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Deep learning‑based diagnosis 
of Alzheimer’s disease using brain 
magnetic resonance images: 
an empirical study
Jun Sung Kim1,2,14, Ji Won Han2,3,14, Jong Bin Bae2, Dong Gyu Moon2, Jin Shin2, 
Juhee Eliana Kong2, Hyungji Lee2, Hee Won Yang4, Eunji Lim5, Jun Yup Kim6, 
Leonard Sunwoo7,8, Se Jin Cho7,8, Dongsoo Lee9, Injoong Kim10, Sang Won Ha11, 
Min Ju Kang11, Chong Hyun Suh12, Woo Hyun Shim12, Sang Joon Kim12 & 
Ki Woong Kim1,2,3,13*

The limited accessibility of medical specialists for Alzheimer’s disease (AD) can make obtaining an 
accurate diagnosis in a timely manner challenging and may influence prognosis. We investigated 
whether VUNO Med‑DeepBrain AD (DBAD) using a deep learning algorithm can be employed as a 
decision support service for the diagnosis of AD. This study included 98 elderly participants aged 
60 years or older who visited the Seoul Asan Medical Center and the Korea Veterans Health Service. 
We administered a standard diagnostic assessment for diagnosing AD. DBAD and three panels of 
medical experts (ME) diagnosed participants with normal cognition (NC) or AD using T1‑weighted 
magnetic resonance imaging. The accuracy (87.1% for DBAD and 84.3% for ME), sensitivity (93.3% for 
DBAD and 80.0% for ME), and specificity (85.5% for DBAD and 85.5% for ME) of both DBAD and ME 
for diagnosing AD were comparable; however, DBAD showed a higher trend in every analysis than ME 
diagnosis. DBAD may support the clinical decisions of physicians who are not specialized in AD; this 
may enhance the accessibility of AD diagnosis and treatment.

The number of people with Alzheimer’s disease (AD) is estimated to be more than 50 million  worldwide1 and is 
expected to increase more than three-fold within the next 30  years2. However, in many regions of the world, it 
is a challenge to obtain an accurate diagnosis in a timely manner owing to limited accessibility to AD medical 
specialists. For example, hospitals that offer specialized diagnosis and management of AD are usually concen-
trated in urban areas, although AD is more prevalent in rural  areas3. This rural–urban inequality in accessibility 
to specialists may contribute to disparities in health outcomes of people with AD between rural and urban  areas4.

Structural neuroimaging, such as brain magnetic resonance imaging (MRI), is an essential test for diagnosing 
AD and monitoring its  course5. According to the Organization for Economic Co-operation and Development, 
the number of MRI units is constantly increasing  worldwide6. However, in many regions, the results of brain 
MRI cannot be interpreted in a timely and accurate manner owing to a lack of AD specialists. Moreover, even AD 
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specialists cannot identify the early changes in AD that occur on brain MRI with the naked  eye7,8. A technology 
that can accurately identify people with AD from the prodromal or early dementia stages using brain MRI would 
increase the diagnostic rate of AD and advance the time of diagnosis of AD, thus reducing the health outcome 
disparities between regions by supporting the clinical decision of physicians who are not specialized in AD.

Deep learning (DL) using convolutional neural networks (CNN) has been proposed as a promising tool for 
supporting clinical decisions on digital brain images of  AD9–15. In many previous studies, three-dimensional 
(3D) brain MR images were employed as input data in DL algorithms for diagnosing  AD10,12–14,16–18. However, 
3D brain MRI is not available in most clinical settings because 3D MRI sequences have longer acquisition times 
than two-dimensional (2D) MRI  sequences19, which significantly increase computational burden, storage, and 
 cost20,21. Thus, the previously developed DL algorithms for diagnosing AD using 3D MRI may be difficult to apply 
to most brain MRI scans obtained in typical clinical settings. Therefore, we developed VUNO Med-DeepBrain 
AD, version 1.0.0 (DBAD; VUNO Inc., Seoul, Korea), which is the first convolutional neural network-based 
model for diagnosing AD using 2D brain MR images as input data, and demonstrated its diagnostic accuracy 
for AD to be excellent in both Caucasians and  Asians22.

This study aimed to investigate whether VUNO Med-DeepBrain AD using 2D brain MRI can be employed 
as a decision support service for AD diagnoses in hospitals, by comparing the diagnostic performance of VUNO 
Med-DeepBrain AD with that of AD medical specialists working at referral hospitals. If VUNO Med-DeepBrain 
AD would be found to be as accurate as the decision of medical specialists, it can be easily implemented in real 
clinical settings because it has fast processing speed and uses 2D images that are commonly employed in usual 
clinical settings. Introduction of VUNO Med-DeepBrain AD may contribute to the early diagnosis of AD not 
only in memory clinics but also in any medical settings that uses brain MRI.

Methods
Participants. We enrolled 100 older adults aged 60 or older (34 with a history of AD and 66 without a his-
tory of AD) from the visitors to the Seoul Asan Medical Center (AMC) and the Korea Veterans Health Service 
(KVHS). Then we administered a standard diagnostic assessment for AD to 98 participants of them at the Seoul 
National University Bundang Hospital (SNUBH) after excluding two participants who refused the standard 
diagnostic assessment. All participants and/or their legal guardians provided a written informed consent to 
participate in this study. We obtained ethics approval from the Institutional Review Board of AMC, KVHS and 
SNUBH. All experiments were performed in accordance with relevant guidelines and regulations.

Acquisition and preprocessing of brain MRI. We acquired 3D T1-weighted MR images in the Digital 
Imaging and Communications in Medicine format using a 3.0 Tesla Ingenia scanner (Philips Medical Systems; 
Eindhoven, NL) at the AMC and a 3.0 Tesla Magnetom Skyra (Siemens Healthineers, Erlangen, Germany) or a 
3.0 Tesla Magnetom Vida scanner (Siemens Healthineers) at the KVHS. The parameters were as follows: repeti-
tion time = 9.6 ms, echo time = 4.6 ms, flip angle = 8°, field of view = 224 × 224  mm2, slice thickness = 1 mm with 
no gap, and matrix size = 224 × 224  mm2 in the Ingenia scanner; repetition time = 1900 ms, echo time = 2.6 ms, 
flip angle = 9°, field of view = 230 × 230  mm2, slice thickness = 1 mm, and matrix size = 256 × 256  mm2 in the Mag-
netom Skyra scanner; and repetition time = 1900 ms, echo time = 2.9 ms, flip angle = 9°, field of view = 230 × 230 
 mm2, slice thickness = 1 mm, and matrix size = 256 × 256  mm2 in the Magnetom Vida scanner.

We resampled the image inputs into a grid of 256 × 256 × 256 voxels with an isotropic spatial resolution of 
1 × 1 × 1  mm3 using the mri_convert routine in  FreeSurfer23. Then we extracted 2D coronal slices around the 
medial temporal lobe through two stages of rigid transformation using DBAD. In the first stage of rigid transfor-
mation, DBAD matched the position of the input images to a Korean normal elderly template (KNE) constructed 
from a cognitively normal elderly  population24. Using the template-registered input image, DBAD extracted the 
brain parenchyma using the custom brain extraction algorithm, which is based on a 3D UNet generated by the 
Brain Extraction Tool in the FMRIB Software  Library25. In the second stage of rigid transformation, DBAD reg-
istered the output images of the first stage to a skull-stripped version of the KNE and extracted 256 2D coronal 
slices. Based on the selection criteria of the medial temporal lobe atrophy visual rating  scale26, DBAD selected 30 
consecutive 2D coronal slices, starting from the corpus of the hippocampus, that were used as the input images 
in the DBAD CNN-based model for diagnosing AD. DBAD applied min–max normalization to bound the values 
of the images between zero and one in all  slices22.

MRI‑based diagnosis. The DBAD fed 30 2D coronal slices of medial temporal lobe with age and sex of 
each participant into the DBAD CNN-based model for diagnosing AD, The DBAD CNN-based model for diag-
nosing AD uses F Inception-V4 as its backbone and extracts various features that include structural and textural 
information of the input images. The DBAD CNN-based model for diagnosing AD concatenated age, sex, and 
the location information of the coronal slices (slice number) and entered them into a fully connected network 
that calculates the probability of AD of each slice. The DBAD CNN-based model for diagnosing AD averaged 
the probabilities of AD of the slices to calculate a final score that represents the subject’s probability of having AD 
(DBAD score, score ranges from 0 to 1). Then we classified the participants with the DBAD score of ≥ 0.38 as AD 
(DBAD-AD), and those with the DBAD score of < 0.38 as normal (DBAD-CT) based on our previous  study22 
(Fig. 1). Deep learning model was implemented using Pytorch (v.0.4.1) and it was conducted using NVIDIA 
Geforce GTX 1080 Ti GPU.

Three medical experts (two neuroradiologists and one neurologist) also classified each participant into AD 
(ME-AD) and normal (ME-CT) groups using full volumetric, T1-weighted MRI scans as well as participant’s 
age and sex. Each medical expert was blinded to the decisions of other medical experts (ME) and DBAD. We 
considered the diagnosis that two or more ME agreed upon the consensus diagnosis of the panel.
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Acquisition of 18F‑florbetaben amyloid brain PET scans and determination of amyloid positiv‑
ity. Brain 18F-florbetaben amyloid PET images were obtained using a Discovery VCT scanner (General Elec-
tric Medical Systems; Milwaukee, WI, USA). We injected 8.1 mCi (300 MBq) of 18F-florbetaben (Neuraceq, Pira-
mal, Mumbai, India) as a slow single intravenous bolus (6 s/mL) in a total volume of up to 10 mL and obtained 
20-min PET images comprising four 5-min dynamic frames after a 90-min uptake period. Trained radiologists 
with expertise in nuclear medicine determined amyloid beta peptide (Aβ)-positivity based on the brain amyloid 
plaque load (BAPL) score. The BAPL score is a predefined three-grade scoring system wherein measurements 
are made by the physician according to the visual assessment of the participant’s amyloid deposition in the brain 
using Neuraceq. BAPL scores of 1 (BAPL 1), 2 (BAPL 2), and 3 (BAPL 3) indicate no Aβ load, minor Aβ load, 
and significant Aβ load, respectively. Therefore, BAPL 1 indicates an Aβ-negative status, whereas BAPL 2 and 
BAPL 3 indicate an Aβ-positive  status27.

Standard diagnosis. Geriatric neuropsychiatrists with expertise in dementia research (not participating 
in the MRI-based diagnoses) administered a face-to-face standardized diagnostic interview as well as physical 
and neurological examinations using the Korean version of the Consortium to Establish a Registry for Alzhei-
mer’s Disease Assessment Packet Clinical Assessment Battery (CERAD-K-C)28 to diagnose cognitive disorders. 
Laboratory tests, including complete blood counts, chemistry profiles, and serological tests for syphilis, were 
performed for each participant. Research neuropsychologists, geriatric psychiatrists, and trained research nurses 
blinded to the MRI-based diagnoses administered the CERAD-K-N, which consists of the following neuropsy-
chological tests: Verbal Fluency Test, 15-item Boston Naming Test, Mini-Mental State Examination (MMSE), 
Word List Memory Test, Constructional Praxis Test, Word List Recall Test, Word List Recognition Test, Con-
structional Recall Test, Trail Making Test A/B, Digit Span Test, and Frontal Assessment  Battery28,29.

We then determined the standard diagnosis and Clinical Dementia Rating (CDR) of each participant at the 
diagnostic conference in which four research geriatric psychiatrists participated. We diagnosed mild cogni-
tive impairment (MCI) according to the consensus criteria from the International Working Group on  MCI30; 
dementia according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) 
diagnostic  criteria31; and AD according to the National Institute on Aging-Alzheimer’s Association workgroups 
(NIA-AA)  criteria32. All AD patients were Aβ-positive on 18F-florbetaben brain PET scan and met the NIA-AA 
criteria of preclinical  AD33 and MCI or dementia due to  AD34,35.

Statistical analysis. We compared the continuous and categorical variables between groups using Mann–
Whitney U-test and Pearson chi-square test, respectively. We then compared the diagnostic classification 
between DBAD and panel of medical experts (ME). We estimated sensitivity, specificity and accuracy of the 
diagnoses made by the DBAD and the ME using the receiver operating characteristic (ROC) curve analysis. 
Then, we compared the classification performance of the DBAD and the ME using McNemar’s test.

All analyses were performed using SPSS for Windows (version 25.0; IBM Co., Armonk, NY, USA) and 
MedCalc version 16.4.3 (MedCalc Software, Mariakerke, Belgium). We considered two-sided p-values < 0.05 to 
indicate statistical significance.

Results
The demographic characteristics of the participants are summarized in Table 1. The ME-AD and DBAD-AD 
groups were older (p < 0.001) and less educated than the ME-CT (p = 0.016) and DBAD-CT (p < 0.001) groups, 
respectively (Table 1).

Figure 1.  Diagram of the network architecture. For each participant, the model fed 1 out of 30 coronal 
slices individually. The results of the 30 slices were averaged to produce probability of diagnosing AD for that 
participants.
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As summarized in Table 2, the ME classified 36 participants as ME-AD and the rest as ME-CT. The decisions 
of the three medical experts completely matched for 77 participants (26 ME-AD and 51 ME-CT), and their κ 
agreement was 0.694 (p < 0.001). Among the 36 ME-AD participants, 15 were diagnosed with AD in the standard 
diagnostic assessment (12 dementia due to AD, one MCI due to AD, and two preclinical AD). Among the 21 
ME-AD participants who were not diagnosed with AD in the standard diagnostic assessment, 6 were diagnosed 
with other types of dementia (4 with subcortical vascular dementia and 2 with suspected non-AD pathophysiol-
ogy [SNAP]), 7 with Aβ-negative MCI, and 8 were Aβ-negative and cognitively normal. Among the 62 ME-CT 
participants, 47 were Aβ-negative and cognitively normal according to the standard diagnostic assessment. In 
contrast, among the remaining 15 participants, 9 were diagnosed with AD (three with dementia due to AD, three 
with MCI due to AD, and three with preclinical AD), 1 with SNAP, and 5 with Aβ-negative MCI.

The DBAD classified 37 participants as DBAD-AD and the rest as DBAD-CT. Among the 37 DBAD-AD 
participants, 17 were finally diagnosed with AD in the standard diagnostic assessment (14 with dementia due 
to AD, 2 with MCI due to AD, and 1 with preclinical AD). Among the 20 DBAD-AD participants who were 
not diagnosed with AD in the standard diagnostic assessment, 6 were diagnosed with other types of dementia 
(4 subcortical vascular dementia, 2 SNAP), 6 with Aβ-negative MCI, and 8 were Aβ-negative and cognitively 
normal. Among the 61 DBAD-CT participants, 47 were Aβ-negative or cognitively normal according to the 
standard diagnostic assessment, whereas in the remaining 14 DBAD-CT participants, 7 were diagnosed with 
AD (1 dementia due to AD, 2 MCI due to AD, and 4 preclinical AD), 1 with SNAP, and 6 with Aβ-negative MCI 
(Table 2).

As summarized in Table 3, the accuracy for classifying Aβ-positive AD patients from Aβ-negative cognitively 
normal controls was comparable between DBAD and the ME consensus diagnosis. The specificity of classifying 
Aβ-negative cognitively normal controls as normal was the same for DBAD and ME. The sensitivity of DBAD 
in diagnosing Aβ-positive AD patients was higher than that of ME at all levels of the definition of AD, although 
the differences were not significant. However, when each ME diagnosis was analyzed separately, the accuracy of 
DBAD was higher than that of one ME (p = 0.031 for dementia due to AD, p = 0.009 for dementia/MCI due to 
AD, and p = 0.016 for dementia/MCI/preclinical due to AD).

Table 1.  Demographic characteristics of the participants. Continuous variables are presented as 
mean ± standard deviation. DBAD VUNO Med-DeepBrain AD, AD Alzheimer’s disease, CDR Clinical 
Dementia Rating. † Student’s t-test was used for continuous variables and the chi-square test for categorical 
variables.

All

DBAD Panel of medical experts

AD (N = 37) Normal (N = 61) p† AD (N = 36) Normal (N = 62) p†

Age (years) 70.6 ± 6.9 74.7 ± 6.2 68.1 ± 6.1 < 0.001 74.9 ± 6.2 68.1 ± 6.1 < 0.001

Women (%) 62.2 70.3 57.4 0.202 50.0 69.4 0.057

Education (years) 12.5 ± 4.9 10.3 ± 4.3 13.8 ± 4.8 < 0.001 10.9 ± 4.3 13.4 ± 5.0 0.016

CDR, n (%)

0 44 (44.9) 4 (10.8) 40 (65.6) < 0.001 6 (16.7) 38 (61.3) < 0.001

0.5 38 (38.8) 20 (54.1) 19 (31.1) 17 (47.2) 22 (35.5)

1 7 (7.1) 5 (13.5) 2 (3.3) 5 (13.9) 2 (3.2)

≥ 2 9 (9.2) 8 (21.6) 0 (0.0) 8 (22.2) 0 (0.0)

Table 2.  Results of standardized clinical assessment of Deep Brain AD and medical experts. DBAD VUNO 
Med-DeepBrain AD, AD Alzheimer’s disease, MCI mild cognitive impairment. Number of cases with 
percentage in parenthesis.

DBAD Panel of medical experts

AD (N = 37) Normal (N = 61) AD (N = 36) Normal (N = 62)

Standard diagnosis

Aβ-positive

 Preclinical AD 1 (2.7) 4 (6.6) 2 (5.6) 3 (4.8)

 MCI due to AD 2 (5.4) 2 (3.3) 1 (2.8) 3 (4.8)

 Dementia due to AD 14 (37.8) 1 (1.6) 12 (33.3) 3 (4.8)

 All 17 (45.9) 7 (11.5) 15 (41.7) 9 (14.5)

Aβ-negative

 Normal 8 (21.6) 47 (77.0) 8 (22.2) 47 (75.8)

 MCI due to non-AD 6 (16.2) 6 (9.8) 7 (19.4) 5 (8.1)

 Dementia due to non-AD 6 (16.2) 1 (1.6) 6 (16.7) 1 (1.6)

 All 20 (54.1) 54 (88.5) 21 (58.3) 53 (85.5)
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As summarized in Table 4, the accuracy of distinguishing Aβ-positive AD patients from Aβ-negative non-AD 
patients and the specificity for classifying Aβ-negative participants as non-AD were also comparable between 
the DBAD and ME groups. The sensitivity of DBAD in diagnosing Aβ-positive AD patients was higher than 
that of ME at all levels of the definition of AD, but the differences were not significant (Table 4). The DBAD 
accuracy of distinguishing Aβ-positive AD patients from Aβ-negative non-AD participants was lower than that 
of distinguishing Aβ-positive AD patients from Aβ-negative cognitively normal controls, because the specificity 
for classifying Aβ-negative participants as non-AD was lower than that for classifying Aβ-negative cognitively 
normal controls as normal.

Discussion
This study demonstrated that DBAD can support the decision on the diagnosis of AD in the hospitals where 
medical specialists on AD are not available by showing that the diagnostic accuracy for AD of DBAD was com-
parable to that of the medical experts on AD who are working at the referral hospitals.

Table 3.  Diagnostic performance for classifying amyloid β-positive Alzheimer’s disease from amyloid 
β-negative cognitively normal controls. DBAD VUNO Med-DeepBrain AD, ME Medical Expert, AD 
Alzheimer’s disease, MCI mild cognitive impairment. † McNemar’s test compared with the diagnosis of DBAD.

DBAD

Diagnosis of the medical expert (ME) Statistics†

ME 1 a ME 2 b ME 3 c Consensus d a b c d

Accuracy

Dementia due 
to AD 87.1 (77.0, 93.9) 84.3 (73.6, 91.9) 84.3 (73.6, 919) 78.6 (67.1, 87.5) 84.3 (73.6, 91.9) 0.500 0.500 0.031 0.500

Dementia/MCI 
due to AD 85.1 (75.0, 92.3) 81.1 (70.3, 89.3) 81.1 (70.3, 89.3) 74.3 (62.8, 83.8) 81.1 (70.3, 89.3) 0.250 0.250 0.009 0.250

Dementia/MCI/
preclinical due 
to AD

81.0 (70.6, 89.0) 78.5 (67.8, 86.9) 77.2 (66.4, 85.9) 72.2 (60.9, 81.7) 78.5 (67.8, 86.9) 0.500 0.250 0.016 0.500

Sensitivity

Dementia due 
to AD 93.3 (68.1, 99.8) 80.0 (51.9, 95.7) 73.3 (44.9, 92.2) 86.7 (59.5, 98.3) 80.0 (51.9, 95.7) 0.500 0.250 1.000 0.500

Dementia/MCI 
due to AD 84.2 (60.4, 96.6) 68.4 (43.5, 87.4) 63.2 (38.4, 83.7) 68.4 (43.5, 87.4) 68.4 (43.5, 87.4) 0.376 0.219 0.250 0.376

Dementia/MCI/
preclinical due 
to AD

70.8 (48.9, 87.4) 62.5 (40.6, 81.2) 54.2 (32.8, 74.4) 62.5 (40.6, 81.2) 62.5 (40.6, 81.2) 0.688 0.219 0.625 0.688

Specificity

Dementia due 
to AD 85.5 (73.3, 93.5) 85.5 (73.3, 93.5) 87.3 (75.5, 94.7) 76.4 (63.0, 86.8) 85.5 (73.3, 93.5) 1.000 1.000 0.267 1.000

Dementia/MCI 
due to AD 85.5 (73.3, 93.5) 85.5 (73.3, 93.5) 87.3 (75.5, 94.7) 76.4 (63.0, 86.8) 85.5 (73.3, 93.5) 1.000 1.000 0.267 1.000

Dementia/MCI/
preclinical due 
to AD

85.5 (73.3, 93.5) 85.5 (73.3, 93.5) 87.3 (75.5, 94.7) 76.4 (63.0, 86.8) 85.5 (73.3, 93.5) 1.000 1.000 0.267 1.000

Table 4.  Diagnostic performance for classifying amyloid β-positive Alzheimer’s disease from amyloid 
β-negative controls. DBAD VUNO Med-DeepBrain AD, AD Alzheimer’s disease, MCI mild cognitive 
impairment. † McNemar’s test compared with the diagnosis of DBAD.

DBAD Medical experts p†

Accuracy

Dementia due to AD 76.4 (66.2, 84.8) 73.0 (62.6, 81.9) 0.581

Dementia/MCI due to AD 75.3 (65.2, 83.6) 71.0 (60.6, 79.9) 0.455

Dementia/MCI/preclinical due to AD 72.4 (62.5, 81.0) 69.4 (59.3, 78.3) 0.629

Sensitivity

Dementia due to AD 93.3 (68.1, 99.8) 80.0 (51.9, 95.7) 0.500

Dementia/MCI due to AD 84.2 (60.4, 96.6) 68.4 (43.5, 87.4) 0.375

Dementia/MCI/preclinical due to AD 70.8 (48.9, 87.4) 62.5 (40.6, 81.2) 0.688

Specificity

Dementia due to AD 73.0 (61.4, 82.6) 71.6 (59.9, 81.5) 1.000

Dementia/MCI due to AD 73.0 (61.4, 82.6) 71.6 (59.9, 81.5) 1.000

Dementia/MCI/preclinical due to AD 73.0 (61.4, 82.6) 71.6 (59.9, 81.5) 1.000
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Medial temporal lobe atrophy (MTA) is now considered a valid diagnostic marker of AD at the MCI 
 stage36, and the MTA rating is widely used in clinical practice to determine the presence of AD-related 
 neurodegeneration22. The DBAD uses 30 coronal slices starting from the corpus of the hippocampus based on 
the Scheltens score for MTA  ratings22,26, whereas an ME panel can use additional information such as cortical 
atrophy patterns, ventricular enlargement, or small vessel disease through the full volume of T1-weighted MRI. 
Despite this disparity in the information provided, DBAD demonstrated an expert level of diagnostic accuracy 
and was superior to individual ME diagnosis.

The diagnostic accuracy and sensitivity of both DBAD and the ME were better for dementia due to AD 
than for MCI due to AD and/or preclinical AD. DBAD is an algorithm developed and validated using a divided 
dataset consisting of normal controls and dementia due to mild AD (CDR 0.5 or 1) for typical normal and AD 
 classification22. Therefore, the diagnostic performance of DBAD may be lower when diagnosing preclinical AD 
or MCI due to AD than when diagnosing dementia due to AD. MTA is less pronounced in MCI and preclinical 
AD than in dementia due to  AD37. The University of California-Los Angeles Alzheimer’s Disease Research Center 
has studied the hippocampal volume loss between MCI due to AD and dementia due to AD using 20 follow-up 
MCI participants and revealed that the annual atrophy rate for those who remained in the MCI stage due to AD 
was 2.8%, while that for those who developed dementia due to AD was 3.7%38. Moreover, the Mayo Clinic AD 
Research Center/AD Patient Registry also studied the hippocampal volume loss of normal controls, patients with 
MCI, and those with probable AD in a sample of 129 participants and found that the mean annualized rates of 
hippocampal volume loss were 1.73% for normal controls, 2.5% for MCI, and 3.5% for probable  AD39. This body 
of literature implies that MTA is a later event in AD  progression40, which may also explain the lower diagnostic 
performance of DBAD when including preclinical and MCI stages of AD than when only including dementia 
due to AD. DBAD exploits image slices that represent MTA in the coronal view from 3D T1-weighted MRI to 
diagnose AD. However, DL using MRI not only helps interpret and diagnose the volume reduction or atrophy 
of the brain but also provides a comprehensive reflection of other sensitive features (e.g., MRI  texture41) related 
to AD that DBAD may have analyzed during diagnosis.

Nevertheless, even after including preclinical AD and MCI due to AD, the diagnostic performance of DBAD 
was comparable to that of ME. This supports the promising role of DBAD as a diagnostic assistant tool for AD, 
even in the early stages of AD in a clinical setting in the absence of an ME. In addition, the diagnostic accuracy, 
sensitivity, and specificity of DBAD in diagnosing AD showed a similar level of performance to that in the pre-
vious paper for algorithm  development22. This study may also serve as an independent validation study for the 
diagnostic accuracy, sensitivity, and specificity of DBAD.

Various studies on DL algorithms to diagnose AD have been  conducted12,13,16–18; however, few algorithms have 
been validated by comparisons of DL algorithm performance with that of medical doctors. Qiu et al.42 created 
an algorithm for diagnosing AD using DL with the 417 Alzheimer’s Disease Neuroimaging Initiative dataset. 
They compared the diagnostic performance of the developed algorithm and that of neurologists after they were 
provided with full volumetric T1-weighted MRI scans, age, sex, and MMSE scores of the participants. In line 
with our study, their DL model (accuracy, 0.834 ± 0.020) outperformed the neurologists (accuracy, 0.823 ± 0.094). 
In addition, a study by  Nagendran43 gathered the research that compared the diagnostic performance of DL 
algorithms and clinicians, based on medical imaging for diseases such as cancer, cataract, and colon polyps. 
Among a total of 77 papers comparing DL and clinicians’ diagnoses, 30% studies showed that DL performance 
was superior to clinicians’, 17% said DL was comparable or better, 32% said DL was comparable, 18% said DL 
was able to help a clinician perform better, and 3% said DL was not superior. These previous studies suggest the 
usefulness of the DL algorithm as a supporting tool in clinical settings.

The current study has some limitations. First, the number of ME included was limited, and a larger number of 
ME are needed for further validation studies. Second, although DBAD showed comparable performance to that 
of ME, we would consider incorporating other AD signature regions, such as the  precuneus44,45 and posterior 
cingulate  cortex46,47 to the DBAD algorithm to enhance the diagnostic accuracy even in the preclinical AD stage. 
However, in this case, we may have to sacrifice the current strength of DBAD processing speed.

In this study, we validated the diagnostic performance of AD classification CNN-based algorithm by com-
paring it with MRI diagnosis by medical experts. The VUNO Med-DeepBrain AD may support the clinical 
decision of the physicians who are not specialized in AD, which may enhance the accessibility of AD diagnosis 
and treatment.

Data availability
Data are not publicly available because they contain sensitive participant information. Individual, de-identified, 
participant data that underlie the results reported in this article may be made available to qualified researchers 
upon reasonable request. Proposals should be directed to K.W.K. to gain access.
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