
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18813  | https://doi.org/10.1038/s41598-022-22879-6

www.nature.com/scientificreports

Construction of N‑7 
methylguanine‑related mRNA 
prognostic model in uterine 
corpus endometrial carcinoma 
based on multi‑omics data 
and immune‑related analysis
Junde Zhao1,3, Jiani Zou1,3, Wenjian Jiao1, Lidong Lin1, Jiuling Wang2,4* & Zhiheng Lin1,4*

N‑7 methylguanine (m7G) is one of the most common RNA base modifications in post‑transcriptional 
regulation, which participates in multiple processes such as transcription, mRNA splicing and 
translation during the mRNA life cycle. However, its expression and prognostic value in uterine 
corpus endometrial carcinoma (UCEC) have not been systematically studied. In this paper, the data 
such as gene expression profiles, clinical data of UCEC patients, somatic mutations and copy number 
variants (CNVs) are obtained from the cancer genome atlas (TCGA) and UCSC Xena. By analyzing 
the expression differences of m7G‑related mRNA in UCEC and plotting the correlation network 
maps, a risk score model composed of four m7G‑related mRNAs (NSUN2, NUDT3, LARP1 and 
NCBP3) is constructed using least absolute shrinkage and selection operator (LASSO), univariate and 
multivariate Cox regression in order to identify prognosis and immune response. The correlation of 
clinical prognosis is analyzed between the m7G‑related mRNA and UCEC via Kaplan–Meier method, 
receiver operating characteristic (ROC) curve, principal component analysis (PCA), t‑SNE, decision 
curve analysis (DCA) curve and nomogram etc. It is concluded that the high risk is significantly 
correlated with (P < 0.001) the poorer overall survival (OS) in patients with UCEC. It is one of the 
independent risk factors affecting the OS. Differentially expressed genes are identified by R software 
in the high and low risk groups. The functional analysis and pathway enrichment analysis have been 
performed. Single sample gene set enrichment analysis (ssGSEA), immune checkpoints, m6A‑related 
genes, tumor mutation burden (TMB), stem cell correlation, tumor immune dysfunction and rejection 
(TIDE) scores and drug sensitivity are also used to study the risk model. In addition, we have obtained 
3 genotypes based on consensus clustering, which are significantly related to (P < 0.001) the OS and 
progression‑free survival (PFS). The deconvolution algorithm (CIBERSORT) is applied to calculate the 
proportion of 22 tumor infiltrating immune cells (TIC) in UCEC patients and the estimation algorithm 
(ESTIMATE) is applied to work out the number of immune and matrix components. In summary, 
m7G‑related mRNA may become a potential biomarker for UCEC prognosis, which may promote UCEC 
occurrence and development by regulating cell cycles and immune cell infiltration. It is expected to 
become a potential therapeutic target of UECE.

UCEC is one of the three major malignant tumors in gynecology. Its incidence ranks first among malignant 
tumors of the female reproductive tract in developed countries such as Europe and the United  States1. The lat-
est data show that the incidence and associated mortality of UCEC are on the rise worldwide with the delay 
in women’s reproductive age as well as the use of hormone drugs and the rejuvenation of comorbidities such 
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as obesity, hypertension and  hyperglycemia2–4. Although endometrial cancer is usually diagnosed early in the 
course of illness and generally has a good prognosis, a small number of patients present or develop into metastatic 
or recurrent UCEC, with a 5-year survival rate of only 10–20%5,6. The principal mode of initial treatment of 
UCEC is surgery. Corresponding adjunctive therapies are identified based on the recurrent risk and prognosis. 
Chemotherapy, targeted therapy, endocrine therapy and/or salvage radiotherapy are often used in the treatment 
of relapsed or advanced  UCEC7. The overall prognosis is poor in view of recurrent or advanced UCEC. It has poor 
response to classical treatment. Therefore, it is urgent to explore new treatment approaches to improve prognosis.

m7G is one of the most common RNA base modifications in post-transcriptional  regulation8. It is widely 
distributed in  tRNA9,  rRNA10 and the 5ʹ cap region of mRNA in  eukaryotes11, playing a vital role in gene expres-
sion, processing, metabolism, protein synthesis and stable  transcription12. The m7G modification is catalyzed 
by the Trm8/Trm82 complex in yeast and the METTL1/WDR4 complex in human  beings13. This modification 
is closely related to tRNA stability and human  diseases14. Recent studies have found that the m7G is also present 
inside the mRNA of higher eukaryotes. It may regulate almost every process of the mRNA life cycle, including 
transcription, mRNA splicing and translation, etc.15–17, suggesting that the presence of m7G modification sites 
in mRNAs may reveal new biological functions in future studies. At present, the research on identification of 
RNA modification sites is rapidly developing. However, the specific role and prognostic value of m7G-related 
mRNA remain unclear in the progression and metastasis of UCEC.

In this study, we aim to identify the m7G-related mRNAs with differential expression in UCEC, thereby 
constructing a new predictive prognostic risk score model and evaluating the model’s predictive performance 
in low-risk and high-risk patients. Secondly, we have established three clustering subtypes and systematically 
analyzed their relationships with prognosis, TME and immune infiltration. Overall, this study will provide new 
insights into the role of m7G-related mRNA in predicting UEC prognosis and immunotherapy efficacy.

Materials and methods
Data download and processing. The RNA-sequencing (RNA-seq) gene expression profiles and clinical 
information of 587 samples were downloaded from the TCGA database (https:// portal. gdc. cancer. gov/), includ-
ing mRNA expression data from 552 UEC tissues and 35 normal endometrial tissues. Then, 539 patients with 
sufficient gene expression profiles and OS data were selected for follow-up analysis based on patient clinical data 
and their corresponding RNA-seq data. The mutation data such as 529 cases of somatic mutations and CNV 
data were downloaded from UCSC Xena (https:// xena. ucsc. edu/). The TCGA samples, as validation datasets 
were randomly divided into two equal numbers of groups and they were named Test1 and Test2, respectively. 
In addition, GSE119041 was downloaded from the Gene Expression Omnibus (GEO) database as an external 
cohort for validation. Gene expression data were annotated (http:// asia. ensem bl. org/ homo_ sapie ns/ info/ index). 
The mean expression level of duplicated genes was calculated. All gene expressions were converted to log2 (gene 
expression value + 1) for follow-up analysis. A total of 29 RNA sequence datasets containing m7G modification 
sites were found in previous literature. The m7G gene expression level was obtained using the “LIMMA” package 
of R software and its expression profile was further normalized. The difference in m7G expression was compared 
using the Wilcoxon test between the normal sample group and tumor sample group.

Differentially expressed gene screening, related functional annotation and pathway enrich‑
ment analysis. The TCGA-UCEC samples were divided based on the quartiles of m7G expression. The 
lowest 25% of quartiles were defined as the low m7G expression group and the highest 25% of quartiles were 
defined as the high m7G expression group under difference analysis. Differentially expressed m7G genes (DEGs) 
were screened out according to criteria of |log2 FC|> 0.1 and false discovery rate (FDR) < 0.05 in the UCEC low 
and high expression groups. Heat maps of DEGs were drawn by “pheatmap” R package. DEGs-related network 
diagrams were drawn based on the DEGs expression and the application of “igraph” and “reshape2” package. 
Entrez ID was converted through “org.Hs.eg.db” R package. Gene ontology (GO) enrichment and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) signaling pathway analysis were performed on all DEGs using the 
“ClusterProfiler” R package.

Analysis of gene mutations and copy number variants. Gene mutation maps of UCEC patients were 
drawn using “maftools” R package. A CNV matrix was established for 28 m7G-related CNV genes in UCEC. The 
CNV matrix is a binary matrix. GAIN represents the occurrence of the CNV for a particular gene in a particu-
lar sample. Other matrix elements include the LOSS. Visualizing graphs of CNV frequency were plotted using 
“barplot” and “RCircos” packages.

Screening m7G‑related prognostic mRNAs and constructing a prognostic risk model. The 
expression of 539 TCGA dataset samples was combined with clinical data to ensure that a prognostic model 
could predict effectively. Firstly, a univariate Cox proportional risk regression analysis of m7G-related DEGs 
was performed to obtain genes that were significantly related to prognosis (P < 0.05). Then, with survival status 
as the dependent variable and the selected gene expression value as the response variable, the number of genes 
was dimensionally reduced through Lasso COX regression analysis of 1000 times via glmnet software package, 
thus reducing the errors of the model to obtain a generalized linear model. After that, the multivariate Cox 
proportional risk regression analysis was performed to yield risk genes and construct a UCEC prognostic risk 
model. A disease risk score was used as a predictor of prognostic status in the model. The disease risk score was 
determined by the parameter X of the multivariate Cox proportional risk regression analysis and the expression 
Y of each gene in the sample. The risk score calculation formula is shown as follows:

https://portal.gdc.cancer.gov/
https://xena.ucsc.edu/
http://asia.ensembl.org/homo_sapiens/info/index
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Construction and efficacy evaluation of prognostic risk score model. The sample data were 
divided into high-risk and low-risk groups according to the median of risk indexes. Combined with survival 
information and gene expression, the survival curve was plotted to yield the survival conditions of patients with 
high and low risks and high and low gene expressions, respectively, as so to evaluate whether the predictive 
effect of the model was significant (P < 0.05). The statistical method used in this process was a log-rank test. The 
receiver operating characteristic curve (ROC curve) was plotted using “survival ROC” package of R software in 
order to evaluate the predictive power of regression models over 1, 3 and 5-year survival. When the AUC > 0.5 
and it is closer to 1, the better the prognosis will be. Based on the gene expression in the prognostic model, the 
principal component analysis (PCA) and t-SNE analysis were performed using “prcomp” and “Rtsne” R pack-
ages, respectively. The results were visualized using “ggplot” R package. The univariate and multivariate Cox 
regression analysis was performed to evaluate the independent prognostic value of risk scores in this model. 
DCA curve analysis was carried out using the “stdca” software package of R language to evaluate the practical 
application of the model in the clinical practice. A nomogram in predicting the 1, 3 and 5-year survival rates of 
UCEC patients was produced by the “survival” package and the “rms” package of R software. The fit of the model 
was assessed by calibration diagram. The sensitivity of the model was evaluated by risk scores and ROC curves. 
The differentiation of the model was evaluated using risk scores and ROC curves.

Functional enrichment analysis and immune‑related analysis of differential genes in the two 
risk subgroups. Firstly, the “limma” R package was used to analyze the differential expression of genes 
between the high-risk and low-risk groups. Genes with |log2 FC|> 0.1 and FDR < 0.05 were differentially 
expressed between the high-risk and low-risk groups. The next step was to do the GO analysis. The infiltration 
scores of 16 immune cells and 13 immune functions were calculated for ssGSEA using the “GSVA” R package in 
UCEC. The activities of immune checkpoints and m6A RNA methylation regulatory factors were analyzed in the 
high-risk and low-risk groups. P < 0.05 was considered significant in all statistical analysis.

GSEA analysis of m7G genes between high and low expression groups. In order to elucidate the 
significant differences of m7G genes in function and pathway between the high and low expression groups, the 
gene set enrichment analysis (GSEA) was performed based on the UEC expression matrix in TCGA using the 
“clusterProfiler” package of R  software18–20. Only FDR was q < 0.05, the gene set was considered to be signifi-
cantly enriched.

Consensus clustering analysis of m7G‑related mRNA responses based on UCEC. In order fur-
ther investigate the role of m7G-related mRNA in UCEC, we used the “ConensusClusterPlus” package to divide 
those UCEC patients of the TCGA cohort into groups and obtain the optimal number of clusters based on the 
cumulative distribution function (CDF). The differences in genotyping were compared based on the expression 
level of prognostic risk genes. The Kaplan–Meier survival curve was used to analyze the differences between the 
OS and PFS among different groups. Based on the sample expression level of UCEC patients in the TCG data-
base, the matrix scores and immunity scores were calculated using the “ESTIMATE” package among genotypes. 
In order to quantify and analyze the immune cell infiltration levels of each genotyping sample, the “CIBER-
SORT” computational R package was used to plot heat maps and pairwise difference plots.

Calculation of tumor mutation burden and correlation analysis. The risk scores were calculated 
based on the risk score formula and the expression of genes in each genotyping sample. According to the median 
of risk indexes, the genotyping data were divided into high-risk and low-risk groups. The “maftools” R package 
was used to draw the gene mutation maps of patients in both risk subgroups. The difference in TMB was com-
pared between the high-risk and low-risk groups. The correlation was compared between the TMB levels and 
risk scores. The new grouping is based on the Median value of TMB for the entire sample. Kaplan–Meier method 
was used to analyze the relationship of OS in the samples between the high and low TMB groups and the high-
risk and low-risk groups within the TCGA cohort.

Correlation analysis between risk scores and stem cells, TIDE scores and drug sensitivity. The 
“ggExtra” and “ggpubr” R packages were applied to calculate the stem cell correlation between the two risk 
subgroups and the “ggplot” package was applied to visualize the data results. The TIDE scores were compared 
between the high-risk and low-risk groups and a violin diagram was plotted. Finally, in order to further guide 
the clinical precision medications, two R packages of “Limma” and “pRRophetic” were used to analyze the data 
of the two risk subgroups the “ggboxplot” was introduced to visualize the drug sensitivity.

Cell culture. Human endometrial cancer cell line HEC-1A (purchased from Shanghai Fuhengsheng Materi-
als Co., LTD.) was cultured in Mccoy’s 5A + 10%FBS (both purchased from Gibco), and normal endometrial 
epithelial cells (purchased from Shanghai Fuhengsheng Materials Co., LTD.) were cultured in EMEM complete 
medium at 37  °C. 5%CO2, pH 7.2–7.4, sterile constant temperature culture. When the degree of cell fusion 
reached 90%, cell passage was carried out.

Riskscore =

n∑

i

Xi × Yi.
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Rt‑PCR. Total RNA was collected using a RNeasy mini kit (RNA Fast 200, China), according to the manufac-
turer’s instructions. Then, cDNA was synthesized from 1 μg of total RNA using a SureScript First-Strand cDNA 
Synthesis Kit (GeneCopoeia, USA). Finally, the expression levels of NSUN2, NUDT3, LARP1, NCBP3. The 
sequences of the primers were as follows:

NSUN2: forward 5′-ACC TGG CTC AAA GAC CAC ACAG-3′, Reverse 5′-TGG CTT GAT GGA CGA GCA GGTA-3′.
NUDT3: forward 5′-GAA GCA CAG GAC GTA TGT CTATG-3′, reverse 5′-CTG CAC GGG TTT GTG ATA CTG-3′.
LARP1: forward 5′-GCT GTT TAG GAA CAG CTG CC-3′, reverse 5′-CCA CAG G TGA CAG GGA GAA G-3′.
NCBP3: forward 5′-AGG AAA TCG GCG TCC AAG TT-3′, reverse 5′-TGC CTT GCC AGT CTT TGT CT-3′.
GADPH: forward 5′-GCA CCG TCA AGG CTG AGA AC-3′, reverse 5′-TGG TGA AGA CGC CAG TGG A-3′.

Melting curve analysis was used to confirm the amplification specificity. The quantification data were ana-
lyzed using LightCycler analysis software (version 4.0; Roche Applied Science, Mannheim, Germany). Relative 
expression was normalized to that of GAPDH.

Results
Transcriptomic difference analysis in m7G low and high expression groups in patients with 
UCEC. According to the m7G expression quartiles, TCGA-UCEC tumors were divided into two groups 
with high and low m7G expressions for differential expression analysis to identify 20 DEGs (|log2 FC|> 0.1, 
FDR < 0.05)with a difference of more than 2 times. The detailed distribution of 20 DEGs was shown by heat map 
(Fig. 1A) and a complete network of relationships among DEGs was plotted (Fig. 1B). The GO enrichment results 
showed that the DEGs of the m7G high and low expression groups were mainly involved in biological processes 
such as RNA cap binding, RNA 7-methylguanosine cap binding and catalytic activity, acting on RNA, etc. Its 
products were mainly involved in ribonucleoprotein granule, cytoplasmic ribonucleoprotein granule and RNA 
cap binding complex and other cellular components, playing a role in biological molecular functions, including 
organic cyclic compound catabolic process, aromatic compound catabolic process, cellular nitrogen compound 
catabolic process, heterocycle catabolic process and nucleobase-containing compound catabolic process, etc. 
(Fig. 1C). Meanwhile, the results of KEGG signaling pathway analysis showed that the m7G high expression was 
mainly enriched in RNA degradation, nucleocytoplasmic transport, mRNA surveillance pathway, spliceosome 
and so on signal pathways (Fig. 1D).

Gene mutation map and CNV analysis of UCEC patients. Of the 529 HCC patients in the TCGA 
database, 152 (28.73%) had genetic mutations (Fig.  2A). One of the most common types of gene mutations 
was the missense mutation. However, the proportion of missense mutations was small in some genes, such as 
EIF4G3 and LARP1. In addition, EIF4G3 mutations had the highest frequency, followed by AGO2, NCBP1, 
LARP1, GEMIN5, NSUN2, CYFIP1, DCP2, WDR4 and EIF4A1. However, NUDT4B and NCBP3 did not show 
any mutations. In order to analyze the copy number variants in the m7G-related genes, we selected 28 copy 
number variant genes in UCEC for further analysis. The status of m7G-related gene copy number variants in 28 
UCEC patients was shown in Fig. 2B, where NCBP2, AGO2, NSUN2, EIF4E1B, LSM1, NCBP3 and NUDT16 
had significant CNV amplification frequencies, and a small number of genes were missing, including EIF4G3, 
IFIT5, EIF4E2, and EIF4E3. Figure 2C showed the visual expression of all m7G-related copy number variant 
genes on chromosomes in the UCEC sample.

Construction of prognostic model of m7G‑related mRNA. Firstly, in the TCGA cohort, the expres-
sion data of 20 m7G-related DEGs were extracted. The univariate COX regression was carried out for the overall 
survival (OS) to yield 5 m7G-related mRNAs significantly related to the OS (P < 0.05) (Fig. 3A). Then, 4 genes 
were obtained for subsequent analysis through Lasso COX regression analysis according to the optimal λ value 
(Fig. 3B,C). The multivariate COX proportional risk regression analysis was used to obtain a total of 4 risk genes 
(Fig. 3D), namely NSUN2, NUDT3, LARP1 and NCBP3 for the construction of a prognostic risk model.

Construction of a risk score model based on m7G‑related prognostic mRNA. The risk scores of 
all patients were calculated. All UCEC patients in the TCGA cohort were divided into high and low risk groups 
based on the median risk score. The distribution of risk scores and survival status was shown in Fig. 4A,B. The 
Kaplan–Meier survival curve showed that the patients with hepatocellular carcinoma in the high-risk group and 
those with NSUN2, NUDT3 and LARP1 genes in the high expression group had a lower survival rate and shorter 
survival time (Fig. 4C–F). The patients in the high expression group with the NCBP3 gene had a higher survival 
rate and longer survival times (Fig. 4G). In addition, the ROC curve showed that the model also had a good 
predictive power for overall survival of UCEC patients in the TCGA cohort, with AUC values of 0.623 (1 year), 
0.665 (3 years) and 0.637 (5 years), respectively (Fig. 4H). At the same time, an external cohort and two sets of 
validation datasets were constructed to explain the generalization capacity of the models and the effect in other 
cohorts (Fig. 4I,J, Supplementary Figs. S1A, S2A). The patients in the low-risk group have a higher survival rate 
and longer survival times (Fig. 4I, Supplementary Figs. S1B, Fig S2B). The predictive power of the model was 
also validated in the external cohort (Fig. 4J). PCA and t-SNE analyses showed that the difference in sample data 
distribution was significant between the two risk subgroups in the TCGA cohort (Fig. 4K,L).

Prognostic model as an independent prognostic factor in patients with UCEC. Univariate and 
multivariate COX regression analysis was used to evaluate whether the prognostic model was an independent 
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prognostic factor for the patients with UCEC. In the TCGA cohort, the univariate COX regression analysis 
showed a significant correlation [risk ratio (HR) 1.809; 95% confidence interval (CI) 1.404–2.332; P < 0.001] 
between the risk scores and overall survival of patients with UCEC (Fig. 5A). The multivariate COX regres-
sion further showed that the risk score was an independent prognostic factor for overall survival [HR 1.809; 
95% CI 1.404–2.332; P = 0.020] (Fig. 5B). In order to understand the clinical effectiveness of the model, it was 
known from the DCA curves that the score-clinical variable integration model had a more significant net benefit 
than the traditional age, treatment protocols of all patients or non-treatment protocol in prognostic prediction 
(Fig. 5C). In the prognostic nomogram, each differential factor was based on the scores corresponding to the 
first ruler and the total score was obtained by added them up. Then according to the scores of the second ruler, 
the 1, 3 and 5-year survival rates were corresponded downward. As can be seen from the chart, the higher the 
age, the higher the score and the worse the survival prognosis (Fig. 5D). In clinical practice, a scoring system 
can be constructed for patients with different conditions, so as to obtain individualized survival predictions. In 
the calibration plot, the abscissa represented a predicted value and the ordinate represents an actual value. This 
curve and the 45° dashed line (i.e., an ideal state) represented the differences between the actual and predicted 
values. From the calibration chart, the 1-year survival prediction was close to the same with a high predictive 
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value, while the 3 and 5-year survival prediction data were relatively close with some certain predictive value. 
Overall, the predictive model has a goodness of fit (Fig. 5E).

Functional analysis in the TCGA cohort. We screened out 205 differentially expressed genes [|log2 
FC|> 0.1, FDR < 0.05] in the TCGA cohort. GO analysis showed that these differentially expressed genes were 
mainly enriched in the following aspects: microtubule-based movement, cilium organization, cilium movement, 
cilium assembly and so on biological processes (Fig. 6A). In order to further explore the relationship between 
the risk scores and the immunity, we used ssGSEA to quantify the infiltration degree of different immune cells 
and infiltration scores of immune pathways. The results showed the differences in infiltration of aDCs, B cells, 
iDCs, macrophages, neutrophils, T helper cells and Tfh were significant between the low-risk and high-risk 
groups in the TCGA cohort (Fig. 6B). The infiltration scores of immune functions such as CCR, HLA, Type II 
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m7G-related genes.
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IFN Response were higher in the low-risk group than those in the high-risk group. Moreover, the difference was 
statistically significant (P < 0.05) between the two risk subgroups (Fig. 6C). In terms of immune checkpoints, the 
difference in immune-related genes was significantly between the two risk subgroups (P < 0.05). Moreover, the 
expression levels of HHLA2, TNFRSF14, TNFRSF25, CD244, LGALS9, CD40LG, CD200, TNFSF14, TNFRSF4, 
TNFSF15 and CD44 in the low-risk subgroup were higher than those in the high-risk subgroup (Fig. 6D). As 
shown in Fig. 6E, the expression levels of M6A-related genes RBM15, YTHDF2, YTHDF1, WTAP and HNRNPC 
in the high-risk subgroup were significantly higher than those in the low-risk subgroup (P < 0.01).

GSEA‑based m7G‑related signal pathways. The low and high expressions of m7G were detected with 
the “cluserPorfiler” package. The signal pathways of UECC participating in TCGAs were identified by GSEA 
analysis. Signaling pathways such as B CELL RECEPTOR, CYTOSOLIC DNA, PENTOSE PHOSPHATE and 
INSULIN were enriched in the m7G highly expressed UCEC phenotype (Fig. 7A–D), as well as significantly 
enriched in endometrial cancer, bladder cancer, non-small cell lung cancer and pancreatic cancer and other dis-
eases (Fig. 7E–H). Biological processes such as alpha linolenic acid metabolism, transporters, hedgehog signal-
ing pathway and arachidonic acid metabolism were enriched in the m7G lowly expressed phenotype (Fig. 7I–L).

Analysis of survival, tumor microenvironment and immune cell infiltration among 3 geno‑
types. Based on the expression similarity of m7G-related mRNAs in the UCEC samples, the gene set was 
finally divided into three stable clusters by choosing k = 3, with the stability of clusters ascending between k = 2 
and k = 9 (Fig.  8A–D). The differential distribution of the four prognostic risk genes in the three types was 
shown in Fig. 8E. As shown in the Kaplan–Meier survival curves in Fig. 8F,G, the difference in survival state was 
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Figure 4.  Survival analysis and comparison between the high and low risk groups. (A,B) Median distribution 
of risk scores and survival status of UCEC patients. (C) Kaplan–Meier survival curves of patients in the high and 
low risk groups in the TCGA cohort. (D–G) Survival status of high and low expression groups with NSUN2, 
NUDT3, LARP1 and NCBP3 genes. (H) ROC curves and AUC values of the model in the TCGA cohort. (I) 
PCA analysis results. (J) t-SNE analysis results.
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significantly among three groups. Besides, the OS and PFS of the third group were the best (P < 0.001). TME, 
ESTIMATE Score, Immune Score, Stromal Score, Tumor Purity were significantly correlated with (P < 0.01) 
types C1–3 (Fig. 8H–K).

Based on the gene expression profiles of these samples, CIBERSORT was used to analyze the main compo-
nents of the immune cell infiltration matrix of three types. Figure 8L showed that the difference in immune cell 
infiltration was significant among the three types. After performing the differential analysis of the same immune 
cells for the 3 types, the results showed that the difference in T cells CD8, T cells CD4 memory resting, T cells 
CD4 memory activated, T cells follicular helper, T cells regulatory (Tregs), T cells gamma delta, NK cells acti-
vated, macrophages M1, macrophages M2, dendritic cells resting and dendritic cells activated was significant 
(all P < 0.05) among three types. See Fig. 8M.

Significant correlation between the TMB levels and OS in patients with UCEC. Of the 255 
UCEC patients in the high-risk group, 250 (98.04%) had genetic mutations in the gene mutation map (Fig. 9A) 
while 266 UCEC patients in the low-risk group, 262 (98.5%) had genetic mutations in the gene mutation map 
(Fig. 9B). There was no significant difference in TMB levels in the high-risk and low-risk groups (Fig. 9C). There 
was no significant correlation between the TMB levels and risk scores in UCEC patient samples (Fig. 9D). The 
TMB level in UCEC patients was calculated. Having combining risk scores with TMB levels, it was concluded 
that the patients with UCEC had a higher TMB level and longer survival time in the low-risk group (P < 0.001). 
See Fig. 9E,F.

Risk score model closely related to stem cells, TIDE scores and drug sensitivity. As shown in 
Fig. 10A,B, Spearman correlation test suggested that the risk score model was positively correlated with RNAss 
(P < 0.001) and not significantly correlated with DNAss (P = 0.37). UCEC sample data in the low-risk group 
had scored higher in the TIDE scores and the difference was statistically significant (P < 0.01) between the two 
risk subgroups (Fig. 10C). Drug sensitivity analysis revealed that there was a difference in drug sensitivity (all 
P < 0.001) between the high-risk and low-risk groups. Moreover, the bicalutamide sensitivity (IC50) of bicaluta-
mide, EHT.1864 and temsirolimus in the low-risk group was lower than that in the high-risk group (Fig. 10D–
F). The IC50 of methotrexate, midostaurin and parthenolide in the high-risk group was lower than that in the 
low-risk group (Fig. 10G,I).

Age

Grade

riskScore

0.003

<0.001

<0.001

pvalue

1.032(1.011−1.054)

2.597(1.808−3.730)

1.809(1.404−2.332)

Hazard ratio

Hazard ratio

0.0 1.0 2.0 3.0

Age

Grade

riskScore

0.022

<0.001

0.020

pvalue

1.025(1.003−1.047)

2.264(1.553−3.300)

1.421(1.057−1.912)

Hazard ratio

Hazard ratio

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.05

0.10

0.00 0.05 0.10
Risk Threshold

N
et

 B
en

ef
it Risk

Age
Grade
All
None

1 1.5 2 2.5 3 3.5 4

Grade***

30 40 50 60 70 80 90

Age*

low

high

risk

0 20 40 60 80 100
Points  

Total points

40 60 80 100 120 140 160 180 200 220

0.820.880.920.960.9750.9850.9920.995Pr( futime > 1 ) 

0.40.60.70.80.90.940.960.98Pr( futime > 3 ) 

0.250.450.60.70.80.90.940.960.98Pr( futime > 5 ) 

165

0.937

0.746

0.658

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Nomogram−predicted OS (%)

O
bs

er
ve

d 
O

S 
(%

)

1−year
3−year
5−year

A

D E

B C

Figure 5.  Independent prognostic analysis of risk score model. (A,B) Univariate and multivariate COX 
regression analysis of OS in the TCGA cohort. (C) DCA curve of scores and score-clinical variable integration 
mode. (D) Survival prognosis nomogram of UCEC patients. (E) Calibration charts for predicting 1, 3 and 5-year 
survival of UCEC patients.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18813  | https://doi.org/10.1038/s41598-022-22879-6

www.nature.com/scientificreports/

RT‑PCR. Compared with normal endometrial epithelial cell line hEEC, the expression levels of NSUN2, 
NUDT3 and LARP1 in human endometrial carcinoma cell line HEC-1A were significantly increased (P < 0.001), 
while the expression levels of NCBP3 were significantly decreased (P < 0.001), further supporting the conclusion 
of the above analysis (Fig. 11).

Discussion
UCEC is a common gynecologic malignant tumor. The principal mode of initial treatment for UCEC is surgery 
and corresponding adjuvant therapies decided based on the recurrent risk and prognosis. For the treatment of 
recurrent or advanced endometrial cancer, the targeted therapy, endocrine therapy, and/or palliative radiation 
therapy (radiotherapy) are mostly performed based on factors such as histological type, differentiation, lymph 
node metastasis and depth of muscle invasion (chemotherapy) etc. Non-focal recurrent or metastatic UCEC has 
a poor prognosis, with a 5-year survival rate of only 10–20%. Considering that there is currently no standard 
post-line treatment protocol for relapsed or advanced UCEC, poor overall prognosis and poor response to clas-
sical therapy, new prognostic targets and treatment strategies need to be explored to improve prognosis.

As one of the basic processes of epigenetic regulation, RNA modification is involved in many biological 
physiological and pathological  functions21–24. Studies have revealed that RNA modification disorders promote 
the processing and translation of carcinogenic transcription subsets, and are closely associated with the metas-
tasis and progression of prostate cancer, esophageal squamous cell carcinoma, gastrointestinal tumors and so 
on human  cancers25–29. However, current research on the role of m7G-related mRNAs in the occurrence and 
development of UCEC is still limited. In this paper, we have constructed a risk score model for the first time 
based on m7G-related mRNA and systematically analyzed the prognostic and immunotherapeutic value of this 
model for patients with UCEC. Firstly, we have screened m7G-related mRNAs that are differentially expressed 
in UECC tissues and paracancer tissues and analyzed the correlation among the mRNAs. By combining the 
expression of UCEC samples in the TCGA dataset with clinical data, and performing univariate, Lasso COX 
regression analysis and multivariate Cox proportional risk regression analysis, risk genes are obtained and a 
UCEC risk prognosis model is established.

We have then comprehensively investigated the relationship between the four m7G-related mRNAs (NSUN2, 
NUDT3, LARP1 and NCBP3) and UCEC clinical data variables. Existing studies have shown that these genes 
play vital roles in the pathogenesis and progression of human cancer. AS a post-transcriptional regulatory fac-
tor, NOP2/Sun domain family member 2 protein (NSUN2) plays a key role in catalyzing tRNA methylation, 
promoting gene and protein translation and maintaining transcriptional  stability30–33. Besides, NSUN2 has a dual 
role in tumor cells, playing different functions at different stages of the cell cycle in animal tissues. Although a 

Figure 6.  Functional enrichment analysis and immune infiltration levels of differential genes in the two 
risk subgroups. (A) GO analysis of differentially expressed genes. (B) Infiltration levels of immune cells. (C) 
Infiltration scores of immune pathways. Differential expression of 18 common immune checkpoints (D) and 12 
M6A-related genes (E) between the two risk subgroups.
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study report reveals that the NSUN2 is overexpressed in epithelial tumor  cells34 and ovarian  cancer35 compared 
to normal tissue. Moreover, the patients with a low level of NSUN2 show a better overall survival rate than 
those with a high level of the NSUN2. However, in human skin cancer, the metastatic capacity of cancer cells is 
negatively correlated with the expression of the  NSUN234. In addition, some studies have shown that the NSUN2 
has the properties of delaying protein synthesis and controlling the stem cell cycle in stem cells, which may lead 
to tumor recurrence and chemotherapy  resistance34. NUDT3 is a cytoplasmic protein with mRNA dissociation 
activity in the family of diphosphoinositol polyphosphate phosphohydrolases (DIPP)36. It is found that through 
genome-wide and NUDT3 gene knockout cell analysis of NUDT3 damaged cells, NUDT3 is a mRNA dissociation 
enzyme that directly or indirectly affects the stability of mRNAs and regulates expression levels to adjust the cell 
migration, such as MCF-7 breast cancer cell  migration37. In addition, NUDT3 has been found to be a key link in 
proliferative biological pathways. Small molecule drugs act as targeted agents for Triple-negative breast cancers 
(TNBCs) by inhibiting  NUDT338. La-related protein 1 (LARP1) belongs to RNA-binding proteins (RBPs). As 
one of the post-transcriptional regulatory factors, the carcinogenic properties of LARP1 has been demonstrated 
in many studies. LARP1 promotes the occurrence of NSCLC and CC by targeting its enhancers to positively 
regulate the expression of mTOR in non-small cell lung cancer (NSCLC) and cervical cancer (CC)39,40. At the 
same time, LARP1 can be used as a prognostic marker of colorectal cancer (CRC). Its overexpression is signifi-
cantly correlated with the poor prognosis of the CRC and the  OS41,42. In addition, LARP1 can also indirectly 
regulate the expression of bcl2 and BIK and the development of ovarian  cancer39. Nuclear cap‐binding protein 
3 (NCBP3) (or C17orf85) is a new cap-binding protein that may bind directly to RNA  caps43,44. NCBP3 may 
act as a bridge between RBPs in the biological function of mRNA, upregulating the expression of downstream 
target genes in non-small cell lung cancer by interacting with NCBP1, thereby promoting the progression of 
lung  cancer45. Furthermore, NCBP3 is found in glioma tissues and cells to bind directly to small nucleolar RNA 
host gene 6 (SNHG6) and inhibit the transcription of gastrulation brain homeobox 2 (GBX2) in a manner that 
relies on polycomb repressive complex 2 (PRC2), thereby promoting malignant progression of  gliomas46. These 
results show that the four m7G-related mRNAs of NSUN2, NUDT3, LARP1 and NCBP3 are closely related to 
tumorigenesis and prognosis. This confirms our conclusions in UCEC.

Figure 7.  GSEA of M7G high expression (A–H) and low expression (I–L) samples.
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It has been found that the UCEC could evade the immune system to achieve tumor progression and metastasis 
by mimicking the immune tolerance mechanisms that occur in the maternal  fetus47,48. Currently, an immuno-
therapy regimen with immune checkpoint inhibitors—lenvatinib plus pembrolizumab has become an emerging 
field of progressive advanced UCEC research and treatment after systemic  treatment49–51. We have divided the 
UCEC patients into high-risk and low-risk groups based on a risk score model and compared differentially 
expressed genes between the two risk subgroups. The results show that these four m7G-related prognostic 
mRNAs of NSUN2, NUDT3, LARP1 and NCBP3 in the risk score model are not only associated with the patient’s 
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OS, but also significantly related to immune cell infiltration, immune checkpoints and immune-related signaling 
pathways, etc. These findings may contribute to further insight into the effects of m7G-related prognostic mRNA 
on UCEC prognosis and immunotherapy. A variety of prognostic markers have been proved to have consider-
able prospects in the immune and tumor microenvironment, providing a new direction for  immunotherapy52,53. 
ssGSEA analysis shows a significant increase in immune cells that promote the tumor proliferation and metastasis 
such as infiltrating macrophages in the UEC samples of high-risk  group54,55. The poor prognosis of patients in 
the high-risk group may be related to pro-cancer infiltrating immune cells. In addition, compared with the m7G-
related prognostic mRNA low-risk group, UCEC samples in the high-risk group mostly have a lower level of 
immune checkpoint molecular expression, suggesting that the patients in the low-risk group are more likely to 
benefit from the treatment with immune checkpoint inhibitors. It also shows that our m7G-related prognostic 
mRNA risk score model may be able to predict the clinical efficacy of immune checkpoint blocking therapy in 
patients with UCEC.

In this paper, based on the expression similarity of m7G-related mRNAs in the UCEC samples, the gene set 
is finally divided into three stable clusters by choosing k = 3. There have been many previous reports on UCEC 
subtypes, such as the quantification of immunophenoscore (IPS) by by the pattern of gene differential expres-
sion and the construction of five immune molecular  subtypes56. There are also methods such as clustering EC 
samples in TCGA into immune signature cluster modeling using GVSA enrichment analysis, evaluated immune 
cell profiling in UCEC cohorts and defined four immune subtypes of  EC57.

Expression of TMB has gradually emerged as the best biomarker chosen for a variety of tumor immune 
checkpoints, including lung cancer, colorectal cancer, prostatic cancer and breast  cancer58. In this study, we 
have obtained 3 genotypes based on consensus clustering analysis of UCEC responses to m7G-related mRNAs. 
Through somatic mutation analysis of UCEC samples in the TCGA database, we have found that the patients 
in the low-risk group have a higher level of TMB, and those with high TMB in the low-risk group have the best 
prognosis. As a novel biomarker, TMB has been associated with the efficacy of immunosuppressants on non-
small cell lung cancer and malignant  melanoma59. Some studies have suggested that the patients with a high TMB 
have a better prognosis in non-small cell lung cancer and malignant melanoma, compared with renal clear cell 
carcinoma, colon cancer and prostatic  cancer60. This means that the patients with a low risk and a high TMB are 
likely to be recognized by immune cells and may benefit more from immunotherapy.

Bicalutamide, a first-generation non-steroidal androgen receptor (AR) antagonist, has become a key part 
of prostate cancer (PCa) treatment by acting directly on the  AR61. In Hepatocellular carcinoma (HCC), low 
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Figure 9.  Correlation analysis of TMB levels between the two risk subgroups. (A,B) Distribution of the first 20 
mutant genes in the high and low risk groups. (C) Difference analysis of TMB in the two risk subgroups. (D) 
Correlation between TMB and risk score. (E,F) Analysis of OS in UCEC patients in combination with TMB 
levels and risk scores.
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expression of SNHG1/SNHG3 was more sensitive to  bicalutamide62. In a lncRNA prognostic risk model of 
gastric cancer patients, high-risk patients were more sensitive to chemotherapeutic agents such as bicalutamide 
compared to the low-risk  group63.

Limitations. However, our current research still has some shortcomings. Firstly, the AUC value of the veri-
fication group is not ideal, so more external databases and clinical samples are needed to validate its predictive 
ability. In addition, the specific mechanisms by which the 4 risk genes affect UCEC prognosis still need to be 
further studied, which may become a new target for the UCEC treatment.

Conclusion
To sum up, in this study, bioinformatics methods have been used to analyze multi-omics data of UCEC samples in 
the TCGA database. The first UCEC prognostic risk score model is established based on 4 m7G-related mRNAs 
(NSUN2, NUDT3, LARP1 and NCBP3), which can make individualized predictions of survival rate in UCEC 
patients and is an independent prognostic factor for UCEC patients. In addition, this risk model has a certain 
reference value for predicting immune cell infiltration, immune function, immune checkpoints, TMB levels, 
m6A-related genes, tumor immune microenvironment, stem cell correlation, TIDE scores and drug sensitivity 

R = 0.51, p < 2.2e−16
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in UCEC, indicating that targeting m7G-related mRNA may become a promising target for the treatment of 
UCEC. It will provide new directions and ideas for follow-up clinical diagnosis and treatment of UCEC, and has 
great clinical significance for UCEC-specific therapeutic drugs.

Data availability
The datasets generated and/or analyzed during the current study are available in the [The Cancer Genome Atlas 
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