
1

Vol.:(0123456789)

Scientific Reports | (2022) 12:19003 | https://doi.org/10.1038/s41598-022-22940-4

www.nature.com/scientificreports

Noise‑robust optimization
of quantum machine learning
models for polymer properties
using a simulator and validated
on the IonQ quantum computer
Yuki Ishiyama1,2*, Ryutaro Nagai3, Shunsuke Mieda1,2, Yuki Takei1,2, Yuichiro Minato3 &
Yutaka Natsume1,4

Quantum machine learning for predicting the physical properties of polymer materials based on the
molecular descriptors of monomers was investigated. Under the stochastic variation of the expected
predicted values obtained from quantum circuits due to finite sampling, the methods proposed in
previous works did not make sufficient progress in optimizing the parameters. To enable parameter
optimization despite the presence of stochastic variations in the expected values, quantum circuits
that improve prediction accuracy without increasing the number of parameters and parameter
optimization methods that are robust to stochastic variations in the expected predicted values, were
investigated. The multi‑scale entanglement renormalization ansatz circuit improved the prediction
accuracy without increasing the number of parameters. The stochastic gradient descent method using
the parameter‑shift rule for gradient calculation was shown to be robust to sampling variability in
the expected value. Finally, the quantum machine learning model was trained on an actual ion‑trap
quantum computer. At each optimization step, the coefficient of determination R2 improved equally
on the actual machine and simulator, indicating that our findings enable the training of quantum
circuits on the actual quantum computer to the same extent as on the simulator.

Materials informatics1, which is a collaboration between materials and information sciences, has been attracting
attention as a highly-efficient method to search for materials with innovative performance. For example, in the
quantitative structure–property relationship2, chemical structures are quantified based on their substructures
and chemical properties (referred to as descriptors)3, and a regression model between the descriptors and tar-
get properties is constructed. By inverse analysis of the regression model, materials with ideal properties can
be screened based on their chemical structure4. Recently, several databases such as PubChem5 and Materials
 Project6, containing more than tens of thousands of material properties, have been developed. Therefore, innova-
tions in computer technology that can more effectively utilize the accumulated data are desired.

In recent years, quantum computers have attracted attention as devices that have the potential to outperform
conventional computer technology7,8. However, the development of fault-tolerant quantum computers could
require a decade of research. Currently, quantum computing using noisy intermediate-scale quantum (NISQ)
 devices9,10, which are medium-scale quantum computers composed of hundreds of noisy qubits, is being stud-
ied. Although NISQ devices can only implement algorithms on a limited quantum circuit scale owing to noise
limitations, research is underway for their practical applications in the fields of chemistry11–14 and finance15,16.
Quantum chemical calculation is an application of quantum computers in the field of chemistry, and the vari-
ational quantum eigensolver (VQE)17 is a typical algorithm used in this field. Recently, Gao et al. reported the
calculation of excited states of organic electroluminescent (EL) light-emitting materials on an actual quantum
 computer18. They examined the effect of the noise inherent in real quantum computers on quantum chemical
calculations, which has been a problem in the past. By using error mitigation based on quantum tomography,
they succeeded in obtaining calculated values that correlated well with experimental values.

OPEN

1Platform Laboratory for Science and Technology, Asahi Kasei Corporation, Shizuoka, Japan. 2Informatics
Initiative, Asahi Kasei Corporation, Tokyo, Japan. 3Blueqat Inc., Tokyo, Japan. 4Present address: Informatics
Initiative, Asahi Kasei Corporation, Tokyo, Japan. *email: ishiyama.yc@om.asahi-kasei.co.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-22940-4&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2022) 12:19003 | https://doi.org/10.1038/s41598-022-22940-4

www.nature.com/scientificreports/

Another application of quantum computers in chemistry is materials informatics using quantum machine
 learning19. An example of machine learning using a quantum computer is linear regression using D-Wave’s
quantum annealing system by Date and Potok20. They reported that, compared with the classical approach, the
quantum approach can train models up to 2.8 times faster on large datasets, and the regression error is compa-
rable to that of the classical approach. However, reports of machine learning with quantum annealing systems
predominantly utilize linear regression, and furthermore, annealing systems are considered not well-suited for
representing continuous numbers owing to the precision issues of quantum processing units (QPUs)21. Therefore,
to further exploit the power of quantum machine learning, it is also important to consider quantum machine
learning using gate-based quantum computers, which allow for more flexible model construction.

A representative quantum machine learning algorithm that can be run on gate-based NISQ quantum comput-
ers is the quantum circuit learning (QCL) algorithm22–24. The QCL algorithm consists of two circuits: encoding
and variational. The encoding circuit converts the classical feature x into a high-dimensional quantum-enhanced
feature space. Subsequent variational circuits act on the feature space generated by the encoding circuits and
learn the relationship between the feature space and a target variable y, using trainable parameters contained
in the variational circuit. The predicted value of the target variable is calculated from the expected value of the
Pauli Z measurement to a few qubits in the quantum circuit. Therefore, it should be noted that the predicted
values are stochastic because they are calculated based on the expected values obtained from a finite number
of shots (measurements). QCL is a hybrid quantum–classical algorithm25 wherein the relationship between the
explanatory variable x and the target variable y is represented by a parameterized circuit on a quantum computer
(

y = fθ (x)
)

 , whereas the optimization of the parameters is performed on a classical computer.
An example of research using QCL in the field of chemistry is the prediction of molecular toxicity from

molecular descriptors (Quantitative Structure–Activity Relationship) by Suzuki and Katouda26. They investigated
the effect of the encoding structure and variational circuits on the prediction accuracy using a quantum computer
simulator. A QCL model with high prediction accuracy for toxicity prediction tasks was proposed. This suggests
that the QCL is a useful approach in the field of chemistry. However, to the best of our knowledge, whereas the
application of quantum machine learning to regression has been studied using a quantum computer simulator,
the application of the regression task on a real quantum computer has not yet been sufficiently studied. Therefore,
further research is needed on the effects of stochastic fluctuations in predictions and noise specific to quantum
computers on the training of the model, which can be a problem in real quantum computers.

In this study, we investigated the QCL in a regression task to predict the physical properties of a homopolymer
from the corresponding monomer structure (quantitative structure–property relationship). Assuming conditions
similar to those of an actual quantum computer, we investigated the effect of stochastic variation in the expected
predicted values obtained from a quantum circuit on parameter optimization. To enable parameter optimization
even under the noise that can occur in real machines, we examined quantum circuits that improve prediction
accuracy without increasing the number of trainable parameters, and parameter optimization methods that are
robust to the expected stochastic variations. Finally, we performed parameter optimization of the QCL using a
real quantum computer (IonQ’s quantum computer) to verify whether parameter optimization is possible under
the noise generated by a real computer.

Methods
Data. For quantum machine learning, we used 86 monomer-polymer property datasets generated by the
Synthia module of the Materials Studio 2019 software, which is a tool that calculates the properties of the cor-
responding polymer from the structure of the monomer. For the explanatory variable x, we used 10 monomer
features related to structural information of monomers (unit length, molecular weight, connectivity indices27,
etc.) calculated using Synthia. For the target variable y, the glass transition temperature (Tg) of the homopolymer
calculated using Synthia was used. To reduce computational costs, principal component analysis (PCA)28 was
applied to the explanatory variables, and the first through fourth principal components were used as explanatory
variables (cumulative contribution ratio > 99%).

Quantum circuit learning (QCL) model. Two types of quantum circuits were considered: quantum cir-
cuits proposed in previous studies and multi-scale entanglement renormalization ansatz (MERA) circuits29. The
details of these quantum circuits are described in the Results and Discussion section. The predicted value of the
target variable was calculated from the expectation value obtained by applying the Pauli Z operator to the last
qubit in the quantum circuit proposed in a previous study, and to the third qubit in MERA. The mean square
error was used as the objective function to optimize the training parameters of the quantum circuit. To evaluate
the performance of the model, we used the coefficients of determination R2 and Q2 , which are expressed by the
following equations:

where N is the total number of samples,y is the actual value of the objective variable, y is the average of y,ycalc
is the calculated value of y (predicted value of y for training data in the model trained on all samples), and ypred
is the predicted value of y in tenfold cross-validation. Because of the limitations of the quantum circuit, the

R2 = 1−

∑N
i=1

(

y − ycalc ,i
)2

∑N
i=1

(

y − y
)2

Q2 = 1−

∑N
i=1

(

y − ypred ,i

)2

∑N
i=1

(

y − y
)2

3

Vol.:(0123456789)

Scientific Reports | (2022) 12:19003 | https://doi.org/10.1038/s41598-022-22940-4

www.nature.com/scientificreports/

following preprocessing was performed on the explanatory variable x and the objective variable y. First, because
x was converted into an angle on the Bloch sphere, a min–max normalization was applied so that the range of
x was − π to π. Furthermore, because the Z expectation value of the quantum circuit ranges from − 1 to 1, y was
min–max normalized to minimum and maximum value of − 1 and 1, respectively, and then transformed by the
tanh function to minimum and maximum values of − 0.76 and 0.76, respectively (= tanh 1). This is because when
the range of y in the training data is normalized from − 1 to 1, it becomes impossible to predict new samples
beyond the range of y in the training data.

Implementation. Python was used for the implementation. Blueqat30, a gate-based quantum computer
simulator, was used for the simulation of QCL. The Blueqat SDK was used to run and simulate the IonQ quan-
tum computer for comparison with an actual machine. Scikit-learn31 was used for data preprocessing. The
Nelder–Mead32 method and Adam optimizer33, from the SciPy34 library, were used to optimize the quantum
machine learning parameters.

Results and discussion
To investigate quantum machine learning for polymer property datasets, we first examined a previously proposed
quantum circuit (hereinafter referred to as the original circuit)26, shown in Fig. 1. The encoder circuit (Fig. 1a)
consists of one-qubit rotation gates (RY,RZ) and controlled NOT (CNOT) gates. The one-qubit rotation gates
convert the explanatory variable x into a quantum state and the subsequent CNOT gate allows the quantum state
to be entangled, allowing for a flexible representation of the feature space. As in the previous study, the one-qubit
rotation gate and subsequent CNOT gate operations were repeated twice. The variational circuit (Fig. 1b) consists
of a CNOT gate and an arbitrary rotation gate for each qubit, and it was repeated L times. As each arbitrary rota-
tion gate contains three trainable parameters, the total number of trainable parameters per layer is 12 (= 3 × 4).

To verify the performance of the model under ideal conditions where there is no variation in the expected
value calculation in sampling, the expected predicted value obtained from the quantum circuit was calculated
directly from the state vector held by the simulator. The Nelder–Mead method35 was used to optimize the param-
eters, as in previous studies. Figure 2 shows the change in the coefficient of determination R2 as the number
of training layers L increased. At L = 1, R2 < 0 , but at L = 2, R2 significantly improved to R2 = 0.42 , and then
increased as the number of layers L increased, reaching a ceiling at R2 = 0.85 around L = 8.

To verify the prediction performance (generalization performance) of the model on new data, tenfold cross-
validation was conducted on the L = 8 model. The coefficient of determination for the predictions in the tenfold
cross-validation was Q2 = 0.37 . Figure 3 shows the actual versus estimated y values plot. Although there were
some samples that missed the prediction by a large margin, the prediction results were generally distributed on

Y(1) Z(1)

Y(2) Z(2)

Y(3) Z(3)

Y(4) Z(4)

3(11, 12, 13)

3(21, 22, 23)

3(41, 42, 43)

3(31, 32, 33)

(a) Encoding circuit

(b) Variational circuit

Figure 1. (a) Structure of an encoding circuit that converts the classical explanatory variable x into a quantum-
enhanced, high-dimensional feature space. (b) Structure of a variational circuit that learns the relationship
between the feature space and target variable. An arbitrary rotation gate U3 contains trainable parameters.
The variational circuit can be repeated L times (which is a hyperparameter). The total number of trainable
parameters is 12 × L.

4

Vol:.(1234567890)

Scientific Reports | (2022) 12:19003 | https://doi.org/10.1038/s41598-022-22940-4

www.nature.com/scientificreports/

the diagonal. This suggests that even simple quantum circuits can learn the trends in the complex relationship
between the monomer structure and polymer properties.

When training a model on a real quantum computer, the expected predicted value obtained from the quantum
circuit cannot be calculated directly from the state vector; it must be calculated from a sampling of stochastically
fluctuating measurements. With finite sampling, the expected value may vary from the true value, and parameter
optimization may be adversely affected. Therefore, we next examined the effect of the variation of the expected
predicted value associated with a finite number of samplings on the optimization of the parameters.

Figure 4b shows the learning curves for parameter optimization of the original quantum circuit (L = 2) when
the number of shots (samplings) to obtain the expected predicted value for each sample is 100, 1000, and 10,000.
For comparison, the learning curve for the case where the expected value is obtained directly from the state vector
is also shown (Fig. 4a). Note that because the expected value calculation is performed for each sample, the total
number of samplings per optimization step, that is, the total number of samplings to evaluate the loss function
based on the training parameters in a certain optimization step, is determined by (number of samples) × (shots
per sample). The number of samples was 86.

Figure 4b shows that as the number of shots increases, the noise in the learning curve decreases and the
final R2 value improves. This can be attributed to the fact that the probabilistic variation of the expected value
decreases as the number of shots increases. However, even for n = 10,000 shots, R2 converged at a negative value.
With a small number of shots, the direction of parameter optimization using the Nelder–Mead method may
not be determined owing to the effect of stochastic variation of the expected predicted values. Increasing the
number of shots further from 10,000 would improve the learning curve. However, in actual machines, an increase
in the number of shots not only leads to an increase in the calculation time, but also in the machine running
cost. Therefore, it is necessary to consider a quantum circuit that can be trained with fewer learning parameters,

Number of training layers L

= .

Figure 2. Change in the coefficient of determination R2 as the number of training layers L is increased. The
expected predicted value obtained from the quantum circuit is calculated directly from the state vector held by
the simulator.

y_actual

y_
es

tim
at
ed

= 0.37

Figure 3. Actual y versus estimated y plot in the tenfold cross-validation with L = 8 model. The expected
predicted value obtained from the quantum circuit is calculated directly from the state vector held by the
simulator.

5

Vol.:(0123456789)

Scientific Reports | (2022) 12:19003 | https://doi.org/10.1038/s41598-022-22940-4

www.nature.com/scientificreports/

which facilitates parameter optimization, and an optimization method that can optimize parameters robustly
to stochastic variations in expected values, even with a small number of shots.

To improve the accuracy without increasing the number of trainable parameters, we considered the MERA
circuit structure shown in Fig. 5. MERA is a structure that approximates the quantum state of a many-body sys-
tem and can represent certain quantum states efficiently using only a few parameters36. Focusing on this fact, we
verified whether it is possible to efficiently train a model with fewer parameters by using MERA as a variational
circuit in QCL. The trainable parameters are the rotation angles at each arbitrary rotation gate U3 , and the total
number of parameters is 24 for the four-qubit circuit used in this study. The encoding circuit is the same as that
shown in Fig. 1a. First, to verify the performance of the model under ideal conditions that do not include the
effects of probabilistic expected value variations, the expected predicted value obtained from the quantum circuit
was calculated directly from the state vector held by the simulator.

Figure 6 shows a comparison between the actual y and estimated y plots for the original circuit (L = 2), and
the MERA circuit with the same number of trainable parameters (24). The top row of Fig. 6 shows the predic-
tion results of the training data after training the model on all data, and the bottom row shows the prediction

Expected predicted value
calculated from n-shots

Expected predicted value obtained
directly from state vector

2

iteration

shots = 100

shots = 1000

shots = 10000

2
2

2

iteration

iteration

iteration

(a) (b)

Figure 4. Comparison of the learning curves when the expected predicted value is obtained directly from the
state vector (left) and when it is calculated from n-shots sampling (n = 100, 1000, 10,000) (right). Although the
learning curve improves as the number of shots is increased, R2 still converges at a negative value even when
n = 10,000, which may be due to the stochastic variation in the expected predicted value.

3

3

3

3

3

3

3

3

MERA circuit

Figure 5. Structure of the MERA circuit. Each arbitrary rotation gate U3 contains three trainable parameters.
Therefore, the total number of trainable parameters is 24, which is the same as that of the original circuit with
L = 2. The predicted value of the target variable was calculated from the expected value obtained by applying the
Pauli Z operator to the third qubit.

6

Vol:.(1234567890)

Scientific Reports | (2022) 12:19003 | https://doi.org/10.1038/s41598-022-22940-4

www.nature.com/scientificreports/

results of the tenfold cross-validation. The performance of the model is R2 = 0.42 and Q2 = −0.02 for the
original circuit (L = 2) compared to R2 = 0.56 and Q2 = 0.16 for the MERA type, indicating that the model
performance improves even with the same number of trainable parameters. Furthermore, in other datasets,
MERA also tended to have higher R2 and Q2 values than the original circuit under the same number of trainable
parameters (see Supplementary Table S1 and Fig. S1 online). Based on the trend of higher R2 and Q2 values for
MERA, we conclude that MERA appears to learn more efficiently with fewer parameters than the original circuit
in quantum machine learning.

Next, to enable parameter optimization that is robust to variations in the expected predicted value obtained
from the quantum circuit even with a small number of shots, the parameter optimization method was changed
from the Nelder–Mead method to the proposed method37. Previous studies have shown that the proposed
method can optimize quantum circuits with a small number of shots, but no comparison has been made between
the proposed method and other optimization methods. Therefore, it is unclear whether the proposed method
improves the robustness of optimization against stochastic variation in expected values, even when optimization
using the Nelder–Mead method is difficult owing to stochastic variations in expected values, as in the present
case. In addition, as the previous study was conducted on a quantum computer simulator, it is necessary to verify
whether the proposed method can optimize the quantum circuit even on a noisy real-world quantum computer.
The details of the change from the Nelder–Mead method to the proposed method are as follows:

1. Stochastic gradient descent (SGD) with the Adam optimizer33 was adopted as the parameter optimization
method.

2. The parameter-shift rule23 was used to calculate the gradient in the SGD.

Although the Nelder–Mead method has the advantage of not using the gradient information of the objective
function, it tends to increase the number of optimization steps. When the number of training parameters is
large, such as in neural networks, optimization by the Nelder–Mead method is often difficult, and the method
using the gradient of the objective function is often used. Therefore, in this case, we changed the optimization
method of the parameters to the gradient descent method. Furthermore, when optimization is performed using
all the samples, the expected value must be calculated for all samples. Therefore, the total number of shots per

= . = .

= − . = .

y_actual
y_

es
tim

at
ed

y_actual

y_
es

tim
at
ed

y_actual

y_
es

tim
at
ed

y_actual

y_
es

tim
at
ed

Original circuit (L=2) MERA

Figure 6. Comparison of actual y versus estimated y plots when using the original circuit (L = 2) or the MERA
circuit as the variational circuit. The left column shows the plots for the original circuit (L = 2), and the right
column shows those for the MERA circuit. The top row shows the estimation of y trained on all the data, and
the bottom row shows the results predicted through the tenfold cross-validation. The expected predicted value
obtained from the quantum circuit was calculated directly from the state vector held by the simulator.

7

Vol.:(0123456789)

Scientific Reports | (2022) 12:19003 | https://doi.org/10.1038/s41598-022-22940-4

www.nature.com/scientificreports/

optimization step increased in proportion to the number of samples. To reduce the total number of shots per
optimization step, we adopted the SGD method, which updates the parameters using only one randomly selected
sample per optimization step.　The total number of shots can be suppressed using SGD in QCL. Furthermore,
owing to the randomness of the SGD, convergence to the local minimum can be suppressed even if the number
of parameters is large.

The gradient of the objective function was calculated using the parameter-shift rule, which is a method for
calculating the gradient of the output of a parameterized quantum circuit (i.e., the expectation of an observ-
able). The gradient of the expected value of the quantum circuit observable B , for the circuit parameters θ of the
quantum gate U(θ) = exp(−iθP)(P ∈ {X,Y ,Z}) is as follows:

In other words, the gradient is calculated from the expected value of observable B for a quantum circuit in
which the parameter θ is increased or decreased by π2 . Compared with the calculation of the gradient using the
finite difference method, the parameter-shift rule can theoretically obtain the exact derivative and is robust to
 errors38.

Figure 7 compares the dependence of the learning curve on the number of shots for quantum circuits
using MERA as the variational circuit when optimized from the same initial values using the conventional
Nelder–Mead method and the SGD method with parameter- shift rule, respectively. Whereas the Nelder–Mead
method results in a low R2 value when the number of shots is 100 or 1000, the present optimization method can
even optimize the parameters even with 100 shots, and the dependence of the learning curve on the number of
shots is greatly reduced.

To train with the Nelder–Mead method, approximately 10,000 shots are required for each expected value
calculation. Because the calculation of the objective function requires the expected value of all samples (86 in
this case), the total number of shots for each optimization step is 860,000 (= 10,000 × number of samples). By
contrast, in the SGD combined with the parameter-shift rule, optimization is possible even with 100 shots. The
total number of shots per optimization step is 4,900 (= 100 + 2 × 100 × 24)—note that for a single stochastically
selected sample, two expectation calculations are needed to compute the gradient of each trainable parameter
(24 in total) using the parameter-shift rule, in addition to calculating the predicted value of y. Thus, by changing
the optimization method, we were able to reduce the number of shots per optimization step to approximately
1
180 , which is a more reasonable value for optimization on an actual quantum computer.

We also confirmed that the SGD method improves the shot number dependence of the learning curve not only
in MERA but also in the original circuit (L = 2), suggesting that the improvement of the shot number dependence
of the learning curve by the SGD method is not a case specific to the MERA circuit (see Supplementary Fig. S2
online). Note that even when the original circuit (L = 2) and MERA are optimized with the SGD method, MERA
still has a higher R2 . Compared to the conventional Nelder–Mead method, the SGD using the parameter-shift

dB(θ)

dθ
=

1

2

(

B
(

θ +
π

2

)

− B
(

θ −
π

2

))

(a) Nelder –Mead method

= .

= .

= .

(b) SGD combined with parameter-shift rule

= − .

= − .

= .

shots = 100

shots = 1000

shots = 10000

2
2

2

iteration

iteration

iteration

shots = 100

shots = 1000

shots = 10000

2
2

2

iteration

iteration

iteration

Figure 7. Comparison of learning curves for different parameter optimization methods when optimizing a
quantum circuits using MERA as a variational circuit from the same initial values. (a) Nelder–Mead method.
(b) SGD combined with parameter-shift rule. We considered 100, 1000, and 10,000 as the number of shots n to
calculate each expected value. Combining the SGD method with the parameter-shift rule greatly improves the
dependence of the learning curve on the number of shots.

8

Vol:.(1234567890)

Scientific Reports | (2022) 12:19003 | https://doi.org/10.1038/s41598-022-22940-4

www.nature.com/scientificreports/

rule enables robust optimization against stochastic variation of the expected value and allows optimization with
a small number of shots.

Finally, by using MERA as a variational circuit and optimizing it using SGD with a parameter-shift rule, we
verified that the model can be trained on a real quantum computer that includes noise not accounted for by the
simulator. For the quantum computer, we used IonQ’s quantum computer39 (hereinafter referred to as IonQ),
which is an ion-trap quantum computer. IonQ has a low error rate for each qubit, and all 11 qubits are fully
coupled, which makes it possible to implement a wide range of quantum algorithms. Owing to machine cost and
computation time, we did not verify the entire learning process on the actual machine, but rather investigated
whether the model could outperform R2 = 0 in parameter optimization, that is, whether it could outperform a
model that always outputs the average value of the target variable.

To reduce the machine cost, the initial values of the parameters optimized by IonQ were not random, but
those optimized beforehand in 60 steps with 1,000 shots from random initial values in the simulator. Figure 8
shows the learning curve of the 40-step optimization using the IonQ quantum computer and simulator from the
same initial values, with 100 shots for each expected value calculation. The evaluation of R2 for each step to draw
the learning curve, which is not necessary for the training process of the model, was calculated directly from the
state vector held by the simulator using parameters optimized on an actual quantum computer or simulator. This
is to eliminate uncertainty due to finite sampling in the calculation of R2 and to properly compare the optimiza-
tion process of the parameters themselves. Figure 8 shows that R2 improves in the actual quantum computer
to the same extent as in the simulator, and R2 exceeds zero after approximately 20 steps. The SGD method and
the parameter-shift rule enable robust optimization, even in the presence of variations in the expected value
owing to the sampling of finite solutions and the noise inherent in a real quantum computer. Note that in Fig. 7b,
approximately 200 steps are required to reach R2 ~ 0, whereas in Fig. 8b, only 60 (initial steps before IonQ input)
+ 20 steps are required, due to the different random number of initial state. This indicates that the learning speed
of this model (the number of steps required for training) may largely depend on the initial state.

Conclusion
In this study, we constructed a QCL model for a polymer physical property dataset and investigated the effect of
noise generated in a real quantum computer on model learning.

First, the quantum circuits proposed in previous studies were evaluated. It was found that the training of
quantum circuits does not progress when the probabilistic variation of the expected predicted values obtained
from quantum circuits is considered. Therefore, the construction of variational circuits that improve prediction
accuracy was examined without increasing the number of trainable parameters, and parameter optimization
methods that are robust to stochastic variations in the expected values were studied.

The MERA-type circuit improved the prediction accuracy over the original circuit containing the same
number of trainable parameters. In addition, the parameter optimization method was changed from the con-
ventional Nelder–Mead method to the SGD method, where the gradient is calculated using the parameter-
shift rule. This greatly improved the dependence of the learning curve on the number of shots to calculate the
expected predicted value, allowing the model to be trained with a small number of shots, which is realistic for
a real quantum computer.

Finally, we examined the training of a quantum circuit on an ion-trap quantum computer (IonQ). As the
optimization progressed, the coefficient of determination of the model trained with IonQ improved to the same
level as that of the simulator. By combining the SGD method and the parameter-shift rule, it was verified that

(a) R2 score evaluated with parameters
trained on the simulator.

(b) R2 score evaluated with parameters
trained on a real quantum computer (IonQ).

2

iteration

2

iteration

Figure 8. Comparison of the learning curves obtained through the (a) simulator and (b) a real quantum
computer (IonQ). The number of shots for each expected value calculation is 100. Even on a noisy real quantum
computer, the parameters are optimized just as in the simulator.

9

Vol.:(0123456789)

Scientific Reports | (2022) 12:19003 | https://doi.org/10.1038/s41598-022-22940-4

www.nature.com/scientificreports/

the QCL model can be trained robustly with a small number of shots, even on a noisy real quantum computer.
Although many challenges must be overcome to achieve practical accuracy in QCL, we believe that the results of
this research, wherein quantum machine learning was performed on an actual quantum computer, are of great
value as basic research on quantum machine learning.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding
author on reasonable request.

Received: 26 May 2022; Accepted: 21 October 2022

References
 1. Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. Machine learning in materials informatics: Recent

applications and prospects. npj Comput. Mater. 3, 1–13 (2017).
 2. Le, T., Epa, V. C., Burden, F. R. & Winkler, D. A. Quantitative structure-property relationship modeling of diverse materials proper-

ties. Chem. Rev. 112, 2889–2919 (2012).
 3. Todeschini, R. & Consonni, V. Molecular Descriptors in Recent Advances in QSAR Studies. Challenges and Advances in Computa-

tional Chemistry and Physics (eds. Puzyn T., Leszczynski J. and Cronin M.) 8, 29–102 (Springer, Dordrecht, 2010).
 4. Venkatraman, V. & Alsberg, B. K. Designing high-refractive index polymers using materials informatics. Polymers 10, 103 (2018).
 5. Kim, S. et al. PubChem in 2021: New data content and improved web interfaces. Nucl. Acids Res. 49, D1388–D1395 (2021).
 6. Jain, A. et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Mater.

1, 011002 (2013).
 7. Nielsen, M. A., Chuang, I. & Grover, L. K. Quantum computation and quantum information. Am. J. Phys. 70, 558 (2002).
 8. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
 9. Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022).
 10. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
 11. Orus, R., Mugel, S. & Lizaso, E. Quantum computing for finance: Overview and prospects. Rev. Phys. 4, 100028 (2019).
 12. Hempel, C. et al. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X. 8, 031022 (2018).
 13. Ryabinkin, I. G., Yen, T. C., Genin, S. N. & Izmaylov, A. F. Qubit coupled cluster method: A systematic approach to quantum

chemistry on a quantum computer. J. Chem. Theory Comput. 14, 6317–6326 (2018).
 14. Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549,

242–246 (2017).
 15. Hodson, M., Ruck, B., Ong, H., Garvin, D. & Dulman, S. Portfolio rebalancing experiments using the Quantum Alternating

Operator Ansatz. Preprint at https:// arxiv. org/ abs/ 1911. 05296 (2019).
 16. Pistoia, M. et al. Quantum Machine Learning for Finance ICCAD Special Session Paper. in 2021 IEEE/ACM International Confer-

ence On Computer Aided Design (ICCAD) 1–9 (2021).
 17. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 1–7 (2014).
 18. Gao, Q. et al. Applications of quantum computing for investigations of electronic transitions in phenylsulfonyl-carbazole TADF

emitters. npj Comp. Mat. 7, 1–9 (2021).
 19. Ciliberto, C. et al. Quantum machine learning: A classical perspective. Proc. R. Soc. A Math. Phys. Eng. Sci. 474, 20170551 (2017).
 20. Date, P. & Potok, T. Adiabatic quantum linear regression. Sci. Rep 11, 21905 (2021).
 21. Yarkoni, S., Raponi, E., Bäck, T. & Schmitt, S. Quantum annealing for industry applications: Introduction and review. Rep. Prog.

Phys. https:// doi. org/ 10. 1088/ 1361- 6633/ AC8C54 (2022).
 22. Benedetti, M., Lloyd, E., Sack, S. & Fiorentini, M. Parameterized quantum circuits as machine learning models. Quantum Sci. and

Technol. 4, 043001 (2019).
 23. Mitarai, K., Negoro, M., Kitagawa, M. & Fujii, K. Quantum circuit learning. Phys. Rev. A 98, 032309 (2018).
 24. Schuld, M., Bocharov, A., Svore, K. M. & Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 101, 032308 (2020).
 25. McClean, J. R., Romero, J., Babbush, R. & Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New

J. Phys. 18, 023023 (2016).
 26. Suzuki, T. & Katouda, M. Predicting toxicity by quantum machine learning. J. Phys. Commun. 4, 125012 (2020).
 27. Randi, M. The connectivity index 25 years after. J. Mol. Graph. Model 20, 19–35 (2001).
 28. Jollife, I. T. & Cadima, J. Principal component analysis: a review and recent developments. Phil. Trans. R. Soc. A. 374, 20150202

(2016).
 29. Grant, E. et al. Hierarchical quantum classifiers. npj Quantum Inf. 4, 65 (2018).
 30. Blueqat documentation https:// blueq at. readt hedocs. io/ en/ latest/#.
 31. Scikit-learn: Machine learning in Python — scikit-learn 1.0.2 documentation https:// scikit- learn. org/ stable/.
 32. Lagarias, J. C., Reeds, J. A., Wright, M. H. & Wright, P. E. Convergence properties of the Nelder-Mead simplex method in low

dimensions. SIAM J. Optim. 9, 112–147 (1998).
 33. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. in 3rd International Conference for Learning Representations.

Preprint at https:// arxiv. org/ abs/ 1412. 6980 (2014).
 34. SciPy documentation — SciPy v1.9.0.dev0+1325.3bdce7a Manual https:// scipy. github. io/ devdo cs/ index. html.
 35. Nelder, J. A. & Mead, R. A Simplex Method for Function Minimization. Comput. J. 7, 308–313 (1965).
 36. Vidal, G. Class of quantum Many-Body states that can be efficiently simulated. Phys. Rev. Lett. 101, 110501 (2008).
 37. Sweke, R. et al. Stochastic gradient descent for hybrid quantum-classical optimization. Quantum 4, 314 (2019).
 38. Mari, A., Bromley, T. R. & Killoran, N. Estimating the gradient and higher-order derivatives on quantum hardware. Phys. Rev. A

103, 012405 (2021).
 39. Wright, K. et al. Benchmarking an 11-qubit quantum computer. Nat. Commun. 10, 1–6 (2019).

Acknowledgements
We would like to thank Editage (www. edita ge. com) for English language editing.

Author contributions
Y.I., R.N., S.M., Y.T., Y.M., and Y.N. conceived and designed the research. Y.I. and R.N. conducted the
experiment(s) and analyzed the results. Y.I. wrote the first draft of the manuscript. R.N. revised the manuscript

https://arxiv.org/abs/1911.05296
https://doi.org/10.1088/1361-6633/AC8C54
https://blueqat.readthedocs.io/en/latest/
https://scikit-learn.org/stable/
https://arxiv.org/abs/1412.6980
https://scipy.github.io/devdocs/index.html
http://www.editage.com

10

Vol:.(1234567890)

Scientific Reports | (2022) 12:19003 | https://doi.org/10.1038/s41598-022-22940-4

www.nature.com/scientificreports/

for important intellectual content. All the authors discussed the results, critically revised the report, commented
on drafts of the manuscript, and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/
10. 1038/ s41598- 022- 22940-4.

Correspondence and requests for materials should be addressed to Y.I.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-22940-4
https://doi.org/10.1038/s41598-022-22940-4
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Noise-robust optimization of quantum machine learning models for polymer properties using a simulator and validated on the IonQ quantum computer
	Methods
	Data.
	Quantum circuit learning (QCL) model.
	Implementation.

	Results and discussion
	Conclusion
	References
	Acknowledgements

