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Noise‑robust optimization 
of quantum machine learning 
models for polymer properties 
using a simulator and validated 
on the IonQ quantum computer
Yuki Ishiyama1,2*, Ryutaro Nagai3, Shunsuke Mieda1,2, Yuki Takei1,2, Yuichiro Minato3 & 
Yutaka Natsume1,4

Quantum machine learning for predicting the physical properties of polymer materials based on the 
molecular descriptors of monomers was investigated. Under the stochastic variation of the expected 
predicted values obtained from quantum circuits due to finite sampling, the methods proposed in 
previous works did not make sufficient progress in optimizing the parameters. To enable parameter 
optimization despite the presence of stochastic variations in the expected values, quantum circuits 
that improve prediction accuracy without increasing the number of parameters and parameter 
optimization methods that are robust to stochastic variations in the expected predicted values, were 
investigated. The multi‑scale entanglement renormalization ansatz circuit improved the prediction 
accuracy without increasing the number of parameters. The stochastic gradient descent method using 
the parameter‑shift rule for gradient calculation was shown to be robust to sampling variability in 
the expected value. Finally, the quantum machine learning model was trained on an actual ion‑trap 
quantum computer. At each optimization step, the coefficient of determination R2 improved equally 
on the actual machine and simulator, indicating that our findings enable the training of quantum 
circuits on the actual quantum computer to the same extent as on the simulator.

Materials  informatics1, which is a collaboration between materials and information sciences, has been attracting 
attention as a highly-efficient method to search for materials with innovative performance. For example, in the 
quantitative structure–property  relationship2, chemical structures are quantified based on their substructures 
and chemical properties (referred to as descriptors)3, and a regression model between the descriptors and tar-
get properties is constructed. By inverse analysis of the regression model, materials with ideal properties can 
be screened based on their chemical  structure4. Recently, several databases such as  PubChem5 and Materials 
 Project6, containing more than tens of thousands of material properties, have been developed. Therefore, innova-
tions in computer technology that can more effectively utilize the accumulated data are desired.

In recent years, quantum computers have attracted attention as devices that have the potential to outperform 
conventional computer  technology7,8. However, the development of fault-tolerant quantum computers could 
require a decade of research. Currently, quantum computing using noisy intermediate-scale quantum (NISQ) 
 devices9,10, which are medium-scale quantum computers composed of hundreds of noisy qubits, is being stud-
ied. Although NISQ devices can only implement algorithms on a limited quantum circuit scale owing to noise 
limitations, research is underway for their practical applications in the fields of  chemistry11–14 and  finance15,16. 
Quantum chemical calculation is an application of quantum computers in the field of chemistry, and the vari-
ational quantum eigensolver (VQE)17 is a typical algorithm used in this field. Recently, Gao et al. reported the 
calculation of excited states of organic electroluminescent (EL) light-emitting materials on an actual quantum 
 computer18. They examined the effect of the noise inherent in real quantum computers on quantum chemical 
calculations, which has been a problem in the past. By using error mitigation based on quantum tomography, 
they succeeded in obtaining calculated values that correlated well with experimental values.
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Another application of quantum computers in chemistry is materials informatics using quantum machine 
 learning19. An example of machine learning using a quantum computer is linear regression using D-Wave’s 
quantum annealing system by Date and  Potok20. They reported that, compared with the classical approach, the 
quantum approach can train models up to 2.8 times faster on large datasets, and the regression error is compa-
rable to that of the classical approach. However, reports of machine learning with quantum annealing systems 
predominantly utilize linear regression, and furthermore, annealing systems are considered not well-suited for 
representing continuous numbers owing to the precision issues of quantum processing units (QPUs)21. Therefore, 
to further exploit the power of quantum machine learning, it is also important to consider quantum machine 
learning using gate-based quantum computers, which allow for more flexible model construction.

A representative quantum machine learning algorithm that can be run on gate-based NISQ quantum comput-
ers is the quantum circuit learning (QCL)  algorithm22–24. The QCL algorithm consists of two circuits: encoding 
and variational. The encoding circuit converts the classical feature x into a high-dimensional quantum-enhanced 
feature space. Subsequent variational circuits act on the feature space generated by the encoding circuits and 
learn the relationship between the feature space and a target variable y, using trainable parameters contained 
in the variational circuit. The predicted value of the target variable is calculated from the expected value of the 
Pauli Z measurement to a few qubits in the quantum circuit. Therefore, it should be noted that the predicted 
values are stochastic because they are calculated based on the expected values obtained from a finite number 
of shots (measurements). QCL is a hybrid quantum–classical  algorithm25 wherein the relationship between the 
explanatory variable x and the target variable y is represented by a parameterized circuit on a quantum computer 
(

y = fθ (x)
)

 , whereas the optimization of the parameters is performed on a classical computer.
An example of research using QCL in the field of chemistry is the prediction of molecular toxicity from 

molecular descriptors (Quantitative Structure–Activity Relationship) by Suzuki and  Katouda26. They investigated 
the effect of the encoding structure and variational circuits on the prediction accuracy using a quantum computer 
simulator. A QCL model with high prediction accuracy for toxicity prediction tasks was proposed. This suggests 
that the QCL is a useful approach in the field of chemistry. However, to the best of our knowledge, whereas the 
application of quantum machine learning to regression has been studied using a quantum computer simulator, 
the application of the regression task on a real quantum computer has not yet been sufficiently studied. Therefore, 
further research is needed on the effects of stochastic fluctuations in predictions and noise specific to quantum 
computers on the training of the model, which can be a problem in real quantum computers.

In this study, we investigated the QCL in a regression task to predict the physical properties of a homopolymer 
from the corresponding monomer structure (quantitative structure–property relationship). Assuming conditions 
similar to those of an actual quantum computer, we investigated the effect of stochastic variation in the expected 
predicted values obtained from a quantum circuit on parameter optimization. To enable parameter optimization 
even under the noise that can occur in real machines, we examined quantum circuits that improve prediction 
accuracy without increasing the number of trainable parameters, and parameter optimization methods that are 
robust to the expected stochastic variations. Finally, we performed parameter optimization of the QCL using a 
real quantum computer (IonQ’s quantum computer) to verify whether parameter optimization is possible under 
the noise generated by a real computer.

Methods
Data. For quantum machine learning, we used 86 monomer-polymer property datasets generated by the 
Synthia module of the Materials Studio 2019 software, which is a tool that calculates the properties of the cor-
responding polymer from the structure of the monomer. For the explanatory variable x, we used 10 monomer 
features related to structural information of monomers (unit length, molecular weight, connectivity  indices27, 
etc.) calculated using Synthia. For the target variable y, the glass transition temperature (Tg) of the homopolymer 
calculated using Synthia was used. To reduce computational costs, principal component analysis (PCA)28 was 
applied to the explanatory variables, and the first through fourth principal components were used as explanatory 
variables (cumulative contribution ratio > 99%).

Quantum circuit learning (QCL) model. Two types of quantum circuits were considered: quantum cir-
cuits proposed in previous studies and multi-scale entanglement renormalization ansatz (MERA)  circuits29. The 
details of these quantum circuits are described in the Results and Discussion section. The predicted value of the 
target variable was calculated from the expectation value obtained by applying the Pauli Z operator to the last 
qubit in the quantum circuit proposed in a previous study, and to the third qubit in MERA. The mean square 
error was used as the objective function to optimize the training parameters of the quantum circuit. To evaluate 
the performance of the model, we used the coefficients of determination R2 and Q2 , which are expressed by the 
following equations:

where N is the total number of samples,y is the actual value of the objective variable, y is the average of y,ycalc 
is the calculated value of y (predicted value of y for training data in the model trained on all samples), and ypred 
is the predicted value of y in tenfold cross-validation. Because of the limitations of the quantum circuit, the 
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following preprocessing was performed on the explanatory variable x and the objective variable y. First, because 
x was converted into an angle on the Bloch sphere, a min–max normalization was applied so that the range of 
x was − π to π. Furthermore, because the Z expectation value of the quantum circuit ranges from − 1 to 1, y was 
min–max normalized to minimum and maximum value of − 1 and 1, respectively, and then transformed by the 
tanh function to minimum and maximum values of − 0.76 and 0.76, respectively (= tanh 1). This is because when 
the range of y in the training data is normalized from − 1 to 1, it becomes impossible to predict new samples 
beyond the range of y in the training data.

Implementation. Python was used for the implementation.  Blueqat30, a gate-based quantum computer 
simulator, was used for the simulation of QCL. The Blueqat SDK was used to run and simulate the IonQ quan-
tum computer for comparison with an actual machine. Scikit-learn31 was used for data preprocessing. The 
Nelder–Mead32 method and Adam  optimizer33, from the  SciPy34 library, were used to optimize the quantum 
machine learning parameters.

Results and discussion
To investigate quantum machine learning for polymer property datasets, we first examined a previously proposed 
quantum circuit (hereinafter referred to as the original circuit)26, shown in Fig. 1. The encoder circuit (Fig. 1a) 
consists of one-qubit rotation gates (RY,RZ) and controlled NOT (CNOT) gates. The one-qubit rotation gates 
convert the explanatory variable x into a quantum state and the subsequent CNOT gate allows the quantum state 
to be entangled, allowing for a flexible representation of the feature space. As in the previous study, the one-qubit 
rotation gate and subsequent CNOT gate operations were repeated twice. The variational circuit (Fig. 1b) consists 
of a CNOT gate and an arbitrary rotation gate for each qubit, and it was repeated L times. As each arbitrary rota-
tion gate contains three trainable parameters, the total number of trainable parameters per layer is 12 (= 3 × 4).

To verify the performance of the model under ideal conditions where there is no variation in the expected 
value calculation in sampling, the expected predicted value obtained from the quantum circuit was calculated 
directly from the state vector held by the simulator. The Nelder–Mead  method35 was used to optimize the param-
eters, as in previous studies. Figure 2 shows the change in the coefficient of determination R2 as the number 
of training layers L increased. At L = 1, R2 < 0 , but at L = 2, R2 significantly improved to R2 = 0.42 , and then 
increased as the number of layers L increased, reaching a ceiling at R2 = 0.85 around L = 8.

To verify the prediction performance (generalization performance) of the model on new data, tenfold cross-
validation was conducted on the L = 8 model. The coefficient of determination for the predictions in the tenfold 
cross-validation was Q2 = 0.37 . Figure 3 shows the actual versus estimated y values plot. Although there were 
some samples that missed the prediction by a large margin, the prediction results were generally distributed on 

Y( 1) Z( 1)

Y( 2) Z( 2)

Y( 3) Z( 3)

Y( 4) Z( 4)

3( 11, 12, 13)

3( 21, 22, 23)

3( 41, 42, 43)

3( 31, 32, 33)

(a) Encoding circuit

(b) Variational circuit

Figure 1.  (a) Structure of an encoding circuit that converts the classical explanatory variable x into a quantum-
enhanced, high-dimensional feature space. (b) Structure of a variational circuit that learns the relationship 
between the feature space and target variable. An arbitrary rotation gate U3 contains trainable parameters. 
The variational circuit can be repeated L times (which is a hyperparameter). The total number of trainable 
parameters is 12 × L.
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the diagonal. This suggests that even simple quantum circuits can learn the trends in the complex relationship 
between the monomer structure and polymer properties.

When training a model on a real quantum computer, the expected predicted value obtained from the quantum 
circuit cannot be calculated directly from the state vector; it must be calculated from a sampling of stochastically 
fluctuating measurements. With finite sampling, the expected value may vary from the true value, and parameter 
optimization may be adversely affected. Therefore, we next examined the effect of the variation of the expected 
predicted value associated with a finite number of samplings on the optimization of the parameters.

Figure 4b shows the learning curves for parameter optimization of the original quantum circuit (L = 2) when 
the number of shots (samplings) to obtain the expected predicted value for each sample is 100, 1000, and 10,000. 
For comparison, the learning curve for the case where the expected value is obtained directly from the state vector 
is also shown (Fig. 4a). Note that because the expected value calculation is performed for each sample, the total 
number of samplings per optimization step, that is, the total number of samplings to evaluate the loss function 
based on the training parameters in a certain optimization step, is determined by (number of samples) × (shots 
per sample). The number of samples was 86.

Figure 4b shows that as the number of shots increases, the noise in the learning curve decreases and the 
final R2 value improves. This can be attributed to the fact that the probabilistic variation of the expected value 
decreases as the number of shots increases. However, even for n = 10,000 shots, R2 converged at a negative value. 
With a small number of shots, the direction of parameter optimization using the Nelder–Mead method may 
not be determined owing to the effect of stochastic variation of the expected predicted values. Increasing the 
number of shots further from 10,000 would improve the learning curve. However, in actual machines, an increase 
in the number of shots not only leads to an increase in the calculation time, but also in the machine running 
cost. Therefore, it is necessary to consider a quantum circuit that can be trained with fewer learning parameters, 
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Figure 2.  Change in the coefficient of determination R2 as the number of training layers L is increased. The 
expected predicted value obtained from the quantum circuit is calculated directly from the state vector held by 
the simulator.
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Figure 3.  Actual y versus estimated y plot in the tenfold cross-validation with L = 8 model. The expected 
predicted value obtained from the quantum circuit is calculated directly from the state vector held by the 
simulator.
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which facilitates parameter optimization, and an optimization method that can optimize parameters robustly 
to stochastic variations in expected values, even with a small number of shots.

To improve the accuracy without increasing the number of trainable parameters, we considered the MERA 
circuit structure shown in Fig. 5. MERA is a structure that approximates the quantum state of a many-body sys-
tem and can represent certain quantum states efficiently using only a few  parameters36. Focusing on this fact, we 
verified whether it is possible to efficiently train a model with fewer parameters by using MERA as a variational 
circuit in QCL. The trainable parameters are the rotation angles at each arbitrary rotation gate U3 , and the total 
number of parameters is 24 for the four-qubit circuit used in this study. The encoding circuit is the same as that 
shown in Fig. 1a. First, to verify the performance of the model under ideal conditions that do not include the 
effects of probabilistic expected value variations, the expected predicted value obtained from the quantum circuit 
was calculated directly from the state vector held by the simulator.

Figure 6 shows a comparison between the actual y and estimated y plots for the original circuit (L = 2), and 
the MERA circuit with the same number of trainable parameters (24). The top row of Fig. 6 shows the predic-
tion results of the training data after training the model on all data, and the bottom row shows the prediction 
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Figure 4.  Comparison of the learning curves when the expected predicted value is obtained directly from the 
state vector (left) and when it is calculated from n-shots sampling (n = 100, 1000, 10,000) (right). Although the 
learning curve improves as the number of shots is increased, R2 still converges at a negative value even when 
n = 10,000, which may be due to the stochastic variation in the expected predicted value.
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Figure 5.  Structure of the MERA circuit. Each arbitrary rotation gate U3 contains three trainable parameters. 
Therefore, the total number of trainable parameters is 24, which is the same as that of the original circuit with 
L = 2. The predicted value of the target variable was calculated from the expected value obtained by applying the 
Pauli Z operator to the third qubit.
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results of the tenfold cross-validation. The performance of the model is R2 = 0.42 and Q2 = −0.02 for the 
original circuit (L = 2) compared to R2 = 0.56 and Q2 = 0.16 for the MERA type, indicating that the model 
performance improves even with the same number of trainable parameters. Furthermore, in other datasets, 
MERA also tended to have higher R2 and Q2 values than the original circuit under the same number of trainable 
parameters (see Supplementary Table S1 and Fig. S1 online). Based on the trend of higher R2 and Q2 values for 
MERA, we conclude that MERA appears to learn more efficiently with fewer parameters than the original circuit 
in quantum machine learning.

Next, to enable parameter optimization that is robust to variations in the expected predicted value obtained 
from the quantum circuit even with a small number of shots, the parameter optimization method was changed 
from the Nelder–Mead method to the proposed  method37. Previous studies have shown that the proposed 
method can optimize quantum circuits with a small number of shots, but no comparison has been made between 
the proposed method and other optimization methods. Therefore, it is unclear whether the proposed method 
improves the robustness of optimization against stochastic variation in expected values, even when optimization 
using the Nelder–Mead method is difficult owing to stochastic variations in expected values, as in the present 
case. In addition, as the previous study was conducted on a quantum computer simulator, it is necessary to verify 
whether the proposed method can optimize the quantum circuit even on a noisy real-world quantum computer. 
The details of the change from the Nelder–Mead method to the proposed method are as follows:

1. Stochastic gradient descent (SGD) with the Adam  optimizer33 was adopted as the parameter optimization 
method.

2. The parameter-shift  rule23 was used to calculate the gradient in the SGD.

Although the Nelder–Mead method has the advantage of not using the gradient information of the objective 
function, it tends to increase the number of optimization steps. When the number of training parameters is 
large, such as in neural networks, optimization by the Nelder–Mead method is often difficult, and the method 
using the gradient of the objective function is often used. Therefore, in this case, we changed the optimization 
method of the parameters to the gradient descent method. Furthermore, when optimization is performed using 
all the samples, the expected value must be calculated for all samples. Therefore, the total number of shots per 

= .  = .

= − . = .

y_actual
y_

es
tim

at
ed

y_actual

y_
es

tim
at
ed

y_actual

y_
es

tim
at
ed

y_actual

y_
es

tim
at
ed

Original circuit (L=2) MERA

Figure 6.  Comparison of actual y versus estimated y plots when using the original circuit (L = 2) or the MERA 
circuit as the variational circuit. The left column shows the plots for the original circuit (L = 2), and the right 
column shows those for the MERA circuit. The top row shows the estimation of y trained on all the data, and 
the bottom row shows the results predicted through the tenfold cross-validation. The expected predicted value 
obtained from the quantum circuit was calculated directly from the state vector held by the simulator.
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optimization step increased in proportion to the number of samples. To reduce the total number of shots per 
optimization step, we adopted the SGD method, which updates the parameters using only one randomly selected 
sample per optimization step.　The total number of shots can be suppressed using SGD in QCL. Furthermore, 
owing to the randomness of the SGD, convergence to the local minimum can be suppressed even if the number 
of parameters is large.

The gradient of the objective function was calculated using the parameter-shift rule, which is a method for 
calculating the gradient of the output of a parameterized quantum circuit (i.e., the expectation of an observ-
able). The gradient of the expected value of the quantum circuit observable B , for the circuit parameters θ of the 
quantum gate U(θ) = exp(−iθP)(P ∈ {X,Y ,Z}) is as follows:

In other words, the gradient is calculated from the expected value of observable B for a quantum circuit in 
which the parameter θ is increased or decreased by π2  . Compared with the calculation of the gradient using the 
finite difference method, the parameter-shift rule can theoretically obtain the exact derivative and is robust to 
 errors38.

Figure 7 compares the dependence of the learning curve on the number of shots for quantum circuits 
using MERA as the variational circuit when optimized from the same initial values using the conventional 
Nelder–Mead method and the SGD method with parameter- shift rule, respectively. Whereas the Nelder–Mead 
method results in a low R2 value when the number of shots is 100 or 1000, the present optimization method can 
even optimize the parameters even with 100 shots, and the dependence of the learning curve on the number of 
shots is greatly reduced.

To train with the Nelder–Mead method, approximately 10,000 shots are required for each expected value 
calculation. Because the calculation of the objective function requires the expected value of all samples (86 in 
this case), the total number of shots for each optimization step is 860,000 (= 10,000 × number of samples). By 
contrast, in the SGD combined with the parameter-shift rule, optimization is possible even with 100 shots. The 
total number of shots per optimization step is 4,900 (= 100 + 2 × 100 × 24)—note that for a single stochastically 
selected sample, two expectation calculations are needed to compute the gradient of each trainable parameter 
(24 in total) using the parameter-shift rule, in addition to calculating the predicted value of y. Thus, by changing 
the optimization method, we were able to reduce the number of shots per optimization step to approximately 
1
180 , which is a more reasonable value for optimization on an actual quantum computer.

We also confirmed that the SGD method improves the shot number dependence of the learning curve not only 
in MERA but also in the original circuit (L = 2), suggesting that the improvement of the shot number dependence 
of the learning curve by the SGD method is not a case specific to the MERA circuit (see Supplementary Fig. S2 
online). Note that even when the original circuit (L = 2) and MERA are optimized with the SGD method, MERA 
still has a higher R2 . Compared to the conventional Nelder–Mead method, the SGD using the parameter-shift 
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Figure 7.  Comparison of learning curves for different parameter optimization methods when optimizing a 
quantum circuits using MERA as a variational circuit from the same initial values. (a) Nelder–Mead method. 
(b) SGD combined with parameter-shift rule. We considered 100, 1000, and 10,000 as the number of shots n to 
calculate each expected value. Combining the SGD method with the parameter-shift rule greatly improves the 
dependence of the learning curve on the number of shots.
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rule enables robust optimization against stochastic variation of the expected value and allows optimization with 
a small number of shots.

Finally, by using MERA as a variational circuit and optimizing it using SGD with a parameter-shift rule, we 
verified that the model can be trained on a real quantum computer that includes noise not accounted for by the 
simulator. For the quantum computer, we used IonQ’s quantum  computer39 (hereinafter referred to as IonQ), 
which is an ion-trap quantum computer. IonQ has a low error rate for each qubit, and all 11 qubits are fully 
coupled, which makes it possible to implement a wide range of quantum algorithms. Owing to machine cost and 
computation time, we did not verify the entire learning process on the actual machine, but rather investigated 
whether the model could outperform R2 = 0 in parameter optimization, that is, whether it could outperform a 
model that always outputs the average value of the target variable.

To reduce the machine cost, the initial values of the parameters optimized by IonQ were not random, but 
those optimized beforehand in 60 steps with 1,000 shots from random initial values in the simulator. Figure 8 
shows the learning curve of the 40-step optimization using the IonQ quantum computer and simulator from the 
same initial values, with 100 shots for each expected value calculation. The evaluation of R2 for each step to draw 
the learning curve, which is not necessary for the training process of the model, was calculated directly from the 
state vector held by the simulator using parameters optimized on an actual quantum computer or simulator. This 
is to eliminate uncertainty due to finite sampling in the calculation of R2 and to properly compare the optimiza-
tion process of the parameters themselves. Figure 8 shows that R2 improves in the actual quantum computer 
to the same extent as in the simulator, and R2 exceeds zero after approximately 20 steps. The SGD method and 
the parameter-shift rule enable robust optimization, even in the presence of variations in the expected value 
owing to the sampling of finite solutions and the noise inherent in a real quantum computer. Note that in Fig. 7b, 
approximately 200 steps are required to reach R2 ~ 0, whereas in Fig. 8b, only 60 (initial steps before IonQ input) 
+ 20 steps are required, due to the different random number of initial state. This indicates that the learning speed 
of this model (the number of steps required for training) may largely depend on the initial state.

Conclusion
In this study, we constructed a QCL model for a polymer physical property dataset and investigated the effect of 
noise generated in a real quantum computer on model learning.

First, the quantum circuits proposed in previous studies were evaluated. It was found that the training of 
quantum circuits does not progress when the probabilistic variation of the expected predicted values obtained 
from quantum circuits is considered. Therefore, the construction of variational circuits that improve prediction 
accuracy was examined without increasing the number of trainable parameters, and parameter optimization 
methods that are robust to stochastic variations in the expected values were studied.

The MERA-type circuit improved the prediction accuracy over the original circuit containing the same 
number of trainable parameters. In addition, the parameter optimization method was changed from the con-
ventional Nelder–Mead method to the SGD method, where the gradient is calculated using the parameter-
shift rule. This greatly improved the dependence of the learning curve on the number of shots to calculate the 
expected predicted value, allowing the model to be trained with a small number of shots, which is realistic for 
a real quantum computer.

Finally, we examined the training of a quantum circuit on an ion-trap quantum computer (IonQ). As the 
optimization progressed, the coefficient of determination of the model trained with IonQ improved to the same 
level as that of the simulator. By combining the SGD method and the parameter-shift rule, it was verified that 

(a) R2 score evaluated with parameters 
trained on the simulator.

(b) R2 score evaluated with parameters 
trained on a real quantum computer (IonQ).
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Figure 8.  Comparison of the learning curves obtained through the (a) simulator and (b) a real quantum 
computer (IonQ). The number of shots for each expected value calculation is 100. Even on a noisy real quantum 
computer, the parameters are optimized just as in the simulator.
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the QCL model can be trained robustly with a small number of shots, even on a noisy real quantum computer. 
Although many challenges must be overcome to achieve practical accuracy in QCL, we believe that the results of 
this research, wherein quantum machine learning was performed on an actual quantum computer, are of great 
value as basic research on quantum machine learning.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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