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Near field and far field plasmonic 
enhancements with bilayers 
of different dimensions AgNPs@
DLC for improved current density 
in silicon solar
Maryam Hekmat1, Azizollah Shafiekhani1* & Mehdi Khabir2

The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in 
silicon solar cells is investigated. Here, we report on the improved performance of silicon solar cells 
by integrating two layers of silver nanoparticles of different sizes. We experimentally examine the 
plasmonic near-field and far-field effects of bilayer Ag NPs embedded within an anti-reflective DLC 
layer on silicon solar cells’ optical and electrical characteristics. Field-Emission Scanning Electron 
Microscopy drove the two-dimensional differences in the size of Ag NPs. The surface plasmon 
resonance of the two-dimensional nanoparticles was estimated from the absorption optical spectra. 
External quantum efficiency measurements showed that near-field or far-field plasmonic effects 
altered with the Ag NPs size. The development of far fields was confirmed by measuring the solar cell 
performance under AM 1.5 G illumination. The impact of the far-field in the cell containing two layers 
of Ag NPs, which outer layer is larger dimensions NPs, improves the current density up to 38.4 mA/cm2 
(by 70% compared to the bare reference cell).

Renewable energy seems to be the best alternative to fossil fuels. Solar energy is the best alternative, and crystal-
line wafer-based silicon (C-Si) solar cells are by far the most efficient and feasible type of  it1–3. The harness of 
solar energy conversion technology to electricity through the generation of electron–hole pairs in photovoltaic 
devices is well known. Although silicon wafers make up 85% of photovoltaic devices worldwide, the spectral 
response of C-Si solar cells is low in wavelengths less than 450 nm and above 1100  nm4–6.

The fundamental factor limiting the conversion efficiency is the spectral mismatch between C-Si solar cells 
and the incident radiation. C-Si solar cells’ maximum theoretical conversion efficiency is approximately 30%7. 
High reflection and rapid combination of high-energy photons also limit efficiency. The most critical challenge 
in comprehensively replacing solar cells is achieving acceptable efficiencies. Recently, it has been keenly focusing 
on applying anti-reflective layers and metal nanoparticles (NPs) on the surface to reduce light reflection, which 
leads to increased light harvesting. In particular, researchers are employing silver nanoparticles (Ag NPs) and 
gold (Au NPs) to enhance light trapping performance. Metal nanoparticles improve the solar cell’s performance 
via enhancing light harvesting scattering and electron carriers from the high electric field by localized surface 
plasmonic resonance (LSPR) coupling with incident  light8,9. Carbon-based materials could be appropriate choices 
for anti-reflective applications due to their environmental and easy production on a large scale in solar pan-
els. Diamond-like carbon (DLC) is one of the most well-known carbon structures with an amorphous carbon 
structure with  sp2 and  sp3 sites. Properties similar to diamonds include high thermal conductivity, hardness, 
anti-reflective, high electrical resistivity, and tunable bandgap by manipulating  sp2 and  sp3 bonding  ratio10. The 
embedded Ag in the DLC lattice prevents the agglomerated nanoparticles and the growth of large and clustered 
nanoparticles. Our previous reports have shown that the effect of gold and silver nanoparticles in the DLC lattice 
has led to increased efficiencies in quantum dot solar  cells11,12.
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Plasmonic excitation to increase solar cell performance is well known. Although several studies have concen-
trated on a single plasmonic layer, it has been proven that applying two layers is more  efficient13,14. Nevertheless, 
the compound of Ag NPs in the lattice of an anti-reflective structure in C-Si solar cells has rarely been  reported9.

This study investigated the plasmonic and anti-reflected simultaneous effects of new structure Ag NPs@
DLC. In most studies of multilayer Ag NPs, particles of uniform size are considered while we report two layers 
of Ag NPs @DLC employed with non-uniform dimensions on the surface. A new style of non-uniform bilayer 
decorated with silver nanoparticles on the p–n junction is increased light trapping and improves solar cell 
characteristics. The overall short-circuit current density (Jsc) and power conversion efficiency (PCE) has been 
obtained at 38.4 and 4.98%, an increase of 70% and 48%, respectively, in our proposed structure.

Experimental details
To fabricate plain C-Si solar cells, p-type single-crystalline Si (100) wafers measuring 15 mm × 15 mm with 
a thickness of 250 nm and resistivity > 120 Ω-cm were polished preferentially. Samples were cleaned with 
 H2O2:H2SO4 (1:3), Acton, rinsed with de-ionized water for 60, 15, and 15 min, respectively, and then dried with 
nitrogen gas. Subsequently, the wafers are then etched in a 5% HF solution for 2 min to remove native oxide. 
To form the p–n junction, wafers with a flat surface were n-doped by phosphoryl chloride diffusion. The wafers 
were first injected with nitrogen gas for 30 min in an open tube furnace at 900 °C and afterward objected to 
phosphorus diffusion for 10 min. Followed Al deposition by RF-sputtering with Al target to form the back and 
front pattern contact surface. In the next step, the surface of photoanodes is decorated with Ag NPs embedded 
in the DLC network by co-deposition of RF-sputtering and RF-PECVD method. Sputtering is one of the most 
popular methods of physical vapor deposition (PVD) for uniform deposition of plasmonic nanoparticles on a 
surface. The sputtering process was performed with a 99.9% purity silver target with acetylene gas. The chamber 
working pressure was maintained at 13.5 mTorr with acetylene gas; for the first step-deposition was performed 
with smaller nanoparticles with RF power of 50 W, and a deposition time of 1 min was used. The second step 
sets the RF power to 80 W to achieve larger nanoparticles. Finally, the wafers were annealed at around 300 °C to 
eliminate possible contaminations and form uniform round  nanoparticles15,16. To prevent the negative effect of 
temperature on solar cell parameters, nanoparticles were annealed at 300 °C17. Annealing of the layers leads to 
the formation of Ag NPs and the reduction of density on the substrate.

A schematic of configurations of different plasmonic structures for light trapping is shown in Fig. 1. The 
plasmonic near-field coupled with the active layer when Ag NPs are on top of the surface layer of the semicon-
ductor surface and increases the absorption in the around region of nanoparticles as shown in Fig. 1a. In the 
second layer, large Ag NPs are placed far from the cell’s active layer in which the LSPR is created in far fields, 
which strongly scatter light into the active layer (Fig. 1b). This is a cost-effective and reproducible technique 
for photovoltaic  applications18. The interaction between the electromagnetic field of the incident light and the 
surface charge of the bigger size plasmonic nanoparticles increases the electric near and far-field, enhancing the 
light absorption and the solar cell efficiency.

Eventually, morphology, optical, and performance of solar cells were measured. The morphology surface p-n/
Ag@DLC was obtained by field emission scanning electron microscopy (FESEM- MIRA III- TESCAN). A graz-
ing X-ray Diffractometer having the Cu Kα source (XRD- PHILIPS- PW1730) was employed to determine the 
structural change in the Ag NPs. Absorption properties of different surfaces were studied by UV–Visible absorp-
tion spectroscopy (PhyTec, MA-2500). The photocurrent density–voltage (J–V) characteristics of solar cells 
were recorded under sun illumination (AM1.5 G, 100 mW/cm2) using a solar simulator (Sharif Solar- PGE-18). 

Figure 1.  Schematic representation of Ag NPs embedded at DLC: (a) monolayer and (b) bilayer which create 
different plasmonic light-trapping.
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Incident light to Current Efficiency (IPCE) spectra was recorded using an IPCE measurement system (Sharif 
Solar- IPCE-020).

Result and discussion
Morphology. Field emission scanning electron microscopy (FESEM) of Ag NPs for monolayer and bilayer 
are shown in Fig. 2a,b, respectively. The Ag NPs ranged from 25 nm with an average diameter of 27 nm for the 
monolayer and 56 nm for the bilayer. A significant change in the size of silver nanoparticles is observed in the 
sample with the second layer of silver. These larger particles in the second layer are the reason for the formation 
of far-field LSPR. Figure 2c shows a cross-section of the DLC layer when deposited on the surface by the RF-
PECVD method.

The XRD pattern of monolayer and bilayer Ag NPs cells is shown in Fig. 3. It’s seen that Ag NPs show two 
majors diffraction peaks at 38.5° and 44.7° and the central diffraction peak around 27° to 30° is related to Si. The 
right shift in diffraction peak for Si is attributed to the surface effect of  NPs19. The observed peaks index was found 
to be (111) and (200) for Ag NPs and (111) for Si, respectively, for the observed angles. The results confirm that 
the Ag NPs and the peaks matched the reported JCPDS card number 87-059720. Also, XRD diffraction of the 
two samples confirms that nanoparticle size increased in the bilayer Ag NPs sample. The full-width half maxi-
mum (FWHM) in major diffraction peak at 38.5° decreased from 0.68 in the sample containing a monolayer of 
nanoparticles to 0.55 in the second sample. According to Debye–Scherrer’s formula, the decrease in FWHM is 
equivalent to an increase in the nanoparticle diameter of the proposed bilayer Ag  NPs21.

Optical properties. As Fig. 4 shows, by decorating the silicon surface with Ag NPs, the absorption increases 
in the ultraviolet and visible range because of the LSPR effect. As shown in Fig. 4, a bilayer decorated with Ag 
NPs with different radii indicates more absorption enhancement than a decorated monolayer of nanoparticles. 
The noticeable increment can be seen in the dimensions of bilayer Ag NPs compared to monolayers. The inter-
action of the light with the small Ag NPs increases the localized plasmonic due to near field enhancement and 
causes to increase in adsorption. The increase in absorption at λ < 400 nm is attributed to near fields. When large 
Ag NPs are placed in front of the cell in the interface between the active layer and air, far-field scattering shows 
itself obviously. The proposed structure of large Ag NPs/small Ag NPs, not only confirms that the nanoparticle 
size is a critical factor in localized surface plasmonic resonance but also increases absorption at λ > 550 nm in 
this sample resulting from enhancement in the far-field.

Near and far-field are multiple plasmonic enhancement mechanisms in the proposed structure has occurred 
in parallel and caused high absorption in short and long wavelengths. In addition, materials with higher perme-
ability are preferable to  light22, and then DLC thin film scatters light towards the active layer and causes high 
absorption. On the other hand, breaking the symmetry by changing the size of silver nanoparticles has improved 
the absorption performance. In gold and silver nanoparticles, plasmons can be excited in the range of visible 
frequencies.

Electronic properties. Figure 5a shows J-V curves of cells, and detailed photovoltaic parameters are sum-
marised in Table 1. The result demonstrates that decorated monolayer Ag NPs improve PEC, confirming the 
LSPR effect of Ag nanoparticles enhanced light harvesting. Increased short-circuit currents with Au and Ag 
nanoparticles used on top of silicon solar cells have been reported in many  studies23,24. Figure 5b illustrates the 
 Jsc for the bare reference cell, the solar cell with a monolayer of approximately 30 nm of Ag NPs, and the solar 
cell with a bilayer of Ag NPs, the last layer containing larger particles. Open circuit voltage of 360 mV, short cir-
cuit current density of 22.5 mA/cm2, and power conversion efficiency of 2.54% were obtained in the bare solar 

Figure 2.  Top view of FESEM image of Ag NPs in (a) first layer, (b) second layer, (c) cross section of DLC layer.
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Figure 3.  XRD diffraction of the monolayer and bilayer different dimensional of Ag NPs.

Figure 4.  Normalized absorption spectra of the monolayer and bilayer different dimensional of Ag NPs.
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cell as reference values. Using metal nanoparticles in similar studies, short-circuit currents of up to 45%25 were 
reported. Our study achieved a 52% enhancement in short-circuit current (34.2 mA/cm2) compared to bare cells 
by containing a layer of Ag@DLC due to Ag plasmonic effect. The results indicate a 70% exceed of bare cell in 
short-circuit current in a cell with bilayer’s different dimensional Ag NPs. Plasmonic resonance in far-field raises 
short-circuits current in 38.4 mA/cm2. 

Also, Ag NPs are placed in the DLC matrix to prevent agglomeration and forming clusters, which is direct 
light to the cell. The tendency of light towards high permeability materials is one of the positive effects of DLC. 
Coating the Si surface with a layer of DLC and embedding Ag NPs prevents the formation of Ag recombination 
centers. In addition, one of the reported effects of the DLC layer is to increase cell stability and further improve 
efficiency by ultraviolet  irradiation26.

Figure 6 is compared the normalized result of incident photon to current efficiency (IPCE), referred to as 
external quantum efficiency (EQE) spectra. It is seen that the EQE is significantly improved over that of the refer-
ence cell. The EQE values agreed with the optical absorption values of bare cells and Ag decorated cells. As the 
IPCE curves significate the increased values across the entire wavelength range (370–940 nm) can be attributed 
to the plasmonic absorption and near field scattering of Ag NPs in monolayer Ag@DLC and far-field scattering 
of Ag NPs in bilayer Ag@DLC as well as the anti-reflective effects of the DLC layer. The IPCE values confirm 
that the light trapping was enhanced by bilayer different dimensions of Ag NPs LSPR. 

To understand the increase in current, we must look at the changes in the fields. As demonstrated in Fig. 1, 
the generation of the field around the silver nanoparticles is localized and of the near field type. In Ag NPs bilay-
ers, far fields became more robust, making it accessible to couple light into the active layer. As the figure shows 
proposed sample enhanced the light absorption. Because the increase in nanoparticle size leads to plasmonic 
resonance redshift absorption at longer wavelengths, using two different sizes, nanoparticles have synergy in 
absorbing at short and long wavelengths and eventually lead to a decreased light loss in the cell.

Fundamental interpretation of light coupling with LSPR, which is a function of the change in the size of Ag 
NPs, refers to Mie scattering  theory27, which makes it possible to describe the plane monochromatic wave scat-
tering by a homogeneous sphere surrounded by a homogeneous medium for particle radius and any material. 
The optic effect in scattering is attributed to the light response to an external electric field, and this is due to the 
inherent characteristic of a spherical conductive nanostructure embedded in a dielectric environment.

The function of metal NPs in increasing the optical efficiency of solar cells can be explained for two reasons. 
First, the surface plasmon energy generated is emitted as light and scattered in the active area, which leads to an 

Figure 5.  (a) Photovoltaic J–V curves of bare cell, monolayer and bilayer Ag nanoparticles solar cells under AM 
1.5 solar radiation, (b) comparison of the Jsc.

Table 1.  Photovoltaic performances of all solar cells.

Sample VOC Jsc (mA/cm2) PCE% FF%

Reference: bare cell 360 22.5 2.54 31.4

Cell with a monolayer of Ag@DLC 396 34.2 4.08 30.1

Cell with bilayer’s different dimensional Ag@DLC 407 38.4 4.98 31.9
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increase in the optical path length in the silicon and more photons being absorbed. Second, excitation of the sur-
face plasmons increases the localized electric field and absorption due to the high density of the photon  states28.

Conclusion
This study experimentally examined the plasmon coupling (near-field and far-field) of two-dimensional Ag NPs 
deposited over a silicon solar cell embedded within an anti-reflective DLC layer. Substantial local field increase 
around metal nanoparticles caused by LSPR can effectively use in thin-film solar cells. When small metal nano-
particles would embed in the anti-reflective material, it acts as an optical antenna for the incident light, which 
stores the incident energy in LSPR. Our study results of plasmon resonances are a successful example that applied 
the appropriate particle size proposed in theoretical studies in solar cells.

In summary, we have proposed and evaluated through morphology, optic, and electronic C-Si wafer deco-
rated with bilayer different dimensional Ag NPs. Ag nanoparticles with different dimensions were embedded 
in DLC thin film net on a C-Si substrate to compare the photovoltaic performance of monolayer Ag@DLC and 
bilayer Ag@DLC. Optical absorption spectra showed significantly increased light-harvesting when the surface 
was designed with two layers of different sizes of Ag NPs. The surface plasmon effect of silver nanoparticles in 
bilayer Ag@DLC PV structure showed an improved cell performance with enhanced short-circuit current over 
monolayer Ag@DLC PV structure. In the proposed cell, short-circuit current is obtained at 38.4 mA/cm2, and 
the efficiency is 4.98%, which is 70% and 48% higher than the reference cell, respectively. Our work provides 
an in-depth understanding of the light absorption enhancement mechanism in the front layers of cells with Ag 
nanoparticles of different sizes which would yield more efficient plasmonic NPs-based solar cells.

Data availability
All data generated or analyzed during this study are available from the corresponding author upon reasonable 
request.
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