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Arbitrary entanglement of three 
qubits via linear optics
Pawel Blasiak 1,2*, Ewa Borsuk 2 & Marcin Markiewicz 3

We present a linear-optical scheme for generating an arbitrary state of three qubits. It requires only 
three independent particles in the input and post-selection of the coincidence type at the output. 
The success probability of the protocol is equal for any desired state. Furthermore, the optical design 
remains insensitive to particle statistics (bosons, fermions or anyons). This approach builds upon the 
no-touching paradigm, which demonstrates the utility of particle indistinguishability as a resource of 
entanglement for practical applications.

Entanglement remains a central theme in quantum foundations  research1,2. It is considered a key resource ena-
bling the advantage in quantum information  tasks3,4. There is therefore a vital interest in practical entanglement 
generation schemes capable of delivering the broadest possible range of states, from which one might choose a 
state desired for a problem at hand. Ideally, we would like to have a generic and efficient tool for constructing an 
arbitrary multi-particle state from some simpler initial state (possibly having just a few independent particles 
to begin with). A paradigmatic example is the construction of the full class of single-particle states (a qudit). In 
this case, arbitrary unitary transformation can be experimentally implemented by linear-optical  devices5 and 
hence any single-particle state can be deterministically prepared from any given initial state. However, it is not 
true for multi-particle states that do not transform one into another by means of linear  optics6. Thus for the 
generation of multi-partite entanglement, non-linear effects or post-selection of some sort must be employed. 
Several techniques have been developed to this effect which produce certain classes of  states7–10. However, there 
is no systematic linear-optical method for obtaining an arbitrary multi-particle entangled state that would start 
with a supply of independent particles in the input.

In this work, we focus on entanglement generation for three qubits. Notably, this is the first non-trivial 
case where the arbitrariness of the desired state becomes challenging. An interesting approach to this problem 
consists in considering the set of stochastic local operations and classical communication (SLOCC)11–13. It has 
been shown that for three qubits there are two inequivalent classes of genuinely tripartite entangled  states12. This 
means that using SLOCCs for filtering arbitrary tripartite entanglement requires two different types of entangled 
states to begin with, i.e., states of the GHZ and the W type. However, it should be remarked that the efficiency 
of such protocols drops to zero when moving away from the initial state. Another important result concerns the 
full set of linear optical transformations (without post-selection)6. Then the situation is further complicated as 
for three qubits the set of entangled states splits into a continuous number of inequivalent classes. Those results 
illustrate the difficulties in efficiently generating arbitrary entanglement using linear operations without any 
entanglement from the outset.

Here we will show that linear-optical transformations augmented with post-selection of the coincidence type 
are enough to generate arbitrary entanglement of three qubits from three independent particles (i.e., without 
requiring any prior entanglement). Our proposal builds on the so-called no-touching paradigm in optical designs 
which draws from the inherent indistinguishability of particles; see Ref.14 for a general scheme and Refs.15–19 
for some examples. Notably, the protocol is an instance of direct and explicit construction of any given state. 
A distinctive advantage of the proposal is that it has equal efficiency for generating any desired state and it is 
insensitive to particle statistics.

Results
Simplification by generalised Schmidt decomposition. A general state of three qubits reads

(1)|ψ� =
∑

ijk=0,1

αijk |ijk� ,
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where |ijk� is a computational basis in C2 ⊗ C
2 ⊗ C

2 . It turns out that this can be simplified by local transforma-
tions to the combination of the following five states

with five real parameters a, b, c, d, e ≥ 0 and one phase 0 ≤ ϕ ≤ π , such that

This follows from the generalised Schmidt decomposition for three  qubits20,21 and no further reduction of 
the number of non-vanishing terms is possible.

Therefore, to generate the state in Eq. (1), it is enough to provide the state in Eq. (2) and then make a local 
transformation on each qubit. In the following, we give the explicit protocol for optical construction of an arbi-
trary state in the reduced form of Eq. (2).

Optical realisation. Consider three identical particles injected into an optical circuit which consists of 
10 paths (or modes). The particle statistics (bosons, fermions or anyons) is irrelevant for the purpose at hand. 
Following the idea presented in Ref.14 we will group paths at the input and output into three systems, see Fig. 1:

Furthermore, we will distinguish three pairs of paths B̄1 , B̄2 and B̄3 in the respective subsystems at the output, i.e. 
B̄k ⊂ Bk . They will play the role of the so-called dual-rail qubits, where the computational basis |0�,|1� is encoded 
by the presence of a single particle in the respective path of a given pair B̄k . Accordingly, we have the following 
representation for a general qubit state α |0� + β |1�:

where |�� denotes the vacuum state and a†i  are the usual particle creation operators in the second quantisation for-
malism. We note that the dual-rail encoding assumes the presence of a single particle in a given pair of paths B̄k for 
k = 1, 2, 3 . In our scheme this will be guaranteed by post-selection on a single particle in each dual-rail qubit B̄k.

The optical protocol is depicted in Fig. 1. It consists of a sequence of three unitary transformations on three 
independent particles injected in paths 1, 6 and 8. First, the particles undergo local unitaries U, H and U in each 
subsystem A1 , A2 and A3 . Second, the paths are rearranged according to some permutation σ ∈ S10 . Third, 
there are two local unitaries V and W on subsystems B1 and B2 implemented at the output. Finally, the protocol 
ends with post-selection on a single particle in each pair of paths B̄1 , B̄2 and B̄3 which generates three dual-rail 
encoded qubits.

Now, we can make the unitaries in Fig. 1 more precise. Let the first two transformations U and V produce 
symmetric superposition of the injected particles, which in the matrix notation amounts to

(2)|ψ� = a |000� + b eiϕ |100� + c |110� + d |101� + e |111� ,

(3)a2 + b2 + c2 + d2 + e2 = 1.

Input: A1 = {1, 2, 3, 4, 5}, A2 = {6, 7}, A3 = {8, 9, 10},
Output: B1 = {1, 2, 3, 4, 5}, B2 = {6, 7, 8}, B3 = {9, 10}.

B̄1 = {1, 2} � Qubit 1: (α a†1 + β a†2) |�� ,
B̄2 = {6, 7} � Qubit 2: (α a†6 + β a†7) |�� ,
B̄3 = {9, 10} � Qubit 3: (α a†9 + β a†10) |�� .

Figure 1.  No-touching design for arbitrary state of three qubits. Three independent identical particles 
entering the optical circuit undergo a sequence of transformations which consists of local unitaries U, H and 
U on subsystems A1 , A2 and A3 , followed by permutation of the paths σ , and again local unitaries V and W on 
subsystems B1 and B2 . Post-selection on a single particle in each of the dual-rail qubits generates an arbitrary 
state of three qubits B̄1 , B̄2 and B̄3 in Eq. (2) by the appropriate choice of unitaries in Eq. (6) as specified in 
Eqs. (18)–(20).
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The permutation of modes σ ∈ S10 is given as follows

The final unitaries V and W are defined in a non-trivial way by the following two matrices

with some parameters κ , δ, ν,µ, ǫ, ξ and τ . In the above notation, the dots “ . ” are left unspecified and chosen so 
that the matrices are unitary. Observe that this can always be done by augmenting the missing columns/rows to 
an orthonormal basis (note that the two upper rows of V are orthogonal at the outset). The only constraint on 
the parameters κ , δ, ν,µ, ǫ, ξ and τ is their respective normalisation, i.e.

For our purposes, the dotted entries “ . ” will play no role in the argument (in the following, they contribute 
only to the terms that drop out upon post-selection). All the remaining parameters κ , δ, ν,µ, ǫ, ξ and τ will be 
specified shortly.

Let us write out the state that results from the protocol in Fig. 1 after injecting three independent particles 
in paths 1, 6, 8 and post-selecting on a single particle in each dual-rail qubit B̄1 , B̄2 and B̄3 . The evolution of the 
system is given by a sequence of steps as described in the following lines:

where the last equality holds for bosons in the dual-rail encoding. This renders the desired state in Eq. (2) when

We observe that we can always choose matrices W and V to satisfy these equations by defining parameters 
κ , δ, ν,µ, ǫ, ξ and τ in the following way

(If µ = 0 , then ξ and τ can be taken arbitrarily). It is straightforward to check that the conditions in Eqs. (7)–(9) 
are satisfied, since the constraint in Eq. (3) holds.

(4)U = 1√
3

(

1 . .

1 . .

1 . .

)

and H = 1√
2

(

1 .

1 .

)

.

(5)σ =
(

1 2 3 4 5 6 7 8 9 10

1 7 10 4 5 6 2 3 9 8

)

.

(6)V =











κ 0 0 δ ǫ

δ̄ µ ν - κ̄ 0

. . . . .

. . . . .

. . . . .











and W =
�

ξ τ
. .

�

,

(7)|ξ |2 + |τ |2 = 1,

(8)|κ|2 + |δ|2 + |ǫ|2 = 1,

(9)|δ|2 + |µ|2 + |ν|2 + |κ|2 = 1.

(10)a†1a
†
6a

†
8|�� U ,H ,U−−−−→

Eq.(4)

1

3
√
2

(

a†1 + a†2 + a†3
)(

a†6 + a†7
)(

a†8 + a†9 + a†10
)

|��

(11)
σ−−−→

Eq.(5)

1
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√
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a†1 + a†7 + a†10
)(

a†6 + a†2
)(

a†3 + a†9 + a†8
)

|��

(12)
V ,W−−−→
Eq.(6)
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(14)
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2
(κa†1a

†
6a

†
9 + δ̄a†2a

†
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†
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†
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†
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†
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†
2 + µτa†10a

†
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†
7)|��

(15)= 1

3
√
2

(

κ |000� + δ̄ |100� + ξµ |110� + ν |101� + µτ |111�
)

,

(16)κ = a, δ̄ = b eiϕ , ξµ = c, ν = d, µτ = e.

(17)κ = a, δ = b e−iϕ , ν = d,

(18)µ =
√

c2 + e2, ǫ =
√

1− a2 − b2,

(19)ξ =
c

µ
, τ =

e

µ
.
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Note that the scheme works for fermions as well. In this case, the final state in Eq. (16) takes the form

and then the Eqs. (18)–(20) require a trivial modification ν = − d and ξ = − c
µ in order to recover the desired 

state in Eq. (2). In a similar manner it is straightforward to adjust Eq. (16) for any particle statistics (anyons).
Finally, we observe that the expression in Eq. (16) is unnormalised due to post-selection. This allows to read 

off the success probability (efficiency) of the process which is equal to 
(

1

3
√
2

)

2 = 1
18

≈ 5% . Notably, the efficiency 
is the same for every three-qubit state |ψ�.

Discussion
We remark that the above-described protocol, based on dual-rail encoded qubits, provides a ready-made template 
that straightforwardly translates into any other physical implementation of qubits. This turns out to be a generic 
feature of the no-touching designs in which the question of particle statistics becomes virtually irrelevant because 
of post-selection. It is due to the fact that the latter projects on the sector where the evolution of the system 
features at most a single particle in each mode, which makes immaterial the distinction between the bunching 
and anti-bunching effects for bosons and fermions; see Refs.14–19 for a discussion.

From the fundamental point of view, it is interesting to note the significance of the inherent indistinguish-
ability of particles as conveniently described in the second quantisation formalism. It appears that entanglement 
resulting from the symmetrization postulate can be treated as a genuine resource and transformed into other 
kinds of entanglement which can be directly observed and used for practical  applications14,22–24. This paper shows 
that arbitrary entanglement of three qubits can be extracted in this way. For an extension to some multi-particle 
entangled states see e.g. Refs.19,25–29.

An important advantage of the proposed protocol is the minimal amount of resources employed to generate 
an arbitrary three-qubit state compared to the existing techniques: 

(a) It requires only linear optics and works equally well for any particle statistics, cf. Refs.7–10.
(b) There is no need for auxiliary systems (particles) or measurements, cf. Refs.25,27.
(c) The protocol requires only three independent particles in the input, i.e., no prior entanglement is required.
(d) It has the same efficiency for the generation of any desired three-qubit state.

This distinguishes our proposal from the typical approach based on filtering via SLOCC operations which 
requires auxiliary entanglement from the outset, and its success probability for arbitrary three-qubit states 
drops to zero; see Methods section for discussion. Moreover, the generation of states via SLOCC filtering gen-
erally demands different initial states depending on the SLOCC equivalence class of the target state. For optical 
proposals aimed at preparation of single representatives in the SLOCC classes for the purpose of filtering see 
Refs.14,26,28,30. Notably, our protocol overcomes the division into SLOCC equivalence classes due to the presence 
of mode permutation σ , which is a non-local operation from the point of view of subsystems defined by mode 
grouping.

We note that our scheme relies on a specific type of post-selection which requires coincidence count in the 
output channels encoding dual-rail qubits B̄1 , B̄2 and B̄3 . A direct way to check the coincidence criterion involves 
the measurement of each qubit. Typically this destroys the state, but the recorded correlations can be still used 
for the extraction of some information relevant to a given experiment. The utility of such a direct post-selection 
depends on the task at hand. For illustration see, e.g., the recent boson sampling  experiments31 or the direct 
verification of the boson nature of  photons32,33. It was also shown to be safe for Bell-type tests of non-locality24. 
We remark that many modern state generation schemes refer to post-selection of the the coincidence-type, 
like e.g. entanglement by path  identity9,34,35 or spatial overlap of indistinguishable  particles22,23,36. However, 
if the generated state needs to be further processed, then direct detection does not meet this requirement. In 
such a case, the solution is provided by non-demolition measurements carried out on each dual-rail qubit B̄1 , 
B̄2 and B̄3 . Such a measurement ascertains the presence of a particle without destroying it and not affecting its 
state. Therefore, a positive joint result of those three (non-demolition) measurements heralds the generation of 
the desired state in the signal modes. This turns the protocol into an event-ready scheme. Notably, a few non-
demolition measurement techniques have been developed in recent years. See e.g. Refs.37–39 for non-demolition 
detection of photons (noting that polarization and dual-rail encoding of qubits transforms one into another via 
polarizing beam splitters).

In summary, the characteristic features of the proposed scheme for state generation are marked by simplicity 
(just linear optics and post-selection of the coincidence type), limited initial resources (just three independent 
particles in the input), and universal efficiency (equal for any desired state). This makes the proposal an inter-
esting technique for integrated quantum technologies motivating further research towards an extension to an 
arbitrary number of qubits; see the recent progress in the optical generation of certain multi-particle states within 
the no-touching  paradigm19,25–28,30. We also indicate possible further improvements using a graph-theoretical 
approach to the analysis of linear optical  schemes40.

Methods
Comparison with the generation of arbitrary states via SLOCC operations. In this paper, we pre-
sented a universal interferometric protocol for generating an arbitrary three-qubit state from an input product 
state of three particles, which prepares an arbitrary state with constant finite efficiency. Here, we compare this 
scheme with the generation of arbitrary states from a GHZ class starting from the GHZ input state via SLOCC 

(20)κ |000� + δ̄ |100� − ξµ |110� − ν |101� + µτ |111� ,



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21596  | https://doi.org/10.1038/s41598-022-22835-4

www.nature.com/scientificreports/

operations. We will see that the lattr method of state generation has a vanishing efficiency for some states in this 
class.

As shown in the seminal paper by Dür et al.12 an arbitrary state from the GHZ class can be parametrised by 
five real parameters as

in which the normalisation constant reads K = (1+ 2 cos(χ) sin(χ) cos(α1) cos(α2) cos(α3) cos(θ))
−1 and the 

states |si� are given by cos(αi) |0� + sin(αi) |1� . The ranges of the parameters are as follows: χ ∈ (0, π
4
] , αi ∈ (0, π

2
] 

and θ ∈ [0, 2π) . This state can be obtained from the standard GHZ state |ψGHZ� = 1√
2
(|000� + |111�) via SLOCC 

filtering operations specified by

where the SLOCC operator M has the  form12

Such a filtering operation can be implemented as a two-outcome POVM  measurement13, with measurement 
operators defined by P = M/||M|| and P′ =

√
1− P†P . The outcome related to the measurement operator P 

indicates the success of the protocol, whereas the outcome related to P′—its failure. The norm has to be chosen 
to guarantee that P†P ≤ 1 . One of the typical choices is the spectral norm of the operator M, defined as the 
largest singular value of M. This choice turns out to be optimal for the task of entanglement distillation of two-
qubit  states13. However, other choices that guarantee the condition P†P ≤ 1 , such as the Frobenius norm, are 
also correct. The success probability of filtering arbitrary state of the form Eq. (22) for SLOCC operator M is 
thus given  by41

where ρGHZ = |ψGHZ� �ψGHZ| , and the last equality follows from the fact that |ψGHZ� is already properly normal-
ised. Note that the operator M is not unitary, and therefore it does not preserve the normalisation of a general 
state it acts on—the state ρGHZ is an exception.

Let us  assume that we choose the spectral norm in Eq. (25). For the clarity of presentation we will focus on 
a two-parameter subclass of states from the GHZ class Eq. (22) of the form |ψGHZ(χ ,π ,α,α,α)� . In Fig. 2 we 
present the success probability of obtaining this state from the GHZ state as a function of parameters χ and α . 
We can see that the probability tends to zero for χ = π

4
 and α → 0 , which stands in sharp contrast with our 

protocol that allows for the generation of these states with the fixed finite probability of success independently 
of the values of the parameters. One may argue that the effect of vanishing probability is related to a specific 
choice of the norm. However, it is easy to see that this effect holds for any choice of the norm consistent with 

(21)|ψGHZ(χ , θ ,α1,α2,α3)� =
√
K
(

cos(χ) |000� + sin(χ)eiθ |s1� |s2� |s3�
)

,

(22)|ψGHZ(χ , θ ,α1,α2,α3)� = M(χ , θ ,α1,α2,α3) |ψGHZ� ,

(23)
M(χ , θ ,α1,α2,α3) =

√
2K

(

cos(χ) sin(χ) cos(α1)e
iθ

0 sin(χ) sin(α1)e
iθ

)

⊗
(

1 cos(α2)
0 sin(α2)

)

⊗
(

1 cos(α3)
0 sin(α3)

)

=
√
2K M̃(χ , θ ,α1,α2,α3).

(24)psucc = Tr(PρGHZP
†) = Tr

(

M

||M||
ρGHZ

M†

||M†||

)

=
Tr(MρGHZM

†)

||M||2
=

1

||M||2
,

Figure 2.  Success probability of obtaining arbitrary state from a two-parameter subclass of the GHZ class in 
Eq. (22) of the form |ψGHZ(χ ,π ,α,α,α)� . For χ = π

4
 and α → 0 , the success probability vanishes, indicating 

that these states cannot be effectively obtained via SLOCC filtering.
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the condition P†P ≤ 1 . Indeed, it suffices to show that ||M( π
4
,π ,α → 0)|| → ∞ for any choice of the norm. 

Due to Eq. (24) we have

Now it can be easily verified that 
∣

∣

∣

√

2K
(

π
4
,π ,α → 0

)

∣

∣

∣
→ ∞ . Therefore it suffices to show that ||M̃( π

4
,π ,α → 0)|| 

is strictly positive for any choice of the norm. For the spectral norm one has ||M̃( π
4
,π ,α → 0)|| = 2 . However, 

all matrix norms for finite dimensional matrices of a fixed dimension are equivalent, which means that for any 
two norms || · ||X and || · ||Y  there exist two positive numbers x, x′ such that for any matrix A one has 
x||A||X ≤ ||A||Y ≤ x′||A||X . From this property it follows that ||M̃( π

4
,π ,α → 0)|| must be strictly positive for 

any choice of the matrix norm, which implies ||M( π
4
,π ,α → 0)|| → ∞ and therefore the success probability 

for filtering the states in the neighbourhood of χ = π
4

 and α = 0 , for any implementation of the SLOCC opera-
tion in Eq. (24), is arbitrarily close to zero.

This shows that our protocol overcomes the difficulties of state generation via SLOCC filtering operations, 
since in the latter: (i) the filtering probability can vanish, (ii) we are confined within one of the six entanglement 
classes depending on the initial state of the filtering. Both restrictions do not apply to our protocol, in which the 
success probability is constant for any state and we can reach an arbitrary state from the same trivial initial state.
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