancing.

The differences in social distancing behavior between residents within and outside Hubei may translate into 
differences in social distancing policies effectiveness. We examine the effect of soft and hard policy interventions 
to promote social distancing. The hard policy intervention—a fine—increases social distancing only in Hubei, 
while the soft intervention—an informational message or “nudge”—increases social distancing both within and 
outside Hubei. Finally, Hubei-based participants practice more social distancing in a social environment with 
a superspreader. Using data from incentivized preference elicitation tasks, we find that the observed differences 
in behavior between Hubei residents and those from the rest of China are not explainable by general differences 
in preferences.

Experimental design
The game. Figure  1 presents the flow of a typical round of the experiment. Participants are randomly 
assigned to groups of five that stay the same throughout their involvement in the study. Within the group, in each 
round they are randomly assigned to five positions within the social structure—nodes on a network—as shown 
in Panel I. In every round each participant has to make a binary decision of whether or not to practice social 
distancing. Each participant has to privately decide whether to practice social distancing at a cost of 35 points. In 
the example in Panel II, the participant color-coded in blue is the only one who chose to practice social distanc-
ing. Once decisions are made, the computer picks one subject to be potentially infected by COVID-19 uniformly 

Figure 1.  Flow of a typical round of baseline and intervention. In the experiment, we use the following 
parameterization: f = 0 points in baseline and in nudge intervention, and 15 points in fine intervention. Final 
payoffs for the round are a combination of individual social distancing choice and infection status. For example, 
a participant who practices social distancing and is healthy, receives (− 35 + 100) = 65 points. In the figure, the 
chosen social environment is the superspreader. In the experiment, half of the treatments had superspreader 
environment while the other half had a homogeneous environment.
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at random. If this patient zero subject practices distancing, she becomes infected with probability 50%. If patient 
zero does not practice distancing, infection happens for sure. COVID-19 then spreads from infected to healthy 
participants who do not practice social distancing with a commonly known probability of 65%. Note that those 
who practice social distancing cannot (a) infect others or (b) become infected through this contagious process.

An example of such contagious process is in panels III-V of Fig. 1. Panel III shows patient zero color coded 
in red. Given that patient zero chose not to practice distancing, there is a 65% chance that the participant in the 
superspreader position, who does not practice distancing either, gets infected. Panel IV shows the case when the 
participant in the superspreader position gets infected, and can therefore spread COVID-19 to all other partici-
pants. Finally, Panel V shows the instance when infection occurs for one out of the two remaining participants 
who do not practice distancing and are connected to the superspreader. Panel VI shows the final outcome of the 
spreading process with three participants infected and two remaining healthy.

At the end of the round, healthy participants receive 100 points while those infected get 0 points, minus costs 
of social distancing if applicable. For example in panel VI of Fig. 1, three participants receive a payoff of 0, one 
gets 65 points, and another one 100 points. Throughout both instructions and the experiment, participants are 
primed to think about COVID-19. For full details on the instructions and the experimental interface, consult 
the Supplementary Information (SI).

Treatments. Participants play 20 rounds of the above social distancing game, which constitute the base-
line part of the experiment. After these 20 rounds, they are treated with one of the policy interventions. The 
soft policy intervention is an informational message or nudge—participants must watch a 3-min video which 
explains how failure to practice distancing can harm others. The hard policy intervention is the introduction of 
a fine of 15 points for everyone who does not practice social distancing in a round of the game. Participants play 
another 20 rounds of the social distancing game under either the nudge or fine policy intervention. Note that 
the payoff structure remains unchanged in the nudge treatments (Fig. 1 with f = 0 points), while in the fine treat-
ments subjects receive the fine in every round where they do not practice distancing irrespective of their health 
status (Fig. 1 with f = 15 points).

A second treatment dimension is the social environment. Participants are randomly assigned to either a 
homogeneous or a superspreader environment (as in Fig. 1), which stays the same throughout the 40 rounds of 
the experiment. In the homogeneous case, everyone is connected to everyone else in the group so an infected 
participant can spread COVID-19 to any other healthy participant that does not practice distancing. In the 
superspreader case, one participant is connected to all the others, and there are no other connections in the group. 
This means that any spread of infection beyond patient zero must involve the central participant either as the 
spreader or the recipient. A defining feature of COVID-19 is the crucial role of superspreaders in the diffusion of 
the  disease20,21. For respiratory syndromes, an important determinant of being a superspreader is  biological22,23, 
something that is typically unknown to the individual and outside the scope of this study. Another determinant is, 
however, the centrality of the individual in terms of the structure of social interactions—this is typically common 
knowledge and varies widely across individuals in most  environments24. This treatment dimension, therefore, 
allows an investigation of how a social environment with a superspreader affects the propensity to social distance.

Using a full-factorial 2 × 2 design, we therefore obtain four treatments. As standard in the experimental 
literature, subjects were randomly assigned to treatments, so the effect of our treatment variables is causal. We 
collect at least 10 groups of 5 subjects for each of those treatments. Additionally, to investigate the impact of 
Hubei residence on behavior, we ran these four treatments separately in Hubei and rest of China. We summarize 
the details of our dataset next.

Dataset. Using a local recruitment company, we sourced 415 participants from 11 Chinese provinces. Fig-
ure 2 displays the proportion of participants from each province. In the final sample, 205 subjects (41 groups) are 
from Hubei province and 210 (42 groups) from the rest of China. We verify the place of residence using (1) self-
reported data from the recruitment survey, (2) data from the survey company, and (3) IPs of subjects collected 
when completing the experiment. Despite the possibility of selection bias, we obtain a diverse sample in terms of 
age and gender. In particular, 47.3% of our sample is female and the mean age is 35 years (s.d. 10 years). Figure 2 
also shows the average stringency of lockdown measures in the 11 provinces in our sample over the period of the 
Hubei lockdown as measured by the 0–100 scale of the OxCGTR index. Note that throughout the paper we focus 
on the difference between Hubei and other 10 provinces which were under more moderate lockdown measures. 
Further note that since we have between 1 and 56 subjects from each of the other 10 provinces, we cannot com-
ment on the differences between these provinces.

Results
We analyze the data using a linear probability model, where the individual decision to practice social distancing 
is the dependent variable (binary), and the controls are (1) our treatments, (2) a set of demographic variables, 
and variables for personal preferences, plus (3) a variable capturing the distance of one’s place of residence from 
Wuhan. Estimated coefficients from this model are in M1 Table 1.

Hubei province versus the rest of China. Our first finding is that the individual propensity to practice 
social distancing in our experiment is inversely related to distance from Wuhan to one’s place of residence. We 
estimate that every extra 1000km between Wuhan and one’s place of residence contributes a 7 percentage point 
decrease in the probability of social distancing. In practical terms, this suggests that the individual propensity 
to do social distancing of residents of Chongqing, which is approximately 723km away from Wuhan, to be 5 
percentage points less than that of Wuhan residents. The effect is statistically significant in all our specifications 
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and robust (M1, p = 0.02). Replacing the distance variable with a dummy equal to one for Hubei subjects (M2 
Table 1), we estimate that the probability of social distancing is 8.5 percentage points higher in Hubei province 
than outside of it (M2, p = 0.006).

We hypothesize that distance from Wuhan captures heterogeneity in the harshness of the lockdown policy 
experienced by people from different parts of China. While tight COVID-19 related restrictions were generally 
experienced throughout the world in early 2020, Wuhan was the first to go under total lockdown for a nearly 
3-months period together with its 11 million  residents25. According to the OxCGRT, Hubei province has spent 
the whole 23rd Jan–2nd May 2020 period in a very strict lockdown, whereas other provinces (with the exception 
of Heilongjiang) mostly experienced more moderate  measures4. To test this hypothesis, we use data from the 
OxCGRT, which tracks harshness of government response to the COVID-19 pandemic globally. We focus on 
the 23rd Jan–2nd May 2020 period, and calculate the average of the overall government response index for each 
of the provinces in our sample. In this way we obtain a single index on a [0, 100] scale. The correlation between 

Figure 2.  Distribution of subjects from different Chinese provinces. Color coding indicates the average values 
of the OxCGRT index for the provinces.

Table 1.  Main regression results for individual propensity to social distance. Standard errors (reported 
in parentheses) are clustered at the group level. Significance level: ***p < 0.01, **p < 0.05, *p < 0.1. (a) All 
regressions use Linear Probability Model. (b) All models include the following controls: gender dummy 
(female = 1), age, years of education, employed or entrepreneur dummy (yes = 1), religious dummy (yes = 1), 
risk score (as captured by BRET), prosocial values (as captured by SVO; yes = 1). (c) To account for learning 
effects, we discard the first 10 rounds of baseline and intervention, and only consider 20 remaining rounds 
per subject. See Materials and Methods for details. (d) One subject did not complete the post experimental 
questionnaire and BRET.

Dependent variable: Social distancing (binary)

Model: M1 M2 M3

Independent variables

Fine treatment 0.0341* (0.0195) 0.0343* (0.0195) 0.0343* (0.0195)

Nudge treatment 0.0605*** (0.0148) 0.0603*** (0.0148) 0.0603*** (0.0148)

Superspreader environment − 0.0491 (0.0314) − 0.0494 (0.0312) − 0.0481 (0.0311)

Distance from Wuhan (100’s km) − 0.0070** (0.0031)

Hubei residence (1 = yes) 0.0852*** (0.0311)

OxCGRT index 0.0076** (0.0034)

Constant 0.192 (0.2080) 0.101 (0.2110) − 0.389 (0.3660)

No of observations 8280 8280 8280

No of subjects 414 414 414
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distance from Wuhan and this index for the 20 cities in our sample is − 0.6683 (t test, p = 0.001). Replacing dis-
tance of one’s place of residence from Wuhan by the index, we estimate that a 1 point increase in the response 
index corresponds to a 0.75 percentage point increase in individual propensity to do social distancing in our 
experiment, which is significant in all specifications considered (M3 Table 1, p = 0.03).

An important caveat is that the lockdown measures were not imposed randomly—stricter measures were 
put in place in provinces with more severe COVID-19 outbreaks. The Hubei outbreak was by far the largest in 
China, with over 68,300 infections and about 4500 COVID-19 related deaths confirmed at the time of  writing26. 
Guangdong—the second province by the size of the outbreak—recorded approximately 3300 cases and 8 deaths. 
Indeed, the correlation between measures of harshness and number of confirmed cases for 11 provinces in our 
sample is 0.6835 (t test, p = 0.001). An alternative interpretation of our results is, therefore, that the experience of 
the severity of the outbreak, rather than the lockdown measures, is the primary driver of the behavioral differ-
ence. While we are unable to differentiate between these alternative channels, the central message remains that 
what Hubei participants experienced caused a lasting change in their social distancing behavior.

The association between social distancing behavior and the severity of the COVID-19 pandemic experience 
raises two natural questions. The first one is whether there is a difference between participants from Hubei, who 
lived through a larger outbreak and harsher lockdown, and those from the rest of China in terms of their behav-
ioral responses to our treatment variables—fine/nudge policy interventions and homogeneous/superspreader 
social environments. The second one is whether the association is driven by specific demographic characteristics 
and/or risk/social preferences. In order to investigate this, we repeat our core analysis but interact every variable 
with a dummy equal to one if a subject is from the Hubei province and zero otherwise. This is equivalent to fit-
ting the model separately on the two datasets. The results are reported below, and the full table with coefficients 
can be found in the SI.

Response to intervention. The hard policy intervention of introducing a fine increases the propensity 
to social distance in Hubei, but not in the rest of China. As shown in Fig. 3a, the fine leads to a significant 6.0 
percentage points increase in individual propensity to social distance in Hubei (t test, p = 0.04), while outside of 
Hubei the estimated effect is only 0.9 percentage point and not significant (t test, p = 0.7). The difference between 
the two effects is not statistically significant (t test, p = 0.2).

In contrast, the soft policy intervention (the nudge) increases the propensity to social distance throughout 
China. As shown in Fig. 3a, the estimated size of the effect is 5.4 percentage points (t test, p = 0.02) in Hubei 
province and 6.7 percentage points (t test, p = 0.0004) in the rest of China. The nudge is marginally more effec-
tive than the fine in the rest of China (t test, p = 0.06), while the effectiveness of the two policy interventions is 
indistinguishable in Hubei (t test, p = 0.9). Note that the difference in the effectiveness of the nudge in the Hubei 
province and outside of it is not statistically significant (t test, p = 0.7).

Response to social environment. A theoretical analysis of the social distancing game assuming self-
interested rational individuals predicts that the individual propensity to do social distancing should be higher in 
the homogenous social environment. This stems from the fact that the density of connections is higher than in 
the superspreader case (see SI). This may, however, differ behaviorally because the diffusion of COVID-19, espe-

Figure 3.  (a) Estimated effect size on the probability of social distancing for treatment variables and selected 
controls, split by Hubei and rest of China. Note that: (1) risk score estimates are reported for an extra 25 points, 
(2) Prosocial = 1 for subjects with prosocial values as classified by the SVO scale, (3) Female = 1 for female 
subjects, (4) age estimates are reported for an extra 10 years, (5) Employed = 1 if subject is either employed or 
runs their own business. (b) Probability of doing social distancing separately for Hubei and rest of China in 
baseline part of the experiment (B), and under fine (F) and nudge (N) interventions split by social environment 
and positions in the superspreader environment.
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cially on the outset, was driven by superspreading  events20,27,28. Figure 3a shows that the theoretical prediction is 
validated in the rest of China—participants’ propensity to do distancing is 11.1 percentage points higher in the 
homogeneous compared to the superspreader environment (t test, p = 0.02). In contrast, participants from Hubei 
do as much distancing in the superspreader environment as they do in the homogeneous one—the difference is 
only 1.8 percentage points and it is insignificant (t test, p = 0.5).

Figure 3b delves deeper into the behavior in the superspreader environment between Hubei and rest of China 
participants. It reports average propensity to practice distancing split by place of residence, type of intervention, 
and position in the social environment. The left panel shows that Hubei-based participants in the superspreader 
position do significantly more social distancing relative to those in the homogeneous environment, while recipi-
ents do about as much as those in the homogeneous social structure. This is true for both the baseline part of the 
experiment (middle set of bars), and the two interventions (top and bottom sets of bars). The right panel shows 
that the behavior of the participants in the rest of China is quite different. Here, subjects in the superspreader 
position do as much social distancing as in the homogeneous environment particularly in the baseline part of the 
experiment and following a nudge intervention. In contrast, the recipients perform significantly less distancing 
relative to both the superspreader and the homogeneous environment throughout the experiment.

To confirm these observations, we repeat our core analysis, but instead of using a single dummy for a super-
spreader environment, we include one for each of the types of positions in this environment (see the SI for the full 
table with the coefficients). The results of this exercise confirm our observations. In Hubei the superspreader has 
a 8.9 percentage points higher propensity to social distance compared to participants in the homogeneous envi-
ronment (t test, p = 0.02), and peripheral participants do as much distancing as participants in the homogeneous 
environment (t test, p = 0.3). In contrast, in the rest of China, superspreader participants do as much distancing 
as participants in a homogeneous environment (t test, p = 0.6), and peripheral participants have a 14.7 percentage 
points lower propensity to social distance compared to the ones in a homogeneous environment (t test, p = 0.002).

Risk aversion and social preferences. An alternative explanation for our findings on the behavioral dif-
ferences between participants from Hubei and the rest of China is that the two subject pools differ in terms of 
their general attitudes toward risky behavior. In fact, past research shows that natural disasters can sometimes 
lead to persistent increases in risk  aversion19. As part of the experiment, we collect subjects’ attitudes to risk 
using an incentive-compatible ‘Bomb’ risk elicitation task (BRET)29. The task amounts to deciding how many 
boxes to collect from a maximum of 100, with more boxes translating into potentially higher earnings, but also 
a higher risk of collecting a (hidden) bomb that destroys all earnings. Theory predicts that a risk-neutral subject 
collects 50 boxes with lower values indicating greater risk aversion. The average subject in our sample is moder-
ately risk-averse with a BRET score of 42, which is consistent with previous findings in the  literature29. Addition-
ally, as part of recruitment, we collect subjects’ self-reported attitudes to  risk30.

There is no difference in general risk attitudes between the Hubei and rest of China participants according 
to either the BRET score (Mann–Whitney test, p = 1.0) or the self-reported risk index (Mann–Whitney test, 
p = 0.2). In other words, the differences between Hubei and rest of China participants seem to be confined to 
behaviors related to the COVID-19 pandemic, i.e. social distancing, rather than general behavior. Interestingly, 
Fig. 3a shows that the propensity to do social distancing is increasing with risk aversion (as captured by the BRET 
score) for participants in the rest of China (t test, p = 0.02), but there is no significant association for Hubei-
resident participants (t test, p = 0.6). A potential explanation is that the harsh experience of the lockdown and/or 
pandemic in Hubei generates a widespread attitude toward social distancing that is independent of generalized 
risk preferences, while in the rest of China the propensity to practice social distancing is, as one would expect, 
increasing with risk aversion.

A second alternative explanation for our findings is that participants from Hubei have a less self-interested 
attitude compared to participants from other parts of China, and therefore they practice more social distancing 
to benefit others. The study of the effects of the 2004 tsunami in Thailand suggests that ‘shock’ events may lead to 
more prosocial  behavior19. We collect subjects’ social preferences using an incentivized 6-item Social Value Ori-
entation (SVO)  task31. The underlying idea of the SVO framework is that people vary in terms of their motivations 
when evaluating different allocations of resources between themselves and others. In our sample, 51% of subjects 
are individualists and 49% are prosocials, and therefore we use a binary variable to capture social preferences.

There is no difference in social preferences between participants from Hubei and the rest of China accord-
ing to the SVO score (Mann–Whitney test, p = 0.5). This indicates that the observed differences in behavior by 
Hubei participants are specific to social distancing attitudes, rather than general differences in preferences. In 
general, we would expect that participants with prosocial values are more likely to practice social distancing in 
the experiment compared to individualists because social distancing benefits others in their group. Figure 3a 
shows that subjects from Hubei province with prosocial values are marginally more likely to do social distancing 
with an average difference of 7.7 percentage points (t test, p = 0.07), while the difference is only 0.6 percentage 
points in the rest of China and is not significant (t test, p = 0.9).

Demographic characteristics. When it comes to demographic characteristics, we find two heterogenei-
ties between Hubei province and the rest of China (Fig.  3a). First, while more education is associated with 
significantly more distancing outside of Hubei province, the effect is not present within Hubei. In particular, 
an extra year of education is associated with 5.2 percentage points more distancing in the rest of China (t test, 
p = 0.0005), while in Hubei the estimated size of the effect is 0.5 percentage point and is insignificant (t test, 
p = 0.8). Second, subjects from Hubei province who were either employed or owned a business at the time of 
conducting the experiment did significantly more social distancing in the experiment, but the same is not true 
outside of it. The estimated effect in Hubei is 13.1 percentage points (t test, p = 0.02), and 4.4 percentage points 
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in the rest of China (t test, p = 0.5). Note that the effects of age and gender are not significant in our experiment. 
This may be partly explained by the fact that our sample is restricted to adults. In particular, existing research 
into adolescents suggests that younger people may differ in their attitudes to lockdowns and social distancing 
relative to an adult  population32.

Discussion
The sudden outbreak of COVID-19 in Wuhan in early 2020 demanded a quick and decisive response from the 
government. To limit the spread of the virus, and potentially save tens of thousands of lives, the Chinese gov-
ernment implemented a very strict lockdown which affected most of Hubei province and lasted almost three 
months. Our experiment is the first to shed light on the possible medium-/long-term effects brought by the 
outbreak and the associated lockdown.

Our first result is that the level of social distancing is significantly higher in our experiment in Hubei province 
than outside of it. Both the distance of one’s place of residence from the epicenter of the outbreak—Wuhan—and 
the strictness of government response to COVID-19 during the initial lockdown are robust predictors of indi-
vidual propensity to social distance. Our experiment does not attempt to discriminate between the two plausible 
explanations—severity of the outbreak and strictness of lockdown—but it is clear that the overall experience 
of Hubei residents has created a behavioral difference that is persistent half a year after the end of the outbreak.

Our second result is that a soft intervention in the form of an informational video (a nudge), which highlights 
the harm caused to others by not practicing social distancing, is effective at increasing individual propensity 
to social distance throughout China. In contrast, a hard intervention in the form of a fine for non-compliance 
seems to work in Hubei province but not outside of it.

Our third result is that subjects in Hubei and the rest of China react differently to a superspreader type of 
social environment. Participants in the rest of China largely respond in line with theoretical predictions based 
on a standard game-theoretic framework, while participants from Hubei province violate these predictions. In 
particular, in a superspreader environment the recipients do not decrease their social distancing relative to the 
homogeneous environment, while superspreaders increase their propensity to social distance. This leads to a 
higher level of social distancing overall.

We find that the above behavioral heterogeneities cannot be explained by standard measures of general risk 
aversion or social preferences. The data suggests that these differences in behavior are specific to the context of 
social distancing and COVID-19, rather than general differences in preferences between Hubei residents and 
those from the rest of the country. Note that our list of controls is non-exhaustive, and other potential explana-
tions may contribute to the observed differences in behaviour. For example, it has been shown that in China 
people with anxiety and depression are more willing to pay for a COVID-19  vaccine33.

Finally, our study highlights the important role that interactive web-based experiments can play in investi-
gating people’s behavior, and how behavior can be affected by ‘shock’ events. Even though the decision situation 
faced by subjects in our experiment is artificial, we find clear and robust differences in behavior of subjects from 
the Hubei province and the rest of China, even after controlling for demographic characteristics and social 
preferences.

Methods
Full details on methods, including theoretical framework, data collection and data analysis methods, together 
with a detailed description of the dataset are in the Supplementary Information (SI).

Ethical approval. This research received ethical approval for the use of human subjects from the Faculty of 
Economics Ethical Committee (University of Cambridge, ref.UCAM-FoE-20-02) and the Department of Psy-
chology Ethics Committee (Tsinghua University, ref.THU202019). The experiment was performed in accord-
ance with the relevant guidelines and regulations. Informed consent was obtained from all subjects before par-
ticipation.

Software. The experiment was coded in oTree (v2.2.4)34 with a server hosted on Heroku (http:// www. her-
oku. com).

Recruitment and sessions. Subjects were recruited using the local survey company Wenjuan which is 
affiliated with Zhongyan Technology. During recruitment, we collected information on basic demographics, 
including gender, age, and place of residence. The experiment was conducted between October 3rd and Novem-
ber 14th 2020, and involved a total of 30 sessions with 1–5 groups each. The experiment took an average of 
59 min (s.d. 20 min) to complete, and subjects earned an average of 17.7 yuan (s.d. 3.5 yuan). Subjects remained 
anonymous throughout both recruitment and experiment, and repeated participation was not allowed.

Learning effects. We identify significant learning effects in the early rounds of baseline and intervention 
parts of the experiment. In effect, subjects tend to converge to a particular stable strategy (e.g. always practice 
social distancing) after several rounds of the experiment. Therefore, in the analysis we use the last 10 rounds of 
the baseline and intervention parts of the experiment, but all results are robust to using all data. Full details on 
convergence analysis and relevant robustness checks are in the SI.

Statistical analysis. Since our dependent variable is binary, our analysis relies on a Linear Probability 
 Model35,36, but the estimates are robust to using a Logit or a Probit model instead (see SI).

http://www.heroku.com
http://www.heroku.com
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Data availability
The dataset collected and analyzed during the current study is available from the corresponding author (Edoardo 
Gallo, email: edo@econ.cam.ac.uk) on reasonable request.
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