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Data augmentation with improved 
regularisation and sampling 
for imbalanced blood cell image 
classification
Priyanka Rana, Arcot Sowmya, Erik Meijering & Yang Song*

Due to progression in cell-cycle or duration of storage, classification of morphological changes in 
human blood cells is important for correct and effective clinical decisions. Automated classification 
systems help avoid subjective outcomes and are more efficient. Deep learning and more specifically 
Convolutional Neural Networks have achieved state-of-the-art performance on various biomedical 
image classification problems. However, real-world data often suffers from the data imbalance 
problem, owing to which the trained classifier is biased towards the majority classes and does not 
perform well on the minority classes. This study presents an imbalanced blood cells classification 
method that utilises Wasserstein divergence GAN, mixup and novel nonlinear mixup for data 
augmentation to achieve oversampling of the minority classes. We also present a minority class 
focussed sampling strategy, which allows effective representation of minority class samples produced 
by all three data augmentation techniques and contributes to the classification performance. The 
method was evaluated on two publicly available datasets of immortalised human T-lymphocyte cells 
and Red Blood Cells. Classification performance evaluated using F1-score shows that our proposed 
approach outperforms existing methods on the same datasets.

Blood cells undergo various morphological changes as they progress in their life cycle or undergo the impact 
of environmental factors. Classification of cell-cycle phases in nucleated blood cells (lymphocytes) is vital for 
diagnostic and prognostic research studies of pathological conditions and impacts clinical decision making1. 
Likewise, in non-nucleated blood cells (erythrocytes/Red Blood Cells (RBCs)), morphological variations due to 
storage need to be identified for the prediction of blood quality for life-saving blood transfusions2.

Convolutional Neural Networks (CNNs) have exhibited state-of-the-art performances to identify cellular 
morphologies2–4, subcellular localisations5 and cell-cycle phases1,6. However, the efficacy of CNN based classi-
fiers is logarithmically proportional to the amount of training data7. Since data collection in biomedical stud-
ies is restricted by the nature of the biological phenomena, data imbalance is a common issue in CNN based 
classification7. In data imbalance settings, some classes have far higher numbers of samples compared to other 
classes in the dataset. Consequently, samples from majority classes are frequently observed and those from 
minority classes rarely encountered. The underrepresentation of minority classes causes model training to be 
heavily biased towards the majority classes, which in turn leads to a significant performance drop of the trained 
model on minority classes. Furthermore, minority classes often constitute more than half the number of total 
classes in a biomedical image dataset. Therefore, in order to achieve a model that is applicable in real world set-
tings, it is important for the model to be trained on all the classes equitably.

In existing studies7,8, approaches to handle data imbalance can be categorised into parameter-level and data-
level. Parameter-level methods alter the learning or decision process by assigning higher weights and often 
undergo a precarious process of weight determination. Data-level methods include oversampling through various 
data augmentation techniques to enlarge the minority class image set.

Data augmentation is usually achieved using two types of approaches. The first is the alteration of original 
images using various image processing techniques such as geometric transformation, colour space augmentation 
and random erasing, also known as handcrafted methods9. Handcrafted methods are efficient, computationally 
inexpensive and intuitive to apply. However, these techniques take more time to design, as all features need to 
be mathematically modelled with subjective criteria by humans, which leads to biased decisions and limited 
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improvement. Handcrafted methods could also easily result in overfitting, particularly when some classes contain 
very few samples. Therefore, techniques such as mixup10, Synthetic Minority Oversampling Technique (SMOTE)11 
and their variants12–21 have been proposed. mixup as a data augmentation based model regulariser improves clas-
sification performance by linear interpolation of samples to generate synthetic data. Based on mixup, Summers 
et al.12 presented multiple nonlinear alternatives, including VH-Mixup (“vertical concat”, “horizontal concat”, 
and mixup)12 that combines linear mixup with one of their nonlinear methods and performs better than linear 
mixup on benchmark datasets. CutMix13 cuts and pastes random patches between the training images and has 
shown strong classification and localisation ability. MixMatch14 is based on a semi-supervised approach that 
estimates low-entropy labels for unlabelled samples by mixing up labelled and unlabelled images. Balanced-
MixUp15 performs mixup on two images selected using instance-based and class-based sampling simultaneously. 
Remix16 assigns higher weight to the reference image from the minority class and assigns the minority class label 
to the obtained hybrid image.

The second type of data augmentation uses deep learning based Generative Adversarial Networks (GANs)22 
to generate new images by learning the distribution of training data through adversarial learning. Due to their 
capability of learning data distributions, GANs have been extensively used for image generation, image-to-image 
translation and image super-resolution23. Recently, they have been applied to handle the class imbalance problem 
as they are able to reproduce the distribution of minority classes24–34. On the other hand, training of GANs is 
complicated with a few common failure modes such as vanishing gradient, mode collapse and unstable training35. 
In order to cope with these problems, Wasserstein GAN (WGAN) was proposed36. Advanced versions of WGAN, 
such as Wasserstein GAN with gradient penalty37 (WGAN-GP) and Wasserstein divergence GAN38 (WGAN-div), 
offer more stable optimisation processes and realistic synthetic images. Therefore, recent studies have employed 
them for various applications such as preprocessing of brain MRI images39, image quality improvement of X-ray 
images40 and segmentation of fundus images41. However, application of WGAN in biomedical studies to handle 
data imbalance has not been explored much.

In extreme data imbalance problems, when the number of original samples in the minority classes are a few 
tens, there is a high chance that synthetic images generated using a single data augmentation approach may 
appear very similar to each other. Such images often overfit the model, which exhibits poor generalisation ability 
and does not perform well on unseen data. As demonstrated in our previous study42, a combination of WGAN-
div and mixup generates more diverse samples and helps achieve better classification performance. Extending our 
previous work42, in this study, we propose to include a novel non-linear mixup along with WGAN-div and mixup 
to further increase the diversity of the training dataset for more robust classification (Fig. 1). We consider that 
the standard mixup generates a synthetic image from two reference images by weighted averaging with limited 
regularisation effect. In order to increase the regularisation effect, further variation is generated by applying 3D 
rotation in RGB colour space of the synthetic image obtained from standard mixup. In this way, we combine the 
transformation of pixels in the spatial domain and RGB colour space to achieve better regularisation.

Along with the construction of synthetic data, this study also focusses on designing how these samples are 
utilised during training. In our previous study42, we proposed a minority class focussed sampling approach, 
which supplements the mini-batch of original images with another mini-batch of synthetic images generated for 
the minority classes by WGAN-div and mixup. In this study, the supplementary mini-batch is formed from the 
synthetic images generated by WGAN-div, mixup and nonlinear mixup (Fig. 1). Such minority class focussed 
sampling allows finetuning of the target distribution to include the minimum number of synthetic samples 
required, without affecting the representation of original samples.

The proposed method was evaluated on two publicly available datasets: (1) 32, 266 images of immortalised 
human T-lymphocyte cells (Jurkat cells) (Fig. 2a); and (2) 64, 734 images of RBCs collected from two sites 
(Fig. 2b) (details in Data description). The results demonstrate that our proposed framework achieves state-of-
the-art classification performance for highly imbalanced data distributions on different datasets.

Materials and methods
Data description.  In this study, experiments were conducted on two public datasets of immortalised 
human T-lymphocyte cells (Jurkat cells) of different cell-cycle phases and RBCs of different morphologies. Both 
datasets contain single cell images.

Cell‑cycle image set.  This dataset1 consists of 7 classes, representing different phases of the cell-cycle: Inter-
phase (G1, G2, S) and Mitosis (Prophase, Metaphase, Anaphase, Telophase) (Fig. 2a). There are 32,266 pairs 
of immunofluorescence (IF) and brightfield (BF) microscopic images of Jurkat cells collected by imaging flow 
cytometry, of which 29, 039 are for training and 3, 227 for testing. Each image of size 66× 66 pixels is labelled 
based on two stains: propidium iodine (PI) to quantify each cell’s DNA content and the mitotic protein mono-
clonal-2 (MPM2) antibody to identify cells in mitotic phases. The number of samples in each class is shown in 
(Fig. 2a). The dataset provides separate sets of images for model training and testing, without any overlap of 
images between training and test sets.

Red blood cells image set.  This dataset2 consists of 7 classes: Smooth disc, Crenated disc, Crenated discoid, 
Crenated spheroid, Side, Crenated sphere and Smooth sphere, and each class represents a morphological state 
of RBC (Fig. 2b). Images were collected from two sites (Canadian Blood Services and the University Hospital 
of Geneva)2. There are three channels, in which two channels have brightfield images and the third channel has 
dark-field images. Each image is of size 48× 48 pixels. Our experiments were performed on 64, 734 labelled 
brightfield images of RBCs, of which 40, 916 were for training, 14, 764 for validation and 9, 054 for testing. The 
number of samples in each class is shown in (Fig. 2b).
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Data augmentation.  In our method, we incorporated both handcrafted and deep learning approaches for 
data augmentation and used three techniques, namely mixup, proposed nonlinear mixup and WGAN-div to 
generate synthetic samples of minority classes. The primary reason for using more than one data augmentation 
technique is to increase the diversity of synthetic samples for training.

mixup.  The mixup method blends two images and generates their hybrid. It regularises the neural network to 
build a robust model by introducing synthetic images through weighted linear interpolation of input images:

where I1 and I2 are two image matrices and � is the mixup coefficient for each sample pair whose value is set to 
a random value in the range of [0, 1]. Considering each image as a point in 2D space, interpolation along the 
line joining the two reference images produces a new mixup image on the same line. This method can also be 
interpreted as the interpolation of each pair of corresponding pixels of two reference images to generate new 
pixel points, which altogether form the new mixup image.

In this study, mixup samples were generated from a pair of images randomly chosen from the combined 
set of original and WGAN-div generated images of the same class, therefore the generated sample was labelled 
as the same class. In order to avoid overfitting, the resultant mixup image is required to be dissimilar from the 
reference images while being in their spatial domain. A � of 0 constructs the resultant mixup image the same 
as the reference image 2 and � of 1 constructs the resultant mixup image the same as the reference image 1. In 
order to avoid the resultant mixup sample being too similar to the original reference images, � is set to a random 
value in the range of 0.15 to 0.85 during training.

Nonlinear mixup.  Standard mixup allows the generation of synthetic points on the line joining the two refer-
ence points in the XY-plane with limited regularisation effect. Previously, in order to increase the regularisation 
effect, nonlinear mixup12 was proposed to exchange the pixel values of corresponding pixel indices in two ref-
erence images in different patterns. So far, nonlinear mixup approaches have been implemented in the spatial 

(1)y = �I1 + (1− �)I2

Figure 1.   Framework for oversampling of minority classes. In order to enhance the representation of minority 
classes during training, each mini-batch of original images is supplemented with a batch of only synthetic 
images of minority classes generated from WGAN-div, mixup and the proposed nonlinear mixup.
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domain. Since colour space augmentation9 is another successful technique in data augmentation, in this study 
we utilised the RGB colour space in combination with mixup to increase the regularisation effect.

Consider that the RGB colour space can be geometrically represented as a 3D cube, with red, green and blue 
components representing each dimension (Fig. 3). Three elements of each pixel of an image (I) of size N× N ×3 
represents each colour component in the 3D colour space,

(2)Ip =
[

I
p
R , I

p
G , I

p
B

]

Figure 2.   Class distribution of the two datasets used in this study, with the number below each image 
indicating the number of samples in that class.
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where IpR , IpG and IpB denote the pixel intensities along the red, green and blue colour components (channels) of 
I at pixel p.

Since rotation is a widely used transformation, we propose to apply 3D rotation to each pixel of the synthetic 
image obtained from the standard mixup of two reference images. Furthermore, 3D rotation at an angle θ about 
one of the colour axes allows a controlled tweak in the coordinates and creates new values for the other two colour 
components (Fig. 4). Subsequently all the rotated pixel values are assembled to generate a new augmented image. 
In this way, we combine the transformation of pixels in the spatial domain and RGB colour space to achieve bet-
ter regularisation effect. Using the proposed nonlinear mixup, the synthetic image is consistent with the original 
spatial distribution of pixels in the mixup image, but with different colour appearance.

The proposed nonlinear mixup generates synthetic samples in two steps (Fig. 5): 

1.	 For two reference images, each with three channels, the standard mixup (Eq. 1) creates a new synthetic image 
( Imix ) in XY-plane by applying linear interpolation between corresponding channel images.

2.	 Imix from Step 1 is further transformed by applying 3D rotation in RGB colour space. Specifically, each pixel 
undergoes 3D rotation about one of the colour axes at angle θ and gets transformed to a new pixel value. For 
instance, as shown in (Fig. 4), a pixel in 3D colour space represented as [ IpR , IpG , IpB ] is rotated about the blue 
axis B at angle θ using rotation matrix RotB . A new pixel value is created on a circle with centre [0, 0, IpB ] and 
radius 

√

I2R + I2G  as: 

 The rotation matrices for 3D rotation about R, G and B axes are RotR , RotG , RotB respectively: 

(3)
[

I
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]

=
[
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p
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]

· RotB(θ)

Figure 3.   3D cube geometrically representing the RGB colour space.

Figure 4.   Pixel undergoing 3D rotation.
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Following (Eq. 3) for all pixels, we generate transformed pixel values, which are then assembled to produce the 
nonlinear mixup image (Fig. 5). We note that for gray scale images, the pixel value in all three channels is the 
same ( IR = IG = IB ). In this study, θ is randomly chosen in the range of 0◦ to 360◦ and the colour axis to apply 3D 
rotation is chosen randomly whenever nonlinear mixup is performed.

The combination of transformations in the spatial domain and colour space creates another augmented syn-
thetic image which is still in the spatial domain of the original images, but yields a different colour appearance. 
Subsequently, the new image generated using nonlinear mixup contributes to the diversity of the training set, 
improves the regularisation effect and yields improved performance.

WGAN‑div.  Other than handcrafted approaches, data augmentation can also be performed using a deep learn-
ing based GAN model, which learns the distribution of a dataset and generates synthetic samples from random 
noise. A GAN models complex data distributions through joint optimisation of two networks: the Generator 
(G) and Discriminator (D). The G network generates synthetic/fake data and the D network decides whether the 
generated samples are real or fake. Both networks are trained alternatively, with the primary goal of maximis-
ing the probability of classifying real images as real and generated samples as synthetic/fake. The GAN is well-
trained when the generator learns to generate data samples that are as diverse as the original data distribution 
and can fool the discriminator into accepting them as real.

Training of GAN is coupled with a few common failure modes such as vanishing gradient (discriminator 
reaches perfect optimisation that does not provide any valuable information for the generator to get better), 
mode collapse (generator produces limited similar samples) and unstable training35. The loss function utilised 
for GAN training is one of the primary reasons for the training related issues in GAN. As an improved GAN, 
WGAN36 employs a new loss function based on the Wasserstein distance (W-Dis) instead of the Jensen-Shanon 
Divergence (the standard objective function of GAN) to compute the loss. W-Dis estimates how easy it is to dis-
tinguish between synthetic and real images, giving rise to valuable gradients. The objective function of WGAN is:

where x̃ = G(z) is a generated sample with ( z ∼ Pz ) as random vector. Pr represents the distribution of real data, 
Pg is the distribution of fake data generated by G and Lipi is the Lipschitz constraint.

WGAN offers more stabilised training than GAN, however the computation of W-Dis requires a 1-Lipschitz 
constraint, which is a strict constraint. WGAN explicitly clips the weight of the critic D within a compact space 
to maintain the Lipschitz constraint, which often creates convergence issues. Therefore, WGAN-GP was pro-
posed to improve WGAN that uses gradient penalty to enforce the Lipschitz constraint. As an improved WGAN, 
Wu et al.38 proposed Wasserstein divergence GANs (WGAN-div) which uses Wasserstein-divergence (W-div) 
to compute the objective function instead of W-Dis. WGAN-div approximates W-div through optimisation, 
without the 1-Lipschitz constraint and offers more stabilised training. The objective function of WGAN-div is:

(4)RotR(θ) =

[

1 0 0

0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

]

, RotG(θ) =

[

cos(θ) 0 sin(θ)
0 1 0)

−sin(θ) 0 cos(θ)

]

, RotB(θ) =

[

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

]

(5)min
G

max
D∈Lipi

Ex∼Pr [D(x)] − Ex̃∼Pg [(D(x̃))]

Figure 5.   Nonlinear mixup. Step 1: Synthetic image Imix is generated by applying standard mixup on two 
reference images from the training set (original and WGAN-div generated images). Step 2: Imix is further 
transformed to a nonlinear mixup image by applying 3D rotation to each pixel about one of the axes at angle θ in 
RGB colour space.
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where p and k are hyperparameters that control the gradient, Pu is a Radon probability measure, z is random 
noise and x̂ is sampled as a linear combination of real and fake data points. Additionally, WGAN replaces GAN’s 
discriminator model with a critic that outputs a scalar score which reflects the quality of the generated sample. 
The lower the critic loss, the higher the quality of the generated image.

In order to handle data imbalance, this study utilised the WGAN-div model to generate synthetic samples 
for minority classes. A WGAN-div model was trained on the original training set images of each minority class 
in both datasets. In the cell-cycle phases dataset, the minority classes are Anaphase, Prophase, Metaphase and 
Telophase, while in the RBCs dataset, the minority classes are Crenated disc, Crenated discoid, Crenated sphe-
roid, Crenated sphere and Smooth sphere (see Supplementary Table 1 for imbalance ratio per class).

For the cell-cycle phases dataset, images from each minority class were augmented using affine transforma-
tions, perspective transformations, contrast changes and Gaussian noise with diverse parameters to increment 
the image number to 800 – 1000 for training of the WGAN-div model. Since minority class samples in RBC 
morphologies dataset are in the thousands, no augmentation was performed. WGAN-div training was guided 
by the critic loss value. As the absolute critic loss value steadily reaches a state from where it does not decrease 
further or starts increasing, it was considered a convergence point and the corresponding model checkpoint was 
used to generate the synthetic samples. Consequently, 3, 000 samples for Telophase, three sets of 6, 500 samples 
each for Anaphase, Prophase and Metaphase and 4, 000 samples for each minority class in RBC morphologies 
dataset were used as the augmented images.

Minority class focussed sampling.  During training with an imbalanced dataset, a standard sampling 
approach would compile a batch with very few images from minority classes, therefore the model training would 
be heavily biased towards the majority classes. Even with data augmentation, the participation of minority classes 
during training remains limited. Therefore, in order to ensure balanced representation of samples from all three 
data augmentation techniques and classes in the dataset, we utilise our previously proposed approach, namely 
minority class focussed sampling42. Under this approach, the mini-batch of original images is supplemented by 
another mini-batch of only minority class synthetic samples generated by utilised data augmentation techniques. 
In the current study, supplementary mini-batches were composed of synthetic samples generated by WGAN-div, 
mixup and the proposed nonlinear mixup (Fig. 1). The number of synthetic samples included can be finetuned 
using hyperparameter n. Since the synthetic images are not merged with the original samples and are included 
as a supplementary batch, the representation of original samples during training is not affected.

Estimation of sample distribution ratio (proportion of majority to minority samples) during oversampling 
is a crucial step for effective and efficient training of the classification model. As a standard practice of perform-
ing oversampling, the sample distribution ratio is preset, which decides the number of samples to be added to 
the original set for achieving the desired ratio43. However, in our experiments we observed that the number of 
synthetic samples added does not necessarily need to satisfy a set ratio. In order to save computational cost, it 
is important to identify the least effective number of samples for the best possible performance. Therefore, we 
designed a sampling approach which allows finetuning of the number of synthetic samples added in each batch. 
In this way, it is not necessary to preset the sample distribution ratio and the number of samples can be fine-
tuned from 1 to n for each class during an iteration, where n = 1 adds four images (2 WGAN-div + 1 mixup + 1 
nonlinear mixup) of the minority class to the batch. Accordingly, the batch size of original images was adjusted 
to maintain the overall (original samples + synthetic samples) batch size of 2m , where m is usually > 4 . The 
proposed approach reduces computational cost and allows the inclusion of the minimum number of synthetic 
samples, without affecting the representation of the original samples.

Experimental setup and implementation.  The proposed method to handle data imbalance was evalu-
ated on two datasets: cell-cycle phases and RBC morphologies dataset. The original images from the training set 
were used to train four WGAN-div models in the cell-cycle phases dataset and five WGAN-div models in the 
RBC morphologies dataset, one for each minority class. WGAN-div generated images along with the original 
images were further used to construct mixup and nonlinear mixup samples, which were then used for training 
along with the original images using the minority class focussed sampling approach.

We explored alternatives for WGAN-div such as WGAN-GP, WGAN and GAN. All the models utilised 
default model architectures and optimiser for model updates as proposed in their respective original studies. 
Accordingly, WGAN-div, WGAN-GP and GAN used the Adam44 optimiser, while WGAN used the RMSprop45 
optimiser. Batch size was set to 16. Hyperparameter ncritic controls the number of times critic is updated for each 
update to the generator model, and it was set to 4 for all the minority classes of both datasets except Prophase for 
which ncritic was set to 10. Likewise, the learning rate for all the minority classes of both datasets was set to 0.0002 
except Prophase for which the learning rate was 0.00002 (see Discussion section for a justification of parameter 
choices). Hyperparameters p and k for WGAN-div were set to their default values of 6 and 2 respectively38. The 
clipping threshold for WGAN-GP was set to 0.01. The learning scheduler and other hyper-parameter initial set-
tings (batch size, decay, learning rate) were the same for all the experiments. We note that the Frechet Inception 
Distance score46 (FID scores) vs epoch was plotted for GAN models (see Supplementary Fig. S3, S4), and as the 
FID score converges to a constant value, the corresponding checkpoint was used to generate the GAN images.

For the classification of cell-cycle phases dataset, the available training set was divided as follows: 80% for 
training, and 20% for internal validation, during 5-fold stratified cross-validation. Subsequently, five models were 
obtained after training on each set of training and validation images. The best performing model was selected and 
used to evaluate the available test set images. The classification model was trained by finetuning the ImageNet 

(6)min
G

max
D

E
G(z)∼Pg

[(D(G(z)))] − E
x∼Pr

[D(x)] − k E
x̂∼Pu

[�▽x̂D(x̂)�
p]
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pretrained ResNet-3447 architecture with cross-entropy loss. The mini-batch size was 32, where the number of 
original samples was 8 and n was set to 2 for Anaphase and Metaphase, and 1 for Prophase and Telophase. The 
weight parameters were updated using the momentum Stochastic gradient descent method with a momentum 
parameter of 0.9 and weight decay of 0.0001 over 200 epochs. The initial learning rate was 0.03, StepLR was used 
to schedule the learning rate with gamma and the step size was set to 0.1 and 40 respectively.

For RBC morphologies dataset, a validation image set has been provided along with the training and test sets, 
therefore cross-validation was not performed. The classification model was trained by finetuning the ImageNet 
pretrained ResNet-5047 architecture with cross-entropy loss. The mini-batch size per iteration was 32, where 
the number of original samples was 12 and n was set to 1 for all the minority classes. The weight parameters 
were updated using the momentum Stochastic gradient descent method with a momentum parameter of 0.9 
and weight decay of 0.0001 over 70 epochs. The initial learning rate was 0.003, StepLR was used to schedule the 
learning rate with gamma and the step size was set to 0.1 and 30 respectively.

Images were resized to 64× 64 pixels for classification using bilinear interpolation for RBC morphologies 
dataset and cropping for cell-cycle phases dataset. ResNet architecture for classification is selected as it is a 
common model used for recent cell studies2,6,42. In addition, different variants of ResNet such as ResNet-18, 
ResNet-34, ResNet-50 were tried, and the best performing model is selected for each dataset. Accordingly, 
ResNet-34 was used for the classification of cell-cycle phases and ResNet-50 was used for the classification of 
RBC morphologies, as ResNet-34 underwent overfitting with RBC images. ReLU was utilised as the activation 
function. Random combinations of image transformations such as horizontal/vertical/left/right flips, rotation 
at 90◦ , 180◦ , 270◦ and brightness of images in the range of 50–150% of the original pixel value were also applied. 
We used macro F1-score for performance evaluation of the proposed method (Tables 1 and 2), which is the 
arithmetic mean of the F1-scores of all the classes and captures per-class accuracy. Macro F1-score is a more 
suitable metric than accuracy in imbalanced data settings, as the latter indicates the classification performance 
of the majority classes while macro F1-score reflects the performance of all the classes.

Results and discussion
We first compare the classification results of the proposed method, base model (with experimental settings as 
in Implementation section without oversampling) and other studies conducted on the same dataset, as shown 
in Table 1. The cell-cycle phases dataset presents a case of extreme data imbalance, where minority classes are 
in a few tens. In order to handle class imbalance in cell-cycle phases dataset, Eulenberg et al.1 used repetition of 
minority samples, Jin et al.6 included WGAN-GP generated images and our previous work42 used WGAN-div 
and mixup images with minority focussed sampling approach. The latter approach supplements the mini-batch 
of original images with another batch of only synthetic samples of minority classes. Furthermore, mixup samples 
were generated from only WGAN-div images. However, in the current study we extend our method42 by includ-
ing nonlinear mixup images along with WGAN-div and mixup images in the supplementary batch. Additionally, 
mixup and nonlinear mixup images are generated from both original and WGAN-div images.

The proposed nonlinear mixup approach applies 3D rotation to each pixel of the synthetic image obtained 
after applying standard mixup on two reference images. In this way, transformations in the spatial domain and 
colour space are combined to increase the regularisation capability of mixup. It is observed that combining trans-
formations in two different domains (spatial and colour) is more advantageous than to further expand the space 
in the spatial domain to generate synthetic images. We utilised bilinear interpolation, which applies standard 
mixup on the two synthetic images obtained from the standard mixup of the two sets of original images (Fig. 6). 
The increase in the number of input images expands the space to generate the synthetic image, consequently 
influencing the regularisation effect. Notably, bilinear interpolation impacted the regularisation effect negatively 
as the interpolations are applied twice on the original images, which made the final synthetic image drift away 
from the original pixel distribution. However, this method can help when out-of-distribution sampling is desired.

Data imbalance in the RBC morphologies dataset is medium, however our method demonstrates the perfor-
mance gain over the existing study2 and the base model (Table 1). Doan et al.2 applied under-sampling on training 
and validation datasets, and random combinations of horizontal or vertical flips, horizontal or vertical shifts and 
rotations to balance the datasets. As the results show, our proposed method achieves superior performance on 

Table 1.   Comparison with previous studies.

Study Accuracy Macro F1 % increase

Cell-cycle phases dataset

Eulenberg et al.1 0.790 0.632 39.8

Jin et al.6 0.820 0.760 16.3

Base model 0.821 0.545 62.2

Rana et al.42 0.850 0.860 2.8

Our method 0.856 0.884

RBC dataset

Doan et al.2 0.765 0.767 4.3

Base model 0.759 0.760 5.3

Our method 0.820 0.800
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both datasets compared to the respective state-of-the-art studies. The results also validate the use of more than 
one approach for data augmentation to create diverse samples for better classification performance. Multiple 
augmentation approaches help in enhancing the generalisation ability of the trained model and make it perform 
well on unseen data.

Improvement in individual F1-score of each minority class is demonstrated in Fig. 7. Jin et al.6 performed 
test-time oversampling and Doan et al.2 applied test-time under-sampling which could artificially boost the test 
results, while our results are only from the test images provided in the dataset. Therefore, Fig. 7 compares the 
per-class F1-scores with other existing studies and respective base models.

We conducted ablation studies of each component (WGAN-div, mixup, nonlinear mixup and minority class 
focussed sampling) of the proposed approach (Table 2). The compared methods are as follows: (1) WGAN-GP + 
mixup + nonlinear mixup, which is oversampling with WGAN-GP generated images and corresponding mixup 
and nonlinear mixup samples, using minority class focussed sampling; (2) WGAN + mixup + nonlinear mixup, 
which is oversampling with WGAN generated images and corresponding mixup and nonlinear mixup samples, 
using minority class focussed sampling; (3) GAN + mixup + nonlinear mixup, which is oversampling with GAN 
generated images and corresponding mixup and nonlinear mixup samples, using minority class focussed sam-
pling; (4) WGAN-div + mixup + nonlinear mixup12, which is oversampling with WGAN-div generated images 
and corresponding mixup and nonlinear mixup samples using minority class focussed sampling, where nonlinear 
mixup samples were generated following the method presented by Summers et al.12; (5) WGAN-div + mixup 
(Rana et al.42), which is oversampling with WGAN-div generated images and corresponding mixup samples 
using minority class focussed sampling; (6) WGAN-div + nonlinear mixup, which is oversampling with WGAN-
div generated images and corresponding nonlinear mixup samples using minority class focussed sampling; (7) 
standard sampling, creating mini-batches using standard random sampling strategy which randomly selects the 
images from the original and synthetic samples with no supplementary batch as proposed in the current study.

The results from the ablation study (Table 2) demonstrate the performance gain with the proposed framework 
that includes WGAN-div, mixup and nonlinear mixup. On comparison with GAN, WGAN and WGAN-GP, the 
results indicate higher quality of WGAN-div generated samples and exhibit its utility as a data augmentation 
method for imbalanced classification. To further demonstrate the statistical significance of the results, we per-
formed Wilcoxon rank sum test at significance level of 1%. The Wilcoxon rank sum test compares each ablation 
study experiment with the proposed method based on the computed probabilities of the correct label of each 
test set sample. As shown in Table 2, obtained p-values are smaller than 0.01, which implies that the proposed 
method has statistically more significant performance than the compared methods. In addition, the test infer-
ence time of our method applied on the cell-cycle and RBC morphologies dataset are 22 millisecond (ms) per 
image and 12 ms respectively.

In addition, it is observed that the WGAN-div model demonstrates consistent decrease in the absolute value 
of critic loss, which converges to comparatively more definite and lower critic loss than other WGAN models (see 
Supplementary Fig. S1, S2). The curves for WGAN and WGAN-GP show sudden drop to the converged critic 
loss value, which indicates high probability of overfitting. It is also observed that the Prophase class required 

Figure 6.   mixup using bilinear interpolation.
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Figure 7.   Comparing per-class F1 scores with base model and existing studies on same dataset.

Table 2.   Ablation study of each component (WGAN-div, mixup, nonlinear mixup and minority class focussed 
sampling). Performance comparison between different GAN models, sampling approaches and nonlinear 
mixup. p-values smaller than 0.01 implies the higher statistical significance of the proposed method than the 
compared methods.

Cell-Cycle Phases Dataset RBC Morphologies Dataset

Data augmentation method Accuracy Macro F1 p-value Accuracy Macro F1 p-value

WGAN-div + mixup + nonlinear mixup 0.856 0.884 0.820 0.800

WGAN-GP + mixup + nonlinear mixup 0.852 0.860 1.5e-04 0.814 0.794 2.8e-7

WGAN + mixup + nonlinear mixup 0.842 0.810 7.2e-04 0.778 0.789 1.4e-9

GAN + mixup + nonlinear mixup 0.840 0.802 1.2e-05 0.777 0.775 3.2e-9

WGAN-div + mixup + nonlinear mixup12 0.845 0.800 1.8e-08 0.780 0.771 1.6e-10

WGAN-div + mixup (Rana et al.42) 0.854 0.856 7.9e-05 0.797 0.788 1.4e-8

WGAN-div + nonlinear mixup 0.853 0.858 6.5e-05 0.792 0.784 2.2e-8

Standard Sampling 0.840 0.840 7.1e-04 0.802 0.791 4.7e-7
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higher value of ncritic and lower learning rate than the other classes. It is due to a sub-phase in cell-cycle, namely 
Prometaphase which is not included as a separate class in the dataset. This sub-phase follows Prophase and pre-
cedes Metaphase, and has coincided cellular events with the early Metaphase. Inclusion of Prometaphase images 
in Prophase has led to higher intra-class difference in the Prophase class and thus requires lower learning rate 
and more rounds of training to converge as compared to other classes.

Anaphase and Telophase being consecutive phases in cell-cycle have visually similar appearance (Fig. 2a). 
The lower accuracy of Anaphase in previous studies is due to the cells being wrongly classified as Telophase. The 
obtained results demonstrate the classification efficacy of oversampling during training with diverse samples 
when there is low inter-class difference. Likewise, for the RBC morphologies dataset, inaccurate predictions due 
to similar features in neighbouring classes are reduced with the proposed method.

It is also observed that mixup and nonlinear mixup achieved similar macro F1-scores for both datasets when 
used separately, however classification performance is improved if both algorithms are applied together during 
training. Experiments also show better performance of previously42 proposed minority focussed sampling than 
the standard sampling approach. The proposed sampler finetunes the target distribution and allows the inclusion 
of the minimum number of synthetic samples required, without affecting the representation of original samples 
during training. Therefore, it is observed that despite very few samples in Telophase, it still achieved an F1 score 
of 1 with n set to 1. The proposed sampler helps avoid overfitting, reduces the computational cost and does not 
require a preset sample distribution ratio.

Conclusion
In this paper, we propose a novel nonlinear mixup for data augmentation in image classification problems, and 
extend our previous work42 to demonstrate its superiority in classifying microscopy images of blood cells from 
two datasets. The non-linear mixup technique combines transformations in the spatial domain and colour space to 
further improve the regularisation capability of mixup. Nonlinear mixup samples are used for training along with 
the mixup and WGAN-div generated images through a minority focussed sampling approach. Our experimental 
results demonstrate the advantages of using three different data augmentation approaches for oversampling of 
minority classes to increase the diversity of the training dataset for more robust classification. The proposed 
classification pipeline outperforms state-of-the art approaches on publicly available cell-cycle phases dataset 
and red blood cells morphologies dataset.

Data availability
Dataset for annotated images of different phases of cell-cycle is publicly available at https://​bbbc.​broad​insti​tute.​
org/​BBBC0​48. Dataset for annotated images of different phenotypes of red blood cells is publicly available at 
https://​figsh​are.​com/​artic​les/​URL7_​Annot​ated_​Data/​12432​506.
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