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Design and characterization 
of an urea‑bridged PMO 
supporting Cu(II) nanoparticles 
as highly efficient heterogeneous 
catalyst for synthesis of tetrazole 
derivatives
Ehsan Valiey & Mohammad G. Dekamin*

In this work, a new periodic mesoporous organosilica with urea‑bridges produced by the reaction of 
(3‑aminopropyl)triethoxysilane and toluene‑2,4‑diisocyanate (APS‑TDU‑PMO) is introduced. The 
obtained APS‑TDU‑PMO was found to be an appropriate support for loading of Cu(II) nanoparticles 
to afford supramolecular Cu@APS‑TDU‑PMO nanocomposite. Uniformity and mesoporosity of 
both synthesized nanomaterials including APS‑TDU‑PMO and Cu@APS‑TDU‑PMO were proved by 
different spectroscopic, microscopic or analytical techniques including FTIR, EDX, XRD, FESEM, TEM, 
BET, TGA and DTA. Furthermore, the prepared Cu@APS‑TDU‑PMO nanomaterial was also used, as 
a heterogeneous and recyclable catalyst, for the synthesis of tetrazole derivatives through cascade 
condensation, concerted cycloaddition and tautomerization reactions. Indeed, the main advantages 
of this Cu@APS‑TDU‑PMO is its simple preparation and high catalytic activity as well as proper surface 
area which enable it to work under solvent‑free conditions. Also, the introduced Cu@APS‑TDU‑PMO 
heterogeneous catalyst showed good stability and reusability for six consecutive runs to address more 
green chemistry principles.

Mesoporous silica nanomaterials (MSNs) are widely used in material science for various applications as well 
as special blocks for making various valuable assemblies. MSNs have been extensively studied and used for 
applications in diverse fields including catalysis, ion exchange, adsorption, chromatography, molecular sieving, 
 CO2 capture and even as templates for synthetic conductive carbon  nanowires1–22 due to their special properties 
such as large specific surface, high pore volume, uniform and tunable pores, high stability, and low  cost23–30. 
Among different MSNs, periodic mesoporous organosilicas (PMOs) have received significant research inter-
est in recent years. PMOs are hybrid porous materials with high surface area and large porosity obtained by 
sol–gel method from an organo-bridged alkoxysilane in the presence of a surfactant, which were first reported in 
 199931–44. The porous framework of PMOs is created by organic functional groups covalently binding to siloxane 
domains. In contrary to SBA-15 and MCM-41 which can only be functionalized at their surfaces by the grafting 
 method45,46, different organic functionalities of the organic-bridged silica precursors can be included in the silica 
 framework47–49. PMOs have some advantages over mesoporous silica materials including mechanical stability, 
hydrophobic pore wall, and high concentration of organic functional group in the framework, which have led to 
their applications in different fields such as hydrophobic drug  carriers50,  adsorbents51,52, biological/biomedical 
 supports53, optical  applications54, solid chromatographic  phases55 and  catalysis44,56–60.

Nowadays, developing of more efficient catalytic systems for the synthesis and manufacturing of both fine 
and bulk chemicals is in the focal point of academic as well as industrial research  groups61–63. new commercial 
applications, while environmental legislation created market pull to use catalysis to meet the new regulatory 
standards. As we move forward into the new century, we continue to see market pull from growing interests in 
biomass, sustainability, emissions control, and energy. due to It is essential to use suitable catalytic systems for 
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the preparation of very important medically and ecologically  compounds64,65. It is essential to use suitable cata-
lytic systems for the preparation medically and ecologically very important  compounds64,65. Therefore, catalytic 
systems can be used for these purposes. The catalytic system consists of homogeneous and heterogeneous types. 
Also, heterogeneous catalysts have received more attention due to their many advantages such as easy separa-
tion from the reaction mixture, recyclability and subsequent reusability as well as less contamination in the 
final  product66,67. In this context, nanomaterials demonstrate appropriate selectivity in activity and shape due to 
their finely porous structure and high surface  area68. Also, by incorporation of acid and base centers as well as 
transition metallic species, they can be used in many organic transformations including acid or base-catalyzed 
reactions, oxidation, C–C coupling reactions, C–H activation, etc. to afford simple or complex molecules in both 
bulk and fine chemicals  synthesis69–73. Among the various metal nanoparticles, copper nanoparticles are of par-
ticular importance due to their high conductivity and natural abundance, easy access, low cost, and tremendous 
copper potential to replace precious metals such as palladium, platinum, gold, or silver. Indeed, immobilization of 
copper(II) species on organic and inorganic supports bearing appropriate ligands is one of the best methods for 
the production of heterogeneous catalytic systems with high stability, activity, and loading of active  centers74–76. 
Therefore, catalytic systems can be used for these purposes. The catalytic system consists of homogeneous and 
heterogeneous types. Also, heterogeneous catalysts have received more attention due to their many advantages 
such as easy separation from the reaction mixture, recyclability and subsequent reusability as well as less con-
tamination in the final  product66,67. In this context, nanomaterials demonstrate appropriate selectivity in activity 
and shape due to their finely porous structure and high surface  area68. Also, by incorporation of acid and base 
centers as well as transition metallic species, they can be used in many organic transformations including acid 
or base-catalyzed reactions, oxidation, C–C coupling reactions, C–H activation, etc. to afford simple or complex 
molecules in both bulk and fine chemicals  synthesis69–73,77,78. Among the various metal nanoparticles, copper 
nanoparticles are of particular importance due to their high conductivity and natural abundance, easy access, 
low cost, and tremendous copper potential to replace precious metals such as palladium, platinum, gold, or silver. 
Indeed, immobilization of copper(II) species on organic or inorganic supports bearing appropriate ligands is 
one of the best methods for the production of heterogeneous catalytic systems with high stability, activity, and 
loading of active  centers74–76.

Due to the use of copper complexes in various chemical reactions such as hydroboration of  alkenes79,80, 
β-boration of α,β-unsaturated  esters81, direct addition of terminal alkynes to  imines82,83, alkyne-azide 
 cycloaddition84,85 and allylic alkylation  reactions86, special attention has been paid to copper complexes as cata-
lysts for these reactions. Furthermore, the Cu(I)-assisted click chemistry (CuACC) of azide–nitrile cycloaddition 
for synthesis of corresponding heterocyclic compounds, namely tetrazole derivatives, has received much atten-
tion in recent  years87–91. Tetrazole derivatives are an important class of nitrogen-rich heterocyclic nucleus with 
significant applications in the medicinal chemistry. Indeed, tetrazole moiety serves as a useful pharmacophore 
in brand names including Lasortan, Irbesartan, and Tomelukast medications, which are used to treat high blood 
pressure, heart failure, diabetic kidney or asthma diseases. Furthermore, this pharmacophore is widely used in 
drug design studies as an appropriate isostere of carboxylic acid functional  group92–99. In addition, application 
of tetrazole derivatives as important widespread compounds in synthetic organic  chemistry100,101, catalysis and 
energetic  applications102, materials  chemistry103, and as ligands in coordination  chemistry104 have led to the 
development of various efficient synthetic methods. Tetrazole derivatives are most commonly synthesized by 
[3 + 2] cycloaddition reaction of the corresponding azide and nitrile  moieties105–112. Therefore, attempts for the 
production of tetrazole derivatives through new methods have led to the use of 2-benzylidenemalononitrile and 
sodium azide along these  lines113,114. In continuation of interest to develop new PMOs or their assemblies and 
exploring their catalytic  activities21,22,30,59,60,114, this paper reports the synthesis of novel periodic mesoporous 
organosilica by the reaction of amino group of (3-aminopropyl)triethoxysilane and toluene-2,4-diisocyanate, 
namely APS-TDU-PMO, with walls having urea bridges for Cu nanoparticles loading (Cu@APS-TDU-PMO, 
1). Furthermore, the Cu@APS-TDU-PMO was used as a highly efficient and recoverable nanoreactor for the 
synthesis of tetrazole derivatives 5 via three-component addition of aldehydes (2), malononitrile (3), and sodium 
azide (4) (Fig. 1).

Results and discussion
The prepared Cu@APS-TDU-PMO nanomaterial (1) was characterized by Fourier transform Infrared (FTIR), 
thermal gravimetric analysis (TGA), differential thermal analysis (DTA), field emission scanning electron micros-
copy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), X-ray powder dif-
fraction (XRD), and Brunauer–Emmett–Teller (BET) surface area analytical methods or techniques. The FTIR 
spectrum of both new APS-TDU-PMO and Cu@APS-TDU-PMO (1) are shown in Fig. 2. The broad absorption 
band at 3414  cm−1 is attributed to both N–H and O–H bonds stretching vibrations. Furthermore, two sharp 
absorption signals at 2928  cm−1 and 2862  cm−1 are assigned to the asymmetric and symmetric stretching vibration 
of aliphatic C − H bonds, respectively. On the other hand, the absorption bands at 1682  cm−1 and 1654  cm−1 cor-
respond to C=O bond stretching vibration of the urea moiety in the structure of APS-TDU-PMO and Cu@APS-
TDU-PMO (1). Furthermore, the band at 1544  cm−1 can be assigned to the stretching vibration of the aromatic 
C=C bonds. Also, two absorption bands at 1192  cm−1 and 1092  cm−1 are related to the Si–O–Si bonds (Fig. 2a). 
Interestingly, the absorption band of Cu–N chelation is clearly observed at the range of 800–700  cm−1 (Fig. 2b).

On the other hand, TGA and DTA curves of the Cu@APS-TDU-PMO (1) in Fig. 3 shows that the slight 
weight loss between 50 and 270 °C can be assigned to the elimination of adsorbed solvent or water molecules on 
its surface as well as degradation of small amounts of the unextracted surfactant (P123). Also, the weight loss 
between 270 and 460 °C is attributed to the decomposition of the urea bridges in the Cu@APS-TDU-PMO (1) 
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structure. On the other hand, the last step of weight loss between 460 and 800 °C is due to condensation of the 
silanols to siloxanes in the structure of Cu@APS-TDU-PMO nanomaterial (1).

Furthermore, FESEM and TEM images show that the Cu@APS-TDU-PMO nanomaterial (1) is composed 
of a large number of interwoven rods with 41–59 nm in width (Fig. 4). It can also be seen that the morphology 
of PMO was mostly preserved after deposition of Cu nanoparticles. TEM images also demonstrate the uniform 
arrangement of mesopores and tubular mesochannels in the Cu@APS-TDU-PMO (1) structure (Fig. 4b).
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Figure 1.  Schematic structure of the Cu@APS-TDU-PMO nanoreactor (1) for the three-component 
condensation of aldehydes (2a–i), malononitrile (3), and sodium azide (4).

Figure 2.  FTIR spectra of the APS-TDU-PMO (a) and Cu@APS-TDU-PMO (1, b).
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There is a peak at 2θ = 1.35° in the low-angle XRD pattern, indicating the mesoporous structure of Cu@
APS-TDU-PMO (1, Fig. 5a)115. Also, the wide-angle diffraction signal at 2θ of 20–30°, which is characteristic 
of mesoporous structures, is observed in the wide-angle XRD patterns of APS-TDU-PMO and Cu@APS-TDU-
PMO (1, Fig. 5b,c)116. The diffraction peaks at 2θ of 44.30°, 50.30°, and 77.50° can be assigned to the reflections 

Figure 3.  TGA and DTA curves of the Cu@APS-TDU-PMO nanomaterial (1).

Figure 4.  FESEM (a–c) and TEM images (d–f) of the Cu@APS-TDU-PMO nanoreactor (1).
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of Cu(II) species nanoparticles coordinated to the surface of APS-TDU-PMO117 (JCPDS card No. 00–004-0836, 
marked with ▲).

Also, EDX analysis confirmed the presence of C, N, O, Si, and Cu elements in the composition of Cu@APS-
TDU-PMO (1) nanocomposite (Fig. 6).

On the other hand, the  N2 adsorption–desorption isotherm for Cu@APS-TDU-PMO nanomaterial (1) repre-
sented type IV isotherm (Fig. 7), which is commonly observed for mesoporous silica structures. The calculated 

(a)

(b)

(c)

Figure 5.  Low-angle (a) and wide angle (b) XRD patterns of the APS-TDU-PMO; Wide angle XRD pattern of 
the Cu@APS-TDU-PMO (1, c).
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BET surface area was approximately 276  m2  g−1 which was retained even after the deposition of Cu(II) nanopar-
ticles. The average pore size was about 5.74 nm (Table 1).

Catalytic application of the Cu@APS‑TDU‑PMO nanomaterial (1) for the synthesis of 
2‑(1H‑tetrazol‑5‑yl) acrylonitrile derivatives 5a–l. The catalytic performance of the prepared Cu@

Figure 6.  EDX analysis of the Cu@APS-TDU-PMO nanocomposite (1).

Figure 7.  N2 adsorption–desorption isotherm of the Cu@APS-TDU-PMO mesoporous material (1).

Table 1.  Structural parameters of the Cu@APS-TDU-PMO (1) determined from  N2 adsorption–desorption 
experiment.

Sample Pore diameter (nm) Surface area  (m2  g−1) Vp  (cm3  g−1)

Cu@APS-TDU-PMO (1) 5.74 276 0.17
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APS-TDU-PMO nanocomposite (1) was investigated for the synthesis of 2-(1H-tetrazol-5-yl) acrylonitrile 
derivatives in the next step of our study. To determine the optimal reaction conditions, the three-component 
reaction of benzaldehyde (2a), malononitrile (3) and sodium azide (4) was selected as the model reaction. The 
model reaction was investigated in different solvents at various temperatures and catalyst loadings. The opti-
mized reaction conditions are shown in Table 2. Initially, the model reaction was performed under different 
conditions without any catalyst. The obtained results showed that the reaction efficiency to afford desired (E)-
3-phenyl-2-(1H-tetrazol-5-yl)acrylonitrile product 5a was negligible or low even after 120 min (Entries 1–7). 
Then, the model reaction was performed in EtOH and DMF as well as under solvent-free conditions in the 
presence of 50 mg of both APS-TDU-PMO catalysts (Entries 8–11). The model reaction was also studied at 
different temperatures to find 110 °C under solvent-free conditions as the optimal temperature (Entries 11–13). 
The results also indicated that the optimal amount of Cu@APS-TDU-PMO nanocomposite catalyst (1) loading 
is 30 mg for the model reaction. Indeed, lower amounts of catalyst loadings led to reduced efficiency of the model 
reaction (Entries 14–16). In order to prove the heterogeneous nature of the Cu@APS-TDU-PMO catalyst (1), 
hot filtration experiment was performed. For this purpose, the Cu@APS-TDU-PMO catalyst (1) was separated 
from the reaction mixture after 20 min. Then, the reaction continued in the absence of nanocatalyst (1) for 
another 30 min. No further increase in the conversion of benzaldehyde (2a) was observed, confirming presence 
of Cu(II) active sites for the synthesis of 2-(1H-tetrazol-5-yl)acrylonitrile derivative 5a on the surface of Cu@
APS-TDU-PMO nanocatalyst (1). Also, no effect of copper release was observed in the reaction mixture, which 
is well indicated by FTIR and XRD pattern analysis of the recycled catalyst 1.

Table 2.  Screening of optimal conditions for the synthesis of (E)-3-phenyl-2-(1H-tetrazol-5-yl)acrylonitrile 
product 5a. Reaction conditions: benzaldehyde (2a, 1.0 mmol), malononitrile (3, 1.0 mmol), sodium azide (4, 
1.2 mmol) and Cu@APS-TDU-PMO (1) under different conditions and solvent (2 mL, if not otherwise stated). 
a Isolated yield.

 
 

Entry Catalyst

Catalyst loading 
(mg, mmol 
Cu(II)) Solvent Temperature (°C) Time (min) Yield  5aa (%) TON TOF  (h−1)

1 – – Solvent-free r.t. 120 Trace 0 0

2 – – H2O r.t. 120 Trace 0 0

3 – – DMF r.t. 120 30 0 0

4 – – EtOH r.t. 120 20 0 0

5 – – EtOH Reflux 120 20 0 0

6 – – DMF Reflux 120 40 0 0

7 – – Solvent-free 110 120 45 0 0

8 APS-TDU-PMO 50 Solvent-free 110 50 30 – –

9 Cu@APS-TDU-
PMO (1) 50 (1.141 ×  10–3) EtOH Reflux 50 38 333 400

10 Cu@APS-TDU-
PMO (1) 50 (1.141 ×  10–3) DMF Reflux 50 65 570 684

11 Cu@APS-TDU-
PMO (1) 50 (1.141 ×  10–3) Solvent-free 110 50 90 789 947

12 Cu@APS-TDU-
PMO (1) 50 (1.141 ×  10–3) Solvent-free r.t. 50 Trace – –

13 Cu@APS-TDU-
PMO (1) 50 (1.141 ×  10–3) Solvent-free 80 50 40 351 421

14 Cu@APS-TDU-
PMO (1) 30 (0.685 ×  10–3) Solvent-Free 110 50 97 1416 1699

15 Cu@APS-TDU-
PMO (1) 20 (0.459 ×  10–3) Solvent-free 110 50 70 1525 1830

16 Cu@APS-TDU-
PMO (1) 10 (0.228 ×  10–3) Solvent-free 110 50 55 2412 2895
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In the next step, 30 mg of the Cu@APS-TDU-PMO nanoreactor (1) under solvent-free conditions at 110 °C 
was selected as the optimal reaction conditions for the synthesis of other 2-(1H-tetrazol-5-yl) acrylonitrile 
derivatives. Various aromatic aldehydes with electron-withdrawing or electron-donating groups (entries 1–10) 
as well as heteroaromatic aldehydes (entries 11, 12) were involved in the optimal reaction conditions to afford 
the corresponding (E)-3-aryl/heteroyl-2-(1H-tetrazol-5-yl) acrylonitrile derivatives 5b–l in high to quantita-
tive yields. In fact, aldehydes having electron-withdrawing substitutions react more rapidly and have higher 
efficiencies than aldehydes containing electron-releasing groups. These observations indicate that formation of 
the Knoevenagel condensation intermediate may be rate-determining step of this three-component reaction. 
The obtained results are summarized in Table 3.

The proposed mechanism for the synthesis of 2‑(1H‑tetrazol‑5‑yl) acrylonitrile derivatives 
5 catalysed by Cu@APS‑TDU‑PMO nanocatalyst (1). A plausible mechanism for the synthesis of 
2-(1H-tetrazol-5-yl) acrylonitrile derivatives in the presence of Cu@APS-TDU-PMO nanocatalyst (1) is shown 
in Fig. 8. Initially, the carbonyl group of aromatic aldehyde 2 and the nitrile group of malononitrile (3) are acti-
vated by the Cu@APS-TDU-PMO catalyst (1) to afford the Knoevenagel condensation intermediate (I). Then, 
Cu(II) species of the catalyst 1 activates one of the C≡N functional groups of the intermediate (I) to promote 
[3 + 2] cycloaddition reaction between it and sodium azide (4) and producing intermediate (II). In the next step, 
sodium salt of 2-(1H-tetrazol-5-yl) acrylonitrile derivative, as a more desirable tautomer in condensed  media121, 
can be formed via the tautomerization of intermediate (II). Subsequently, the catalyst 1 is separated from the 
sodium salt of more stable tautomer using an aqueous solution of HCl to afford product 5.

Comparison of the catalytic activity of Cu@APS‑TDU‑PMO (1) catalyst for the synthesis of 
2‑(1H‑tetrazol‑5‑yl) acrylonitrile derivative 5. To show merits of this mew methodology, Table 4 com-
pares the catalytic activity of Cu@APS-TDU-PMO (1) with some similar catalytic systems reported in the lit-
erature for the synthesis of (E)-3-phenyl-2-(1H-tetrazol-5-yl)acrylonitrile derivative 5a in terms of the active 
catalytic sites or used support. In fact, specific advantages of Cu@APS-TDU-PMO catalyst (1) such as high 
efficiency, low catalyst loading, working under solvent-free conditions, short reaction time, and reusability make 
it superior to the most of similar reported protocols.

Reusability of the Cu@APS‑TDU‑PMO nanocatalyst (1) for the synthesis of 2‑(1H‑tetra‑
zol‑5‑yl) acrylonitrile derivative 5. Performing chemical reactions using recyclable and reusable cata-
lytic systems is a significant issue in terms of green chemistry and environmental protection principles. In this 
study, recyclability of the Cu@APS-TDU-PMO catalyst (1) was also investigated. For this purpose, the catalyst 
was separated from the reaction mixture using filtration, then washed with EtOH, and dried at 60 °C for 2 h. 
The recycled catalyst 1 in each step was used in six consecutive model reaction under optimal conditions for the 
synthesis of (E)-3-phenyl-2-(1H-tetrazol-5-yl)acrylonitrile derivative 5a. As shown in Fig. 9, the catalytic activ-
ity of Cu@APS-TDU-PMO (1) was slightly decreased from 97 to 85%. To demonstrate the stability of the Cu@
APS-TDU-PMO (1) under optimal conditions, the FTIR spectra and low angle XRD pattern of recycled catalyst 
after six consecutive runs have been presented in Fig. 10.

Experimental section
Materials and instrumentation. All chemicals were purchased from Merck or Aldrich and used as 
received, except for benzaldehyde which was distilled before its using. Characterization of the new Cu@APS-
TDU-PMO (1) was performed by FESEM (TESCAN-MIRA3), TEM (Philips EM 208S), FTIR (Shimadzu 
8400S), BET (ASAP™ 2020 Micromeritics), and TGA Bahr Company STA 504). XRD patterns of the mesoporous 
silica nanosphere were obtained using TW 1800 diffractometer with CuKα radiation (λ = 1.54050 Å). 1H NMR 
and spectra (500 MHz, Bruker DRX-500 Avance spectrometer) were recorded in DMSO-d6 at ambient tem-
perature. Spectral data were compared with those obtained from authentic samples or reported in the literature. 
Distilled water was used in all experiments.

General procedure for the preparation of 1,3‑bis(3‑(triethoxysilyl)propyl) urea bridge (6, 
APS‑TDU). First, (3-aminopropyl)triethoxysilane (APS, 6.16 g, 28.0 mmmol) was added dropwise to tol-
uene-2,4-diisocyanate (TDI, 2.46 g, 14.0 mmmol) in a 50 mL round-bottom flask and the mixture was stirred 
under solvent-free condition at 75 °C for 4 h. Then, the mixture was cooled down to room temperature and 
stirred for 12 h to obtain a white gel. Subsequently,  CHCl3 (10 mL) was added to the white gel and a clear solution 
was obtained. Then, hexane (10 mL) was added to the obtained solution and a white solid was precipitated, which 
was separated by filtration and washed with hexane and dried at 70 °C to give 6.5 g of 1,3-bis(3-(triethoxysilyl)
propyl) urea bridge (6, Fig. 11).

General procedure for the preparation of APS‑TDU‑PMO (1′). P123 (4.0 g), as a surfactant, was 
dissolved in HCl (2.0 M, 150 mL) in a 250 mL round-bottom flask and the mixture was heated to 40 °C under 
stirring for 4 h. Then, 1,3-bis(3-(triethoxysilyl)propyl) urea bridge (6, 3.5 g) was dissolved in a solution of tetra-
ethyl orthosilicate (TEOS, 11.09 g, 53.2 mmol) in  CHCl3 (25 mL). The obtained solution was added dropwise 
to the solution of P123 and HCl and stirred for 24 h at 40 °C and then aging for 48 h at 100 °C. Eventually, the 
obtained white solid was washed with EtOH (10 mL) and hexane (10 mL) and dried at 80 °C. The surfactant was 
extracted under Soxhlet extraction conditions using EtOH-aqueous HCl for 72 h. Finally, the white solid was 
dried at 100 °C for 12 h to give 6.0 g of APS-TDU-PMO (1′, Fig. 11).
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Entry Substrate (2) Product Time (min) Yield (%)

Mp (°C)

Observed Reference

1

 

 

50 97 168–169 170–171118

2

 

 

52 93 174–176 175–177119

3

 

 

55 92 189–191 189–191118

4

 

 

60 89 158–160 159–161118

Continued



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18139  | https://doi.org/10.1038/s41598-022-22905-7

www.nature.com/scientificreports/

Entry Substrate (2) Product Time (min) Yield (%)

Mp (°C)

Observed Reference

5

 

 

60 91 167–168 166–168120

6

 

 

56 93 177–179 176–179119

7

 

 

53 92 152–153 153–155118

8

 

 

56 89 164–166 165–167120

Continued
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General procedure for the preparation of Cu@APS‑TDU‑PMO (1). Cu(OAc)2 (0.5 g, 2.8 mmol) 
was dissolved in 5.0 mL distilled water and the obtained solution was added slowly to the suspension of APS-
TDU-PMO (0.5 g) in distilled water (10 mL). The obtained mixture was stirred at room temperature for 24 h. 
Finally, the resulting green solid was collected, washed with distilled water and EtOH, and then dried at 60 °C 
for 5 h to afford Cu@APS-TDU-PMO (1, 0.7 g, Fig. 11).

General procedure for the preparation of 2‑(1H‑tetrazol‑5‑yl) acrylonitrile derivatives 5a–
l. Cu@APS-TDU-PMO (1, 30 mg), aromatic aldehyde (2a–l, 1.0 mmol), malononitrile (3, 1.0 mmol), and 
 NaN3 (4, 1.20 mmol) were mixed, in a 10 mL round-bottom flask equipped with a magnetic stirrer and con-

Entry Substrate (2) Product Time (min) Yield (%)

Mp (°C)

Observed Reference

9

 

 

52 92 143–145 142–143120

10

 

 

40 95 166–168 165–168118

11

 

 

56 90 87–88 85–86120

12

 

 

55 93 252–254 253–254120

Table 3.  Scope of the synthesis of different 2-(1H-tetrazol-5-yl) acrylonitrile derivatives 5a–l catalysed by 
Cu@APS-TDU-PMO nanoreactor (1). Reaction conditions: aldehydes (2, 1 mmol), malononitrile (3, 1 mmol), 
sodium azide (4, 1.2 mmol) and Cu@APS-TDU-PMO (1, 0.03 g) under solvent-free conditions conditions.
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denser, and then heated under solvent-free conditions to 110 °C. The reaction progress was monitored by TLC. 
After completion of the reaction, the reaction mixture was dispersed in HCl (2.0 M, 2 mL) and EtOAc (10 mL) 
was added and stirred for 15 min. Then, the solid catalyst 1 was separated by filtration and filtrate was extracted 
using EtOAc (5 mL). Finally, the solvent of collected organic layers was evaporated under reduced pressure on a 
rotary evaporator and the obtained solids were recrystallized in EtOH/H2O to afford the pure products 5a–l. The 
recovered catalyst was reused after drying at 100 °C for 2 h for subsequent cycles.
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Figure 8.  The proposed mechanism for the synthesis of 2-(1H-tetrazol-5-yl) acrylonitrile derivatives in the 
presence of Cu@APS-TDU-PMO nanoreactor (1).
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The FTIR, 1H NMR and 13C NMR data of selected tetrazole deriva‑
tives. (E)‑3‑(2‑Chlorophenyl)‑2‑(1H‑tetrazole‑5‑yl)acrylonitrile (5b). FTIR (KBr disc): ῡ  (cm−1), 3420 (NH), 
2221 (C≡N), 1564 (C=C); 1H NMR (500 MHz, DMSO-d6): δ (ppm), 7.58–7.59 (2H, d, CH-Ar), 7.61–7.69 (1H, t, 
J = 7.2 Hz, CH-Ar), 8.13–8.14 (1H, d, CH-Ar), 8.54 (1H, s, CH), 13.22 (br s, NH); 13C NMR (125 MHz, DMSO-
d6): δ (ppm), 80.14, 116.80, 129.17, 129.88, 130.73, 131.97, 134.39, 135.19, 147.04, 159.07, 161.37.

(E)‑3‑(4‑Methoxyphenyl)‑2‑(1H‑tetrazole‑5‑yl)acrylonitrile (5g). FTIR (KBr, disc): ῡ  (cm−1), 3146 (NH), 2224 
(C≡N), 1586 (C=C); 1H NMR (500 MHz, DMSO-d6): δ (ppm), 3.82 (3H, s,  OCH3), 7.09–7.11 (1H, d, CH-Ar), 
7.96–7.99 (1H, d, CH-Ar), 8.21 (1H, s, CH), 13.70 (br s, NH); 13C NMR (125 MHz, DMSO-d6): δ (ppm), 56.02, 
93.70, 115.25, 116.55, 125.21, 132.61, 147.97, 155.85, 162.91.

Conclusions
In conclusion, the supramolecular toluene-2,4-diurea-based periodic mesoporous organosilica containing Cu 
nanoparticles on its pore wall (Cu@APS-TDU-PMO) was synthesized for the first time. The prepared Cu@
APS-TDU-PMO (1) was characterized by using FTIR, EDX, TGA, XRD, FESEM, BET, and TEM spectroscopic, 
microscopic or analytical methods and techniques. The Cu@APS-TDU-PMO showed unique characteristics 
such as porous structure with adjustable and uniform pore size distribution, high thermal stability and surface 
area. The new Cu@APS-TDU-PMO nanomaterial was efficiently used as a promising and recyclable catalyst for 
the synthesis of different 2-(1H-tetrazol-5-yl)acrylonitrile derivatives through multicomponent strategy under 
solvent-free conditions. In addition, the catalyst can be easily separated by filtration and reused several times 
without significant loss of its catalytic activity.

Table 4.  Comparison of the catalytic activity of Cu@APS-TDU-PMO (1) with other reported catalytic 
systems.

Entry Catalyst Catalyst loading (mg) Temperature (°C) Time (min) References

1 Nano-NiO 4.5 70 360 122

2 Fe3O4@APTMS-DFX 30 120 60 123

3 Cu-MCM-41 30 140 720 124

4 Mesoporous ZnS 91 120 36 h 125

5 Cu@APS-TDU-PMO (1) 30 110 30 This work
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Figure 9.  Reusability of the heterogeneous Cu@APS-TDU-PMO catalyst (1) for the synthesis of 5a.
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Figure 10.  FTIR spectra and low angle XRD pattern of the reused Cu@APS-TDU-PMO catalyst (1) after six 
consecutive runs.
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Data availability
All data generated or analyzed during this study are included in this published article [and its supplementary 
information files].
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