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Combating cholera by building 
predictive capabilities 
for pathogenic Vibrio cholerae 
in Yemen
Moiz Usmani 1, Kyle D. Brumfield 2,3, Bailey M. Magers 1, Juan Chaves‑Gonzalez 4, 
Helen Ticehurst 5, Rosa Barciela 5, Fergus McBean 6, Rita R. Colwell 2,3 & Antarpreet Jutla 1*

Cholera remains a global public health threat in regions where social vulnerabilities intersect with 
climate and weather processes that impact infectious Vibrio cholerae. While access to safe drinking 
water and sanitation facilities limit cholera outbreaks, sheer cost of building such infrastructure 
limits the ability to safeguard the population. Here, using Yemen as an example where cholera 
outbreak was reported in 2016, we show how predictive abilities for forecasting risk, employing 
sociodemographical, microbiological, and climate information of cholera, can aid in combating 
disease outbreak. An epidemiological analysis using Bradford Hill Criteria was employed in near-
real-time to understand a predictive model’s outputs and cholera cases in Yemen. We note that the 
model predicted cholera risk at least four weeks in advance for all governorates of Yemen with overall 
72% accuracy (varies with the year). We argue the development of anticipatory decision-making 
frameworks for climate modulated diseases to design intervention activities and limit exposure of 
pathogens preemptively.

Cholera, is a signature dehydrating diarrheal disease transmitted notably via untreated drinking water carry-
ing the causative agent, Vibrio cholerae1. The disease has plagued humans for thousands of years, with reports 
of cholera-like symptoms documented in Sanskrit medical texts ~ 500–400 B.C.2. While the sporadic seasonal 
outbreak has been reported throughout history1, the first cholera pandemic was reported between 1817 and 
1823. Globally, cholera has continued to spread, and the ongoing pandemic, the seventh, which began in 1961, 
is caused by the El Tor biotype of V. cholerae O1. While V. cholerae non-O1 serogroups are not known to cause 
epidemics of diarrhea, sporadic cases and small outbreaks of diarrhea and extraintestinal infections have been 
reported. Early environmental studies of cholera were unsuccessful in detecting reservoirs of V. cholerae, such 
as domestic animals or human carriers3, until the late 1960s, when the bacterium was detected in environmental 
water samples collected in cholera-free regions4,5. Those V. cholerae were subsequently shown to be associated 
with zooplankton6–8. Thereafter, the environmental source of V. cholerae was demonstrated extensively in studies 
carried out from 1970 to 2000 in countries around the world1,9–12. However, between outbreaks and unfavora-
ble environmental conditions, the bacterium persists in environmental reservoirs, commonly in a viable, but 
non-culturable state13.. Warmer sea surface and coastal water temperatures have been identified as drivers of V. 
cholerae prevalence in the environment and are associated with increased numbers of cholera cases9,14,15. Several 
environmental and climatic variables have been linked to the proliferation of V. cholerae and increased incidence 
of cholera, such as precipitation16, flooding17, sea surface temperature and height9, river level and freshwater 
discharge14, coastal salinity18, dissolved organic material19, chlorophyll20, and components of phytoplankton 
and zooplankton populations20. In addition, recent epidemiological surveillance suggests a link with estuarine 
ecosystems, namely river and coastal regions21.

Based on analysis of cholera records maintained in India from 1823 to 1875, cholera has been defined as 
occurring in two dominant forms: (1) epidemic, characterized by the sudden and sporadic occurrence of a large 

OPEN

1GeoHealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of 
Florida, Gainesville, FL, USA. 2Maryland Pathogen Research Institute, University of Maryland, College Park, 
MD  20742, USA. 3Institute for Advanced Computer Studies, University of Maryland, University of Maryland, 
College Park, MD 20742, USA. 4United Nations Office for the Coordination of Humanitarian Affairs, New York, NY, 
USA. 5Meteorological Office, Exeter, UK. 6Foreign, Commonwealth and Development Office, London, UK. *email: 
antar.jutla@essie.ufl.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-22946-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2255  | https://doi.org/10.1038/s41598-022-22946-y

www.nature.com/scientificreports/

number of cases; and (2) endemic, where cholera cases occur at a baseline level throughout the year with distinct 
seasonal peaks22,23. Epidemic cholera is hypothesized to be related to elevated air temperatures followed by above-
average precipitation in concatenation with insufficient and/or damaged water, sanitation, and hygiene (WASH) 
infrastructure, placing the human population at high risk of interaction with cholera bacteria and a subsequent 
disease outbreak24 (Fig. 1). Endemic cholera is associated with the constant occurrence of cholera cases, primarily 
in regions where coastal or terrestrial water systems create favorable conditions for the growth and prolifera-
tion of V. cholerae. Under certain environmental conditions, a sustained epidemic mode of cholera can evolve 
into the endemic form in regions with enhanced and continuing exposure to, and transmission of, V. cholerae.

As a pandemic disease, cholera affects millions in vulnerable human populations25 and persists as a dominant 
water-borne disease in Latin America, sub-Saharan Africa, and Southern Asia26,27. Massive cholera outbreaks are 
associated with natural and anthropogenic disasters, notably when environmental conditions favor the growth 
of the bacterium28. The cholera outbreak in Haiti, which occurred during the months following Hurricane 
Matthew22, serves as a prime example. Since March 2015, Yemen, a coastal Middle Eastern country, has suffered 
violent surges of civil unrest29, and in October 2016, the country reported a few cholera cases. By the end of 2017, 
Yemen accounted for ca. 80% of cholera cases worldwide since 201530. During the first six months of the outbreak, 
cholera in Yemen surpassed the number of reported cases in Haiti over a span of seven years (ca. 815,000 cases 
between 2010 and 2017), now considered historically the largest cholera epidemic31.

Cholera is unlikely to be eradicated since the disease-causing agent is autochthonous to aquatic environments 
and plays a role in those environments’ carbon and nitrogen cycles20. Clearly, the ecology of V. cholerae must be 
understood in the context of its natural aquatic habitat and the changing climate, hence a driver of cholera as a 
potential re-emerging infectious disease.

Disease prediction can be achieved by recognizing that disease progression comprises two components, trig-
ger and transmission, which result in an outbreak and, subsequently, public health emergency23,32. For cholera, 
"trigger" represents those mechanisms that stimulate the growth, multiplication, and distribution of V. cholerae 
bacteria in the environment. Water insecurity, namely lack of access to safe water and sanitation, enhances the 
bacterium’s interaction with human populations. Per contra, "transmission" comprises pathways that allow the 
dissemination of V. cholerae and involves complex interaction routes between humans and contaminated water22.

In our previous research, protocols were developed to predict cholera in various regions throughout the 
world9,16,33–37. The hypothesis shown in Fig. 1 was validated using retrospective data from countries in Africa 
and Asia over a decadal timeframe, most recently in Ukraine38. However, reliable spatial and temporal datasets 
containing disease prevalence or incidence time series are a major challenge for infectious disease prediction. 
Without consistent time series datasets, our previous studies24,39,40 relied on spatial pattern recognition principles 
to identify hydroclimatic and environmental processes associated with cholera trigger across geographical regions 
of interest. Yemen provided a unique opportunity because spatial and temporal cholera prevalence datasets 
were available from the beginning of the cholera epidemic up to the present, allowing model validation. One of 
the significant gaps to control cholera is inherent to the absence of knowledge on when and where an outbreak 
is likely to occur. The World Health Organization (WHO) Global Task Force on Cholera Control (GTFCC) 
initiative aims to reduce cholera deaths by 90% and eliminate cholera in at least 20 countries by 203041. While 
vaccines42 and other interventions, e.g., removal of zooplankton and particulates by filtration43,44 and access to 
WASH infrastructure45 are critical to fight cholera disease, a predictive capability and capacity will likely provide 
an additional toolset for combating cholera outbreaks globally1. This reflective study presents an overview of the 
integration of microbiology of cholera used to develop a predictive system that assists aid agencies, namely by 
reporting cholera risk. Therefore, the objective of this study was to determine the evolution of cholera in Yemen, 
with the specific aim to validate the cholera trigger using the well-established epidemiological Bradford Hill 

Figure 1.   Cholera trigger mechanism. Adapted from “Environmental Factors Influencing Epidemic Cholera”, 
by Jutla et al., 2013, The American journal of tropical medicine and hygiene 89 (3), 597–607.
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Criteria (BHC) for causation46,47. The ultimate goal is to provide assistance in enhancing epidemiological and 
medicine-based decision-making so that future cholera outbreaks can be prevented.

Results and discussion
The objective of this study is to evaluate the performance of a prediction system for cholera, employing near 
real-time data collected over the past three years by the Yemeni governorates and using Bradford Hill Criteria 
for the epidemiological association. The first indication of cholera in Yemen was noticed in October 2016. Sub-
sequently, epidemiological incidence data became available in June 2017. The Cholera Risk Model (CRM) trigger 
module captured the increased risk of a massive cholera outbreak in Yemen (Fig. 2) with ca. 92% spatial match 
between locations where cholera cases were reported, and high risk was computed. The trigger component of 
the CRM had been validated previously, using historical data for Sudan, Bangladesh, Mozambique, Zimbabwe, 
Cameroon, and Haiti22,24,39. However, Yemen was unique since epidemiological conditions allowed for assessment 
of model performance in near real-time. BHC46,48, a set of ten parameters intended to provide epidemiological 
evidence for causal relationships between a public health outcome and factors influencing said outcome, was 
used as defining criteria for CRM performance. The following sub-sections detail each parameter of the BHC 
for model performance.

Strength.  Strength is a parameter of BHC that provides epidemiological evidence for the associational rela-
tionship between disease prevalence and factors influencing disease outbreaks. Furthermore, the climate has 
been established as a driver of cholera24,49, and temperature and rainfall facilitate the growth and proliferation 
of the bacterium and enhance its metabolic activity. Cholera infections have a hallmark seasonal distribution, 
with most cases occurring during the warmer months when water temperature and salinity are optimal for the 
growth of V. cholerae. In regions of the world where it is endemic, cholera typically occurs as a single annual peak 
in human disease cases. However, bi-annual peaks in cholera cases are typical for the Bengal Delta region26,50.

To evaluate the strength of CRM, a correlation was calculated, at the governorate level, between cholera 
prevalence from 2017 to 2019 and risk values computed for the same time period, using the parametric (Pear-
son) and the non-parametric rank correlation coefficient (Kendall Tau scores). The Pearson method showed a 
significant (p < 0.05) positive correlation for all governorates except Aden (Fig. 3a). Similarly, Kendall Tau values 
were statistically significant (p < 0.05) for all governorates, indicating adequate model strength. The three-year 
correlation analysis provided evidence of overall model performance. However, it may be argued that if effective 
intervention strategies were employed, such as robust access to WASH, a decline in model performance over 
those years would have been observed. The CRM trigger module is designed to capture disease initiation in a 
region. Therefore, unless a new outbreak(s) occurs in a given area, the model performance should decline over 
time since the transmission dynamics would dictate the spread of cholera in a human population. Accordingly, 
correlation analysis was performed on a weekly scale for each year. The Pearson correlation for 19 of 21 (2017), 
11 of 21 (2018), and 15 of 20 (2019) governorates, respectively, exhibited a significant (p < 0.05) association 
between computed risk and disease prevalence (Fig. 3b). Using Kendall Tau, 19, 8, and 13 governorates showed 
a statistically significant association for the same years (Fig. 3c). In 2017, the model detected an increased risk 
for more than 90% of the governorates, with Aden being the only governorate not determined to be at increased 
risk. Thus, it can be concluded that the results show correlation analysis can be a useful means of determining 
the strength of the model. During 2018, the model captured ca. 45% (combining both Pearson and Kendall Tau), 
compared to 2019, where ca. 68% of the governorates were captured. The decrease in model performance for 2018 
is likely an indication of a change in the definition of cholera-like symptoms and/or the intervention strategies 
employed to mitigate cholera in the region. However, an increase in the model performance was observed for 
2019, suggesting new outbreaks in the region compared to the prior year.

Specificity.  Specificity is used here to evaluate the predictive capacity of CRM and is achieved by quantifying 
causality of model output with cholera prevalence. Causality is quantified using three statistical metrics: accu-
racy, sensitivity, and specificity, as defined below:

Here an increase in risk is considered a true positive (tp) if it captures the increase in reported cases and a 
decrease in a true negative (tn) if it captures the decrease in cases. If the increase in computed risk fails to capture 
the increase in risk, it is considered a false positive (fp); and if a decreased risk fails to capture the decrease in 
cases, it is considered a false negative (fn). The confusion matrix with these variables is provided in Table S1. As 
shown in Fig. 4a, the cholera risk model met all three criteria for causality more than 60% of the time. Sensitivity 
and specificity varied from 55 to 67%, with averages of 60% and 61%, respectively, indicating that the model can 
detect increases and decreases in cholera cases across a given region. Across nine governorates, where more than 
100,000 cholera cases had been reported, the model accuracy varied between 57 and 67%, with an average of 60%.

Biological gradient.  Traditionally, the biological gradient is interpreted as a monotonic gradient, indicat-
ing direct proportionality of cause of an increase in disease burden with exposure risk. Commensalism of V. 

(1)Accuracy =
(

tp + tn
)

/
(

tp + tn + fp + fn
)

(2)Sensitivity = tp/
(

tp + fn
)

(3)Specificity = tn/
(

tn + fp
)
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cholerae with copepods has been established6,43,51. V. cholerae attaches to the gut and carapace of copepods, with 
a single copepod capable of harboring up to 104 V. cholerae cells51. Since cholera is dose-dependent, requiring 
ingestion of ca. 103–106 V. cholerae cells to induce severe diarrhea symptomatic of cholera, according to human 

Figure 2.   (a) Cholera risk map of Yemen for June, 2017 produced on May 30, 2017; (b) Actual cholera cases 
observed in June, 2017, maps are generated using ESRI’s ArcMap version 10.7 (URL provided in supplementary 
material).
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Figure 3.   (a) Correlation coefficients between cholera cases and risk values for all governorates, all 
governorates except for Aden exhibited statistically significant (p < 0.05) correlation, (b) Pearson correlation 
coefficient between cholera cases and risk values for all governorates for individual years (2017, 2018, 2019) and 
19 (of 21), 11 (of 21), and 15 (of 20) governorates are statistically significant in 2017, 2018 and 2019 respectively, 
(c) Kendall Tau correlation coefficient between cholera cases and risk values for all governorates for individual 
years (2017, 2018, 2019) and 19, 8, and 13 governorates are statistically significant in 2017, 2018 and 2019 
respectively.
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volunteer studies52,53, ingestion of untreated water containing a small number of copepods is sufficient to pro-
mote disease. Therefore, if there is contact between human populations and cholera bacteria in the environment, 
zooplankton blooms can result in numbers of V. cholerae well above an infectious dose.

It has been argued that BHC should include non-monotonic and more complex relationships between trig-
ger and transmission, with variation in reported cases46. Hence, to evaluate the biological gradient in this study, 
the relationship between change in computed risk, using the model, with change in reported disease prevalence 
was explored. To evaluate the incidental (biological) gradient of the model, the positive predictive value (PPV; 
frequently referred to as precision) and negative predictive value (NPV) of the model outcomes were computed. 
PPV is a fraction of positive computed risk, which can capture positive change in prevalence. This study used an 
increase in relative risk and reported disease rather than absolute values. NPV is a fraction of negative (decreased) 
computed risk, which can capture a negative change in prevalence. These two indicators were determined for 
those governorates for which specificity (causality) of the model had been calculated and were determined as 
follows:

Using the three years of data, we determined PPV and NPV for the model (Fig. 4b). PPV and NPV values 
varied between 57 to 67% and 55% to 67%, respectively, with an average of 60%, suggesting that at least 60% 
of the time, the model correctly responded to an increase or decrease in the number of reported cholera cases. 
However, for practical use of the cause-effect relationship, temporality is important, with cause preceding effect 
and lead time.

(4)Positive predictive value = tp/
(

tp + fp
)

(5)Negative predictive value = tn/(tn + fn)

Figure 4.   (a)Sensitivity [tp/(tp + fn], Specificity[tn/(tn + fp], and Accuracy[(tp + tn)/(tp + fp + tn + fn] of cholera 
prediction system. (b) Positive Predictive Value (PPV) or precision [tp/(tp + fp)], and Negative Predictive Value 
(NPV) [tn/( tn + fn)] of the trigger module of cholera prediction system.
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Temporality.  Epidemiological temporality comprises the duration of exposure and extent of impact in 
terms of severity or number of incidences. To assess disease risk prediction, lead time is an essential criterion 
because it provides time to intervene and limit the outbreak’s impact. Rainfall has been established as an envi-
ronmental driver of cholera. In Haiti, increased rainfall was associated with increased cholera risk, with a lag 
time of up to one month1,24,35. Similarly, in Bangladesh, where rainfall/runoff response from upstream catchment 
areas is about 3–4 weeks, increased rainfall in July has been associated with increased streamflow of major rivers, 
causing sediment resuspension and attributed to an increase in cholera cases during the month of August54. Risk 
computed in Yemen using the CRM provides a lead time of four weeks from predicted incidence—providing 
ample time for intervention and mobilization of resources. The hypothesis presented in Fig. 1 shows cholera 
cases are generally observed four weeks after a period of anomalous warm temperatures, followed by anomalous 
high precipitation where there is a significant deviation in population behavior, with respect to water use, caused 
by damaged WASH infrastructure. Importantly, the hypothesis for the temporality of BHC has been supported 
in several regions in Africa39, Asia40, and Latin America22.

Consistency.  Consistency is an essential parameter of the BHC to ensure the reproducibility of findings 
across different samples and locations. Our key hypothesis in Fig. 1 argues that damaged WASH infrastructure 
and a combination of hydroclimatic processes favor conditions for an outbreak of cholera. This cause-and-effect 
relationship has been observed in many studies21,24,40. The hypothesis has been validated for countries in Africa, 
Asia, and the Americas, reinforcing its reproducibility through its utilization in Yemen. Attributing the cholera 
outbreak in Peru to El-Niño events in the Central Pacific was one of the earliest precursors to this hypothesis1. 
Studies conducted using data from Bangladesh16 and Haiti22 report a strong relationship between rainfall and 
the incidence of cholera. In Bangladesh, cholera occurs annually in a bimodal cycle. The first peak occurs in the 
spring, and a larger peak occurs following the fall monsoon season. Cholera seasonality also coincides with the 
warmest temperatures of the year and is reduced to sporadic incidence as the temperature decreases in winter21. 
Haiti has been the main focus of cholera research since the 2010–2011 outbreak, which identified rainfall as a 
critical driver of the disease in that country55. Rainfall can significantly impact the water source, e.g., nutrient 
concentration, salinity, pH, river level, and freshwater discharge, which affect the growth and persistence of V. 
cholerae and its zooplankton host in the environment. Various studies have reported air temperature and pre-
cipitation as dominant hydroclimatic variables impacting the occurrence and transmission of cholera in various 
parts of the world (Table S2).

Plausibility.  Biological plausibility under BHC can be used to assess the association between a putative cause 
and an observed outcome within the context of existing biological and medical knowledge. In aquatic reservoirs, 
elevated temperatures can cause a density differential amongst layers of the water column, contributing to the 
stratification of bacterial populations. In addition, stratification promoted by temperature, dissolved oxygen, 
pH, and other physical/chemical parameters can determine non-uniform microbial community profiles in the 
water column contributing to environmental conditions enhancing bacterial growth and multiplication. These 
conditions are generally favorable for the multiplication of zooplankton, namely copepods, shown by Kaneko 
and Colwell6 to host Vibrio spp., including V. cholerae. Subsequently, it was shown that employing simple filtra-
tion can effectively remove zooplankton and particulate matter, hence attached V. cholerae, from drinking water 
and was used to reduce the number of cholera cases in Bangladeshi villages by more than 50%43,44. Collectively, 
these studies show that copepods serve as host/vector of V. cholerae.

Therefore, ecological parameters enhancing the growth and proliferation of cholera bacteria frame the model 
developed for risk prediction. Heavy rainfall that follows a period of high air temperature aids explosive growth 
of bacteria in water bodies that serve communities as drinking water source24. Thus, an inadequate water sup-
ply infrastructure exposes a given population to untreated water. A prime example is Yemen, a Middle Eastern 
country grappling with war and frequently experiencing floods, with the population lacking proper WASH 
conditions—considered the dominant sociological cause of the continuing cholera epidemic rampant in most 
Yemen governorates. Hence, identifying and describing the mechanics of the trigger, a rational clarification of 
the putative ’black box’ between the biology and ecology of an infectious agent and its disease epidemiology, is 
now possible.

Coherence.  Under BHC, coherence is the idea that experimental findings in the laboratory support epide-
miological observations. The hypothesis used in Yemen to predict the cholera risk had exhibited coherence in 
its application in Yemen and in laboratory findings. The consistency between the epidemiological data and the 
predicted risk is exhibited through the correlation analysis as shown in Fig. 3. Year 2017 and 2019 exhibited 
high associations suggesting coherence between the predicted risk and the epidemiological data. While through 
laboratory studies we found that in the environment, an increase in V. cholerae populations was observed in 
water and plankton samples collected in a longitudinal, multi-year study carried out in the Chesapeake Bay, 
Maryland, USA. Results showed when the water temperature rose above 19 °C, V. cholerae populations in the 
water column proliferated with the elevated temperatures56. Similarly, water samples collected in estuarine zones 
of the Bengal Delta yielded similar results, confirming enhanced growth of V. cholerae in warmer pond water19. 
Huq et al.36 showed a 5 °C increase in water temperature resulted in a 30-fold increased risk of a cholera out-
break, with a lag of six weeks. Over the past decades, extreme heat events in Northern Europe have been linked 
to an increased number of reported Vibrio infections57,58. Archived samples collected by continuous plankton 
recorder over 60 years and analyzed using molecular genetic methods by Vezzulli and colleagues15,59 showed the 
global warming trend in sea surface temperatures of the North Sea was strongly associated with proliferation of 
populations of Vibrio spp., including V. cholerae and vibriosis in populations inhabiting coastal regions. In fact, 
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among the environmental variables examined, increased sea surface temperature explained ca. 45% of variance 
in those studies.

Extreme precipitation can also impact V. cholerae populations in the environment, with potential to alter 
salinity profiles and nutrient availability, as well as sea level in coastal waters, with increased freshwater inflow. 
For example, strong positive correlations between rainfall patterns and cholera epidemics have been observed in 
Bangladesh16, India20, Ghana60, Cameron61, and numerous other locations in Asia, Africa, and South America62. 
Combined with findings from laboratory experiments conducted in different regions of the world (Table 1), 
these observations comprise a crucial validation based on experimental evidence that supports the hypothesis 
of this study (Fig. 1).

Experiment.  Various studies have associated hydroclimatic variables with cholera trigger and transmission 
risk20,22,26,39. As discussed above, laboratory-based investigations showed V. cholerae thrives in aquatic environ-
ments where the water temperature is between 20 and 45°C63. Experimental studies have shown an increased risk 
of cholera when air temperatures are between 19 and 28°C56,64, coupled with increasing water entrapment23,24. 
Temperature and precipitation are primary factors in prediction but do not trigger or control the spread of 
cholera when each is considered independently65. The combination of warm temperature converging with 
heavy rainfall and inadequate WASH infrastructure45,66 has a high probability of leading to an outbreak of the 
disease24,39. Furthermore, Colwell and colleagues1 demonstrated resuscitation of VBNC V. cholerae to the cultur-
able state in the stool, following ingestion of VBNC cells by human volunteers, evidence that non-culturable V. 
cholerae can cause disease. That is, VBNC cells retain virulence potential. Conversion of antigenic V. cholerae 
serotype O1 to non-O1 (as well as non-O1 to O1) has also been demonstrated in laboratory experiments67,68, 
with the conclusion that all V. cholerae, regardless of serotype, should be considered potentially pathogenic.

Since V. cholerae is a ubiquitous and naturally occurring inhabitant of aquatic environments globally69,70, 
conditions favoring its growth and multiplication suggest that incorporating a single parameter provides, at best, 
incomplete description of disease trigger and transmission of cholera. The CRM incorporates both temperature 
and precipitation as hydroclimatic variables, which demonstrated experimentally to have a significant association 
with the proliferation of the bacterium and cholera.

Analogy.  Analogy of BHC indicates similarities between observations resulting in same delivered outcomes. 
Unfortunately, cholera outbreaks are a regular phenomenon in regions of the world that are subjected to anoma-
lous precipitation that is also associated with anomalous air temperatures (hydroclimatic conditions)20,22,24,26, 
notably regions with damaged WASH infrastructure24,40. Spatial analyses of data from India, Bangladesh, Nepal, 
Mozambique, Cameroon, Central African Republic, Congo, and Zimbabwe exhibit a similar hydroclimatic pat-
tern related to cholera outbreaks22,26,27,29,71. Damaged WASH infrastructure accelerates interaction with V. chol-
erae by increased exposure to lack of safe water, sanitation, and hygiene and the likelihood of waterborne disease. 
In 2015, implementation of sufficient WASH infrastructure was demonstrated in Nepal to have the potential to 
reduce the extent of an outbreak, even when hydroclimatic conditions favor an outbreak of cholera40. Clearly, 
WASH infrastructure can be highly effective in controlling the spread of cholera in a population and must be 
considered in the context of public health, as was the case in Yemen in 2018 (Figure S2).

Reversibility.  As a final criterion of BHC, if the cause is removed, then the effect should disappear as well. 
Hence, WASH, included in CRM trigger analysis, allows testing reversibility of the model. After the 2015 earth-
quake, Nepal presented environmental conditions indicative of a massive cholera epidemic40. However, the 
observed outbreak was less than critical and only a few cholera cases were reported. The comparably low num-
ber of cholera cases was attributed to the implementation of extremely effective WASH infrastructure and the 
availability of WASH facilities. The steps that were taken played a crucial role in preventing a massive cholera 
outbreak in Nepal. The CRM, by incorporating WASH, precipitation, and air temperature, can test for revers-

Table 1.   Evidence of coherence using BHC.

Authors Region

Huq et al.36 Laboratory environment from the Bay of Bengal

Huq et al.76 Laboratory environment from the Bay of Bengal

Skorupski and Taylor 77 Laboratory environment

Louis et al.56 Laboratory environment from the Chesapeake Bay

Schuhmacher and Klose78 Laboratory environment

Singleton et al.79 Laboratory environment

Ravel et al.80 Laboratory environment

Eiler et al.81 Laboratory environment in Baltic Sea

Austin and Swing82 Summary of the impact of temperature from various regions

Stauder et al.83 Laboratory environment

McCarthy84 Laboratory experiments in USA
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ibility. Every variable failing to demonstrate positive anomalous variability from the long-term average can be 
interpreted as indicating minimal cholera risk.

Table 2 summarizes the BHC criteria used to evaluate the CRM trigger module, which provides an assess-
ment of cholera risk at least four weeks in advance (based on previously published results32). The motivation 
for using risk score, rather than prevalence or incidence, is the ability to circumvent missing data during public 
health emergencies, a situation common during most major cholera outbreaks. Therefore, the risk score remains 
associated with reported epidemiological data to evaluate the validity of the CRM. In fact, using the model to 
respond quickly to outbreaks does not eliminate the need to respond to epidemiological data. Instead, it offers 
a credible risk prediction tool that aims to anticipate when an early response could assist in changing the shape 
of an epidemiological curve. A critical observation to use outputs from CRM was that there were no protocols 
available to make decisions for implementing intervention and mitigation efforts by public health officials. It was 
noted that the majority of humanitarian response to an outbreak of waterborne disease (such as cholera) falls 
within the reactionary domain implying that the intervention and mitigation activities are generally initiated 
after an outbreak has been reported in a region. There needs to be a paradigm shift to the anticipatory decision-
making process that prediction-based prevention will likely be more effective in reducing the burden of diseases. 
However, intervention activities in the anticipatory decision-making domain are likely to be significantly dif-
ferent and unique since it may be geared towards preparedness for an impending cholera outbreak (and not for 
ongoing outbreak), which remains within the scope of future research. Figure 4a and b show results based on 
environmental conditions of the cholera trigger module related to access to safe water and sanitation. When 
information on WASH infrastructure becomes available, values for four metrics (Sensitivity, specificity, accu-
racy, and precision) will improve significantly. Most of the population-centric governorates (Amanat, Amran, 
Dhamar, Sana’a) were statistically insignificant relative to cholera trigger risk in 2018, most likely an indication 
that progressive intervention and mitigation were activated and effective.

Conclusion
This study presents a unique opportunity to reflect upon the future of understanding outbreaks of water-borne 
diseases where pathogenic growth of Vibrio spp. is linked with modalities of water, climate, and environmental 
processes. Our research results indicate that the solution to water-borne diseases, such as cholera should not 
be limited within the constraints and bounds of traditional medicinal domains. Rather, a broader approach 
must be followed with due diligence given to data-driven methodologies aimed at predicting cholera risk in the 
human population.

We do wish to highlight the importance of using the CRM risk scores rather than the traditional disease 
model output. The reason is that risk scores are independent of the cholera time series and, therefore, are useful 
for decision making and developing policies based on the severity of the disease. There are two challenges or 
limitations of the study: first, the major limitation is inconsistency in the definition of cholera, which was altered 
in 2018 for Yemen. However, our previous research carried out in Bangladesh36,54,72 showed that acute diarrheal 
disease typically comprises 20 to 30% cholera cases. Second: the availability of global social burden data, includ-
ing WASH and natural resources. It is important to note that the spatial resolution of the epidemiological data 
is very coarse, whereas the model output is at 1 km × 1 km. The information available for water and sanitation 
infrastructure is not efficiently collected; that is, it is not available to be used in our current modeling system.

In summary, the study reported here represents the first to monitor cholera in Yemen with the objective 
of validating a near real-time cholera prediction model. BHC comprises a series of ten parameters that can be 
used to provide epidemiological evidence of a causal relationship between public health outcomes and factors 

Table 2.   Bradford Hill Criteria to evaluate trigger module of the cholera prediction system.

Criteria Parameter Fulfillment

Strength Strong association (correlation) is more causal than weak association Correlation analysis (Fig. 3)

Consistency Consistent findings from other studies Previous studies support the correlation (Huq et al.24, Khan et al.40, Lipp 
et al.21, Colwell1, Hashizume et al.16, Khan et al.22)

Specificity Causality of CPS is evaluated through Sensitivity, specificity, and accuracy Figure 4a

Temporality Cause occurs before effect A four-week lead time in hydroclimatic processes was observed to be the cause 
of cholera

Biological gradient Higher exposure leads to more public health burden The gradient analysis was conducted in terms of PPV (precision) and NPV 
(Fig. 4b)

Plausibility Mechanism of cause Previous studies have established precipitation and temperature as the 
mechanics of survival of cholera bacteria in the environment

Coherence Epidemiological findings match with laboratory/observational/analytical 
experiments

Previous studies have determined the presence of cholera bacteria in an 
aquatic environment (Louis et al.56, Neogi et al.19)

Experiment Experimental or analytical evidence Direct dependence of increase in temperature and precipitation with the 
increase in cholera risk (Hood et al.64, Louis et al.56, Huq et al.24)

Analogy Are there any similarities/dissimilarities between the observed association to 
other processes?

A spatial analysis from India, Bangladesh, Nepal, Mozambique, Cameroon, 
Central African Republic, Congo, Zimbabwe shows a similar pattern of origin 
of cholera

Reversibility Do preventative actions lead to alteration of cause-effect or vice versa? Preventative actions may have a positive cause-effect impact on the reduction 
of cholera cases in the year 2018 (Fig. S2)
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influencing the outcome. BHC was effectively employed to assess the performance of the CRM trigger of the 
cholera prediction system. When epidemiological data on cholera prevalence becomes available on a finer spatial 
scale, it will be possible to determine cholera hot spots in locations where the human population density is both 
high and vulnerable to frequent environmental disturbances in water and sanitation. It is concluded that BHC 
can be used for model evaluation and performance of CRM with accuracy and as shown here, the results of the 
BHC evaluations are interpreted as being strongly favorable for CRM.

Methods
We built CRM as an integrated platform, using a heuristic approach, that calculates the risk of the trigger of 
cholera, model’s detail is provided in the supplementary material. Our previous research created a pathway to the 
formulation of CRM. The hypothesis was first developed over the Indus River Basin24 and defined environmental 
variables’ association with cholera outbreaks. Further, retrospectively, these associations were quantified and 
validated over Africa39, Asia40, and Caribbean22 regions. Here, utilizing those protocols, we developed CRM, 
a near real-time cholera risk prediction model, to predict the trigger of a cholera outbreak. Trigger represents 
those mechanisms stimulating cholera bacteria growth, multiplication, and persistence in the environment, 
after which under given water insecurity conditions, the interaction of the bacteria with the human population 
occurs. CRM evaluated cholera in Yemen from 2017 to 2019, as shown in Fig. 2a. CRM comprises a trigger22,73 
module, which uses data for precipitation, temperature, population, and (WASH) infrastructure to compute a 
risk score with categorical values of high and low risk of cholera in a given region. The trigger algorithm identifies 
anomalous temperature and rainfall conditions, providing an assessment of cholera for the following four weeks 
for a given region. Details of model development and algorithmic architecture have been published elsewhere40.

Daily and monthly rainfall data at two different resolutions were obtained from the National Aeronautics 
and Space Administration (NASA). Monthly rainfall data (0.25° × 0.25°) from the Tropical Rainfall Measuring 
Mission were employed to compute the long-term average. Daily rainfall data (0.1° × 0.1°) were obtained from 
the Global Precipitation Mission and used to determine precipitation variation from the long-term average at 
resampled data points. Daily and monthly data for air temperature on the surface (0.5° × 0.625°) were obtained 
from the NASA Modern-Era Retrospective analysis Research and Application Version 2 and used to determine 
temperature variation and deviation from long-term averages. LandScan population data (1 km × 1 km) were 
obtained from Oak Ridge National Laboratory and used in the model to represent human population (averaged 
over 24 h) distribution. The CRM outputs were resampled at a spatial resolution of 10 km to provide predicted 
cholera risk for the following four weeks. Weekly reports of cholera cases at the governorate level, between Janu-
ary 2017 and July 2019, were obtained from the Early Warning, Alert, and Response System and The Assessment 
Capacities Project74. Figure S1 shows total cholera cases across all governorates during 2017, 2018, and the first 
28 weeks of 2019.

The trigger model output is a risk score that ranges from high (numerical value of 1) to low (numerical value 
of 0), inherently different from traditional compartmental disease models where output is usually presented as 
prevalence or incidence of cholera22,75. Pearson (parametric) and Kendall Tau rank (non-parametric) correlation 
coefficients were used to establish the association between the CRM risk score and cholera cases for all Yemen 
governorates. For each time point, trigger risk scores were computed and compared with the total number of 
cholera cases reported during the following four weeks. That is, the efficacy of forecasted cholera risk (four weeks 
in advance) was evaluated for the trigger module in near real-time. Complementary analyses of sensitivity, 
specificity, accuracy, precision, and NPV were used to indicate the association between the changes in model 
risk scores and the change in the number of cholera cases.

Data availability
All data generated or analyzed during this study are included in this published article.
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